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Abstract

Markowitz mean-variance portfolios with sample mean and covariance as input

parameters feature numerous issues in practice. They perform poorly out of sample

due to estimation error, they experience extreme weights together with high sen-

sitivity to change in input parameters. The heavy-tail characteristics of financial

time series are in fact the cause for these erratic fluctuations of weights that conse-

quently create substantial transaction costs. In robustifying the weights we present

a toolbox for stabilizing costs and weights for global minimum Markowitz portfolios.

Utilizing a projected gradient descent (PGD) technique, we avoid the estimation and

inversion of the covariance operator as a whole and concentrate on robust estimation

of the gradient descent increment. Using modern tools of robust statistics we con-

struct a computationally efficient estimator with almost Gaussian properties based

on median-of-means uniformly over weights. This robustified Markowitz approach is

confirmed by empirical studies on equity markets. We demonstrate that robustified

portfolios reach higher risk-adjusted performance and the lowest turnover compared

to shrinkage based and constrained portfolios.
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§Department of Mathematics ETH, Zürich nikita.zhivotovskii@math.ethz.ch

1

haerdle@hu-berlin.de
yk376@cam.ac.uk
alla.petukhina@htw-berlin.de
nikita.zhivotovskii@math.ethz.ch


1 Introduction

The cornerstone mean-variance portfolio theory proposed by Markowitz (1952) plays a

significant role in research and practice. Efficient mean-variance portfolios (MV) experi-

ence a number of attractive properties and have a simple and straightforward analytical

solution with only two input parameters: the expected mean and covariance matrix of

asset returns. Mean-variance analysis is naturally connected to the Capital Asset Pricing

Model (CAPM), a standard tool in asset pricing.

Despite its simplicity and theoretical appeal, implementation of mean-variance port-

folios is often impractical. The traditional approach to use the sample moments as input

parameters leads to extreme negative and positive weights, and extensive literature docu-

ments poor out-of-sample performance of such plug-in approach, see (Frost and Savarino;

1986, 1988; Best and Grauer; 1991; Chopra and Ziemba; 1993; Broadie; 1993; Litterman;

2004; Merton; 1980). The problem might be seen as an inverse problem, and it simply

has high sensitivity to even small perturbations of the input estimates: the mean and

the covariance matrix. It is possibly surprising that the MV portfolios are more sensitive

to changes in the mean estimate, Jagannathan and Ma (2003) spell this out explicitly

by writing that the error of mean estimation is so large that nothing is lost when one

ignores the mean at all, and Michaud (1989) describes the influence of the mean error

as “error-maximization.” Following majority of research on this topic, we focus here on

global minimum variance portfolios (GMV), which only depend on the covariance.

However, even with the mean left out of the equation, traditional policies suffer

from extreme instability, which means that the portfolio weights fluctuate significantly

over time. Drastic changes in the portfolio composition lead to increasing management

and transaction costs and consequently reducing the popularity of MV policies among

investors. In order to improve upon the stability of portfolio weights, one has to resort

to alternative, robust estimation techniques. A robust estimator is one that performs

well even when the observations do not follow the standard (normality) assumptions,

have heavy tails, or are even subject to contamination. Although in case of normal

distributions, sample moment estimators are asymptotically optimal MLEs, they are
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not necessarily the best choice when the data deviates from normality (Huber; 2004).

This is of particular importance in financial applications, where it is well known that the

data is not only non-Gaussian, but also exhibits heavy tails.

To tackle the problem of heavy tails, DeMiguel and Nogales (2009) construct a

portfolio optimization procedure based on M- and S-estimation technique and analyze

the stability of the estimator analytically; they also demonstrate empirically that their

approach reduces portfolio turnover, whereas it slightly improves the out-of-sample per-

formance. Fan et al. (2019) construct an elementwise covariance estimator through an

M-estimation procedure with Huber loss, providing statistical high-probability guaran-

tees. Robust portfolio optimization problem has gained significant attention, Xidonas

et al. (2020) categorize 148 researches conducted during the last 25 years and focused

on this topic.

Failures of MV portfolios become even more pronounced with a growing investment

universe, especially for cases when a sample size is less than the number of assets. Ev-

idence was investigated by Kan and Zhou (2007), Bai et al. (2009), Karoui (2012), and

Chen and Yuan (2016). To overcome this curse of dimensionality, structured covari-

ance matrix estimators are proposed for asset return data. Fan et al. (2008) considered

estimators based on factor models with observable factors. Stock and Watson (2002),

Bai and Li (2012), Fan et al. (2013) studied covariance matrix estimators based on

latent factor models. Ledoit and Wolf (2003), Ledoit and Wolf (2004b), Ledoit and

Wolf (2004a) proposed linear and Ledoit and Wolf (2017) non-linear shrinkage of sample

eigenvalues. These estimators are commonly based on the sample covariance matrix,

and sub-Gaussian tail assumptions are required to guarantee consistency.

The goal of our robustifying Markowitz approach is to tackle both problems at the

same time: how to optimize GMV portfolio when the dimension is possibly higher than

the sample size and the distribution of the returns has heavy tails? Moreover, even if

the returns are not heavy-tailed, how can one avoid the usual Gaussian assumption in

the theoretical analysis?

Our theoretical and algorithmic contributions dwell on some recent breakthroughs
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in statistical literature with regard to robust estimation. Lugosi and Mendelson (2019b)

constructed a multivariate mean estimator based on the idea of median-of-means that

dates back to Nemirovsky and Yudin (1983). The remarkable property of their estimator

is that it pertains favorable properties of the Gaussian sample mean: it allows deviation

bounds with high probability without much loss in the accuracy. Their only condition

is that the second moment of each component of the random vector is bounded, which

is the minimal possible condition to have a square-root convergence, even on average.

However, their original estimator was not computationally tractable and in the past years

the problem has attracted a lot of attention. Hopkins (2018) first proposed an estimator

with polynomial computational (efficient) complexity, and subsequent research led to

nearly linear-time algorithms (Depersin and Lecué; 2019; Hopkins et al.; 2020), thus

making practical applications possible. As for the covariance estimation, Mendelson

and Zhivotovskiy (2020) proposed an abstract algorithm that achieves performance of

Gaussian sample covariance estimator under four bounded moments assumption. So far,

it remains an open question whether such performance can be achieved with a polynomial

algorithm, with some conjecturing that the answer is no (Cherapanamjeri et al.; 2020).

We bypass these algorithmic problems appearing in robust estimation of the covari-

ance matrix. In fact, our approach does not require estimating the covariance operator

directly. It is based on a simple iterative gradient descent, that requires estimating only

the action of the covariance operator on a current approximation at each step.

Our contribution to robustifying Markowitz is threefold:

• Based on the algorithm from (Hopkins et al.; 2020), we introduce a robust and

computationally tractable algorithm that achieves nearly Gaussian performance

under only four moments assumption on the distribution of the return vector.

This means, in particular, that the estimator works with almost any distribution

with four bounded moments as good as it works with Gaussian data.

• We provide theoretical guarantees for our method in two cases. In the first case,

we assume that the covariance matrix is well-conditioned, which means that the

objective of our optimization problem enjoys the strong convexity property, and
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the convergence guarantees are provided even for the mean-variance objective.

However, in that case we require that the the dimension of the investment universe

(N) is much smaller than the size of the sample (T ). Moreover, the assumption

that the covariance is well-conditioned is impractical due to the presence of strong

factors in financial panel data, and we provide this result merely out of theoretical

curiosity.

In the general case where we have no control over the small eigenvalues of the

covariance matrix, we only consider the GMV objective. However, we can take

advantage of possibly small effective rank of the covariance matrix, which allows

the dimension N to be a lot larger than the sample size T .

• In an empirical study we compare behavior of the proposed portfolio estimator to

the traditional portfolio benchmarks on equity data for two cases: when the size of

the sample T is comparable with the dimension N , and when T < N . For the first

case, we consider the S&P100 data, and for the second case we take the constituents

of the Russell3000 index. In both cases we take daily data over the course of one

year, which corresponds to T = 252. We demonstrate that our approach enjoys

more stable weights than the traditional portfolios, while preserving (or slightly

improving) their out-of-sample performance.

Let us also recall a well known hypothesis of Green and Hollifield (1992) that extreme

portfolio weights appear not entirely due to high estimation errors, but rather due to

the population optimal portfolios themselves having extreme weights and being poorly

diversified. Specifically, they show that asset returns generated by a model with a single

dominant factor result in excessive short and long positions. This leads to the study of

restricted portfolio policies. In a seminal work, Jagannathan and Ma (2003) consider

portfolios with non-negative constraints. Despite considering a lesser class of portfolios,

they demonstrate a better out-of-sample performance. Furthermore, Fan et al. (2012)

introduce Gross Exposure Constraints, which work similarly but allow negative allocation

weights. Contrary to these ideas, we demonstrate that applying our robust procedure

leads to desirable properties of weights without any constraints enforced a priori, which

contradicts the original hypothesis of Green and Hollifield.
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The remaining of the paper is organized as follows. In the beginning of Section 2,

we describe the setup and give definitions of the MV and GMV portfolios, and give

informal statements of our main results. In Section 2.1, we give introduction into recent

advances in robust statistic. In Section 2.2, we describe the projected gradient descent

technique applied to our setup and provide some motivation for the estimation of actions

of the covariance operator. Then we describe how to estimate them. In Section 3 we

first present the results for the well-conditioned case, that is, when the eigenvalues of

the covariance matrix have the same order, and in Section 4 we consider a general case

that allows poorly invertible covariance matrix as well as high dimensionality. Section 5

defines the performance measures for comparison of different benchmarks. Empirical

results are presented in Section 6 where S&P100 and Russell3000 portfolios are compared

to multiple standard benchmarks. Finally, the last section is devoted to conclusions and

final remarks.

1.1 Notation

Throughout the paper we write a . b and b & a if there is a constant C such that

a ≤ Cb. If we have both a . b and b . a, we write a ∼ b.

For a vector x ∈ Rd, we denote by ‖x‖ =
√
x2

1 + · · ·+ x2
d its Euclidean norm. If

A is a matrix, we denote ‖A‖ = supu,v∈Sd−1 u>Av its spectral norm, where Sd−1 is a

sphere in Rd. If A ∈ Rd×d is symmetric, we write λ1(A) ≥ λ2(A) ≥ · · · ≥ λd(A)

to denote its eigenvalues in descending order. We also denote λmax(A) = λ1(A) and

λmin(A) = λd(A) — its largest and smallest eigenvalues, respectively. In particular,

we have that ‖A‖ = max{|λmax(A)|, |λmin(A)|}. We say that a symmetric matrix A is

positive semi-definite (PSD) if v>Av ≥ 0 for all v. We also write A � B and B � A if

B −A is a PSD.

For a PSD matrix A ∈ Rd×d we denote its effective rank by

r(A) = Tr(A)/λmax(A) =
d∑
j=1

λj(A)/λmax(A).

The effective rank is clearly always smaller than both the dimension d and the matrix
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rank of A. This quantity plays an important role in covariance estimation problems. In

particular, it was shown by Koltchinskii and Lounici (2017) that in the Gaussian case,

the performance of the sample covariance matrix is governed by the effective rank of the

covariance matrix and is not sensitive to a potentially larger dimension of the ambient

space.

Finally, we denote 1 = (1, . . . , 1)> of dimension N , so that w>1 =
∑N

i=1wi.

2 Mean-Variance and Global Minimum Variance portfolios

Suppose we have an opportunity to invest into N assets and r1, . . . , rN denote their

log-returns. Let X = (r1, . . . , rN )> be the multivariate return vector with mean µ and

covariance Σ. Then a portfolio with allocation weights w = (w1, . . . , wN )> has returns

with expectation µ>w and variance w>Σw.

One of the fundamental portfolio policies, the mean-variance portfolio (MV), is

based on maximizing the utility

Mγ(w;µ,Σ) = µ>w − γ

2
w>Σw subject to w>1 = 1 ,

which takes as input the mean µ and the covariance operator Σ. Moreover, γ is a fixed

risk aversion parameter provided by the investor. The quadratic term in the above

expression represents the variance of the portfolio return Var(w>X), and the linear term

is its mean E(w>X).

Some researchers often discard the dependence on mean and concentrate on an

alternative portfolio policy that minimizes the risk measure

R(w; Σ) =
1

2
w>Σw subject to w>1 = 1, (1)

which corresponds to finding a global minimum variance portfolio (GMV). The quantity

w>Σw = Var(w>X) is often regarded as realized risk of a portfolio allocation w in the

financial literature.

Suppose we have an i.i.d. sample X1, . . . , XT that comes from the distribution with

mean µ and covariance Σ. Our goal is to construct portfolio allocation weights ŵ that are
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as close to optimum as possible. Below we provide theoretical high-probability guarantees

in terms of the gap between the estimator and the population optimal solution, that is,

R(ŵ; Σ)−min
w>1

R(w; Σ)

in the GMV case, or

max
w>1

Mγ(w;µ,Σ)−Mγ(ŵ;µ,Σ)

for the mean-variance portfolio. Notice that both of these entities are non-negative.

We analyze two different situations, focusing on high-dimensional non-asymptotic

bounds. Firstly, we consider the hypothetical situation where the covariance matrix is

well-conditioned. Such situation is unlikely in practice, and we present the following

result mainly out of theoretical curiosity.

Theorem (Informal). Suppose that Σ is well-conditioned, i.e. its condition number is

bounded by a constant. Then, for each δ, there is a computationally efficient estimator

ŵδ that satisfies, with probability at least 1− δ,

max
w>1=1

Mγ(w; Σ, µ)−Mγ(ŵδ; Σ, µ) .
N logN + log(1/δ)

T

even when the distribution is non-Gaussian and has heavy tails.

The above result demonstrates that the MV portfolio can be robustly estimated

as long as the ratio N logN/T remains small. It is known that for convergence to the

optimal risk one has to have that N/T = o(1). For instance, Karoui (2013) considers

a “large N , large T” situation where N/T converges to some constant γ ∈ (0, 1), and

shows that there is a constant gap between the realized risks of the empirical and the

optimal solutions. More recently, Bartl and Mendelson (2021) studied a similar portfolio

optimization setup in a well-conditioned case. Although their algorithm is robust with

respect to heavy-tailed data and achieves similar rates of convergence, their estimator is

not computationally feasible.

Secondly, we consider the case where Σ is allowed to be ill-conditioned. This case

corresponds to a less regular optimization problem and we provide slower convergence

guarantees with respect to the number of observations.
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Theorem (Informal). There is a computationally efficient estimator ŵδ, such that, with

probability at least 1− δ,

R(ŵδ; Σ)− min
w>1=1

R(w; Σ) .

√
r(Σ) log r(Σ) + log(1/δ)

T
,

even when the distribution is non-Gaussian and has heavy tails.

This result suggests that the GMV portfolio converges to optimum as long as r(Σ)

is much smaller than T , which is a rather adequate assumption. For example, for

the S&P100 dataset, we evaluate that r(Σ) ≈ 3 and for the Russell3000 constituents,

r(Σ) ≈ 7. Notice also that the condition number κ
def
= λmax(Σ)/λmin(Σ) is bounded

from below by N/r(Σ), hence the covariance matrix is indeed ill-conditioned in these

two applications.

2.1 Recent advances in robust statistics

The covariance matrix and the mean are not known in practice and must be estimated

based on the observed log-returns.

In an idealized situation where Xi ∼ N (µ,Σ) are Gaussian, we have that the stan-

dard empirical mean estimator µ̂ = T−1
∑T

i=1Xi provides one with optimal high prob-

ability deviation bounds. In particular, for all δ ∈ (0, 1), we have that, with probability

at least 1− δ,

‖µ̂− µ‖ ≤
√

Tr(Σ)

T
+

√
2‖Σ‖ log(1/δ)

T
(2)

See (Boucheron et al.; 2013, Example 5.7) for derivation. The sharp deviation term√
2‖Σ‖ log(1/δ)

T is very specific to the Gaussian assumption and could not be expected for

less regular distributions. In particular, here the dependence on the confidence level

is logarithmic and additive, in the sense that the bound separates into the strong term

scaled with
√

Tr(Σ) and corresponding to the error on average, and the weak term that

is scaled with
√
‖Σ‖. The weak term can potentially be a lot smaller than the strong

one even for very small values of δ.

Similarly, Koltchinskii and Lounici (2017) proved that in the case of i.i.d. zero

mean Gaussian observations, the sample covariance Σ̂ = T−1
∑T

i=1XiX
>
i satisfies the
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following deviation bound. For any δ ∈ (0, 1), with probability at least 1− δ,

‖Σ̂− Σ‖ . ‖Σ‖
√

r(Σ) + log(1/δ)

T
, (3)

whenever n & r(Σ) + log(1/δ). For the version of this inequality with explicit constants

we refer to (Zhivotovskiy; 2021).

Having these performance bounds in mind, one is interested if the same bounds can

be achieved under milder assumptions in a computationally efficient manner. Lugosi and

Mendelson (2019b) developed an estimator that matches the bound (2) under the only

assumption that the covariance exists (i.e., two moments assumption). Loosely speak-

ing, they propose to control the deviations of the median-of-means of the projections

X>i v uniformly in all directions v ∈ RN . Based on this bound, they came up with a

tournament-based procedure, which however is too complicated to perform computation-

ally. Further developments were made in (Lugosi and Mendelson; 2021), see also (Lugosi

and Mendelson; 2019a) for a thourough review on this topic.

Hopkins (2018) first proposed an estimator that can be computed in polynomial

time, and the time complexity was subsequently improved to nearly linear (Cherapanam-

jeri et al.; 2019; Depersin and Lecué; 2019; Hopkins et al.; 2020). An alternative method

called spectral sample reweighing was developed in the context of robust estimation with

outliers. Given data points {xi}i=1,...,k the goal is to reweigh the points xi with some

weights ui ∈ [0, 1] and find a center ν ∈ RN such that the largest eigenvalue of the

weighted covariance
∑

i ui(xi − ν)(xi − ν)> is small. Hopkins, Li and Zhang (2020)

develop an algorithm that does this in nearly linear time; see also (Diakonikolas et al.;

2017; Zhu et al.; 2020). More importantly for us, Hopkins, Li and Zhang establish a

direct connection between the sample reweighing and the method developed in (Lugosi

and Mendelson; 2019b), which makes this approach applicable in the heavy-tailed setup

as well. We discuss this connection in greater detail in Section 8.1.

The problem of robust covariance estimation is more challenging. Mendelson and

Zhivotovskiy (2020) construct an abstract estimator that matches the bound (3) up to

some logarithmic factors. Unfortunately, it is not known whether such performance can

be achieved with a computationally efficient algorithm. Existing computationally effi-
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cient implementations are showing sub-optimal statistical guarantees (Ke et al.; 2019;

Ostrovskii and Rudi; 2019; Hopkins et al.; 2020) and sometimes require additional as-

sumptions such as the so-called SoS hypercotractivity that are hard to verify in the

non-Gaussian situation (Hopkins et al.; 2020). Moreover, Hopkins et al. (2020) conjec-

ture that as long the median-of-means approach is used, it is algorithmically hard to

robustly estimate the sample covariance matrix in the presence of heavy-tailed data.

After this short excursion to some recent results in robust estimation, let us now

come back to our portfolio optimization problem. Since we cannot get our hands on

a robust covariance estimator, we take another route by observing that both MV and

GMV are convex optimization problems.

2.2 Gradient descent for portfolio optimization

Our goal is to avoid the estimation of the whole covariance matrix, but rather resort to

the estimation of the action of this operator Σw on some limited set of vectors w. We

will use a procedure based on projected gradient descent (PGD), which is a standard

convex optimization method. For instance, if we want to minimize the GMV objective

with known Σ, the following sequence of approximations converges to an optimal solution

(which is not necessarily unique): we start with arbitrary initial vector w0 and then take

the update steps,

ws = Π1[ws−1 − η∇wR(ws−1; Σ)], s = 1, 2, . . . , (4)

where Π1 is the orthogonal projector onto the restricted (convex) set {w : w>1 = 1},

which can be explicitly defined by the mapping,

Π1x = (I −N−111>)x+N−11 .

It is straightforward to see that R( · ; Σ) is convex (since the covariance operator is

positive semi-definite), and ‖Σ‖-smooth. By Theorem 3.7 from (Bubeck; 2014) the

sequence (4) converges to a minimum at a rate 1/s as long as η ≤ 1/‖Σ‖. Moreover,

in the case where Σ is non-degenerate, the objective becomes strongly convex, and the

sequence converges at a faster exponential rate under the same requirement on the step

size, see (Bubeck; 2014, Theorem 3.10).
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The case of MV portfolio is similar, only this time we need to maximize a con-

cave function instead of minimizing a convex one. If we replace ∇wR(ws−1; Σ) with

−∇wMγ(ws−1; Σ) in (4), then by the same reasons, the sequence converges to the max-

imum of Mγ as long as η ≤ (γ‖Σ‖)−1, with exponential rate when Σ is non-degenerate.

The PGD iterations require computation of the following gradients,

∇wR(w; Σ) = Σw or ∇wMγ(w; Σ) = µ− γΣw.

where the mean µ and covariance Σ are typically replaced with their empirical counter-

parts that are calculated using given historical observations X1, . . . , XT . As discussed in

the previous section, there is a practical robust mean estimator in (Hopkins et al.; 2020)

with all desired properties. Since such an estimator is not available for the covariance

operator, we instead produce an estimator âδ(w) for the PGD increment that estimates

Σw for each w separately, and plug it into the update steps (4).

To see how it can be done, suppose for a moment that the expectation vanishes.

Then, we can represent this product as a mean of a random vector as follows,

Σw = E(X>w)X .

We therefore can apply the robust mean algorithm to the vectors (X>i w)Xi and obtain

a robust estimator of Σw. However, we need to take additional care to ensure that

the estimator is an appropriate approximation uniformly in all directions. For this, we

slightly adjust the procedure in the spirit of (Mendelson and Zhivotovskiy; 2020). In the

latter work, the only assumption used is the equivalence of the fourth and the second

moments in all directions sometimes called the bounded kurtosis assumption.

Assumption 2.1 (Bounded kurtosis). The return vectors X1, . . . , XT are i.i.d. observa-

tions of a random vector X, that has mean µ, covariance Σ, and satisfies for all u ∈ RN ,

E1/4|u>(X − µ)|4 ≤ KE1/2|u>(X − µ)|2, (5)

where K ≥ 1 is some fixed constant.

All our results will be stated under this assumption. We remark that under the

Gaussian distribution one has control over all higher moments, see e.g. (Koltchinskii
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and Lounici; 2017). In the context of covariance estimation, a robust estimator is one

that has Gaussian deviation bounds (i.e., as in (3)) but only requires the underlying

distribution to follow the bounded kurtosis assumption. The next step is to provide a

robust estimator of Σw that works simultaneously in all directions.

Proposition 2.1. Suppose the bounded kurtosis assumption holds. There is a computa-

tionally efficient estimator âδ(w) that depends on direction w and T i.i.d. observations

and such that, with probability at least 1− δ,

‖âδ(w)− Σw‖ . ‖Σ‖
√

r(Σ) log r(Σ) + log(1/δ)

T
‖w‖

uniformly for all vectors w. Recall that r(Σ) denotes the effective rank

r(Σ) = Tr(Σ)/‖Σ‖ .

We postpone the proof and detailed description of the estimation algorithm until

Section 8.1.

Remark 2.1. For technical reasons, the estimator âδ(w) depends on a norm-truncation

parameter R that needs to be of order
(
Tr(Σ)

log r(Σ)

)1/4
, which is unknown in general. It ap-

pears that since R increases with T , in many natural situations this truncation parameter

is of a much larger order than max
i
‖X‖ and can be mostly ignored in practice. For more

details see Section 8.1.

Remark 2.2. We point out that when one has access to some covariance estimator Σ̂,

one can simply take a family of estimators â(w) = Σ̂w. For instance, in the Gaussian

case, taking the standard empirical covariance estimator would yield thanks to (3),

‖â(w)− Σw‖ . ‖Σ‖
√

r(Σ) + log(1/δ)

T
‖w‖

with probability at least 1 − δ, uniformly for all w. The estimator of Proposition 2.1

achieves the same rate of convergence under minimal distributional assumptions.

Now we can plug in the estimator of Σw (appearing in Proposition 2.1) into the

update rule (4). To be precise, in the case of GMV optimization, our updates look as

follows,

ws = Π1 [ws−1 − ηâδ(ws−1)] , s = 1, 2, . . .

13



Naturally, the error may accumulate with each update, and we need to carefully analyze

how the resulting solution differs from the optimum, to which the sequence (4) converges.

We analyze this update rule in two separate cases.

First, we consider the case of well-conditioned matrix Σ, meaning that the ratio of

its maximal and minimal eigenvalues is bounded by a constant. This means that the

problem of maximizing the MV utility is a strongly-convex optimization problem, so that

the gradient descent sequence enjoys exponential convergence rate and as we show below,

the error of estimation does not accumulate. However, in that situation the effective rank

r(Σ) = Tr(Σ)/‖Σ‖ is of order N , so the convergence only works in the case where N/T is

small. Moreover, in typical applications, the covariance matrix is ill-conditioned, which

is one of the reasons the MV portfolio performs so poorly. This comes in not enjoy this

properties the covariance matrix is poorly invertible. For instance, this can be checked

through evaluation of the effective rank: for the S&P100 dataset we estimate r(Σ) ≈ 3

and for the Russell3000 set we estimate that r(Σ) ≈ 7, in both cases much smaller than

the dimension N . This brings us to the second part of our GD analysis, where we only

consider the case of GMV optimization with ill-conditioned covariance matrix that has

small effective rank. This scenario corresponds to non-strongly convex optimization and

has weaker convergence rate. However, it enjoys dimension-free bounds, meaning that

the convergence is guaranteed as long as the number observations is much larger than

r(Σ), regardless of how high the total number of assets is. We also point out that in this

case, one has to stop after appropriate number of steps to avoid overfitting.

3 Well-conditioned case

For maximizing the MV utility Mγ(w;µ,Σ), we consider the following updates,

ws = Π1 [ws−1 + η(µ̂− γâ(ws−1))] , s = 1, 2, . . . (6)

where µ̂ is some estimator of mean µ, and â(w) is some family of estimators for the

action of covariance operator Σw. We first show a deterministic result that controls the

convergence through the errors of estimators µ̂ and â(w).
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Lemma 3.1. Denote, w∗ = arg maxw>1=1Mγ(w;µ,Σ). Suppose that we have an access

to an estimator µ̂ satisfying

‖µ̂− µ‖ ≤ ∆µ,

and an access to a family of estimators â(w) satisfying uniformly for all w ∈ RN ,

‖â(w)− Σw‖ ≤ ∆Σ‖w‖ .

Let λmax, λmin denote the maximal and minimal eigenvalues of Σ, respectively. Assume

that η ≤ 1/(γλmax) and ∆Σ < λmin. Then, the sequence (6) satisfies

‖ws − w∗‖ <
(

1− γη(λmin −∆Σ)

2

)s
‖w0 − w∗‖+

∆µ + γ∆Σ‖w∗‖
λmin −∆Σ

.

Proof. Let us first calculate w∗ explicitly. Since −Mλ(w; Σ, µ) is strongly convex, and

adding a Lagrangian multiplier −l(w>1− 1) corresponding to the restriction w>1 = 1,

we have that w∗ is the solution to

−µ+ γΣw − l1 = 0 ⇒ w =
1

γ
Σ−1(µ+ l1) .

Since w>1 = 1 we find that l = (γ − 1>Σ−1µ)/(1>Σ−11). Therefore,

w∗ = γ−1Σ−1µ+
1− γ−11>Σ−1µ

1>Σ−11
Σ−11 .

Denote Π0 = I−N−111> the orthogonal projector onto the subspace of {w : w>1 =

0}, so that Π1(x + y) = Π1x + Π0y. It is straightforward to check that Π0(γΣw∗ − µ)

vanishes, which is all we need to know about w∗ for the remaining of the proof.

Write ∆(w) = γ{Σw − â(w)} − (µ− µ̂). Then,

ws+1 − w∗ = ws − w∗ − ηΠ0[γΣws − µ] + ηΠ0∆(ws)

= (1− ηγΠ0Σ) (ws − w∗) + ηΠ0∆(ws)

= Π0(1− ηγΣ)Π0(ws − w∗) + ηΠ0∆(ws) ,

where for the last equality we used the fact that ws − w∗ = Π0(ws − w∗) since both

sum up to one. Since η ≤ 1/(γλmax), we have that 1 − ηγΣ is positive definite and

‖1 − ηγΣ‖ = 1 − ηγλmin. In addition, due to the requirement of the theorem for the

estimators µ̂ and â(w), we have that

‖∆(w)‖ ≤ ∆µ + γ∆Σ‖w‖ .
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Denoting δs = ‖ws − w∗‖, we have the recursive inequality,

δs+1 ≤ (1− ηγλmin)δs + η∆µ + ηγ∆Σ‖ws‖ .

We can link ‖ws‖ to δs through a simple triangle inequality ‖ws‖ ≤ ‖w∗‖ + δs. We

obtain,

δs+1 ≤ {1− ηγ(λmin −∆Σ)}δs + η∆′, ∆′
def
= ∆µ + γ∆Σ‖w∗‖ .

Denoting κ = 1 − ηγ(λmin −∆Σ) < 1 and x = η∆′, we expand our recursive inequality

as follows,

δs+1 ≤ κδs + x ≤ κ2δs−1 + κx+ x ≤ κs+1δ0 + (κs + · · ·+ 1)x

< κs+1δ0 +
x

1− κ
.

Substituting κ and x back, we obtain the result.

We now apply this lemma to the case where we use µ̂δ from (Hopkins et al.; 2020)

and âδ(w) from Proposition 2.1. From (2) we get that, with probability at least 1− δ,

‖µ̂δ − µ‖ . ‖Σ‖1/2
√

r(Σ) + log(1/δ)

T
(7)

Furthermore, by Proposition 2.1 we get that, with probability at least 1− δ, simultane-

ously for all w ∈ RN ,

‖âδ(w)− Σw‖ . ‖Σ‖
√

r(Σ) log r(Σ) + log(1/δ)

T
‖w‖ . (8)

Substituting these two error terms into the above lemma, we arrive at the following

result.

Corollary 3.1. Suppose, we are given independent X1, . . . , XT that have mean µ and

covariance Σ, and the distribution satisfies the bounded kurtosis assumption (5). Let

κ = λmax(Σ)/λmin(Σ) denote the condition number. There is an absolute constant C > 0,

such that the following holds. If δ ∈ (0, 1) satisfies,

T ≥ Cκ2 (r(Σ) log r(Σ) + log(1/δ)) , (9)

then there is an estimator ŵδ that depends on T observations such that, with probability

at least 1− δ,

max
w>1=1

Mγ(w; Σ, µ)−Mγ(ŵδ; Σ, µ) . γκ2
(
1 + γ2‖Σ‖‖w∗‖2

) r(Σ) log r(Σ) + log(1/δ)

T
.
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The proof is a simple substitution of error bounds (7), (8) into Lemma 3.1. We

postpone the derivations to Section 8.3.

The above result has a number of favorable properties:

• The estimator only requires O(log T ) gradient descent updates. In addition, the

amount of steps only has to be sufficiently large, i.e., there is no danger of overfitting

by running the gradient descent for too long;

• the bound scales with 1/T when all the other parameters are fixed. In the opti-

mization literature, this is regarded as a fast rate convergence. This rate is typical

for strongly convex stochastic optimization problems;

• the value ‖w‖2 is often considered as a diversification measure of an allocation

strategy, see (Strongin et al.; 2000). For instance, for the EW portfolio its value is

1/N . One may expect it to be very small for the optimal portfolio.

However, the dependence on the condition number of the covariance matrix outweights

all some of these useful properties. It is straightforward to verify that κr(Σ) ≥ N .

Hence, the above result only works in the setting, where the number of observations T

is greater than the dimension N . The remaining term κ may further worsen the bound,

so our result is rather limited to well conditioned covariance matrices. Unfortunately,

it is rarely the case in practice: for our two datasets we estimate that r(Σ) < 3 for

S&P100 and r(Σ) < 7 for Russell3000. The naive lower bound κ ≥ N/r(Σ) yields

that κ ≥ 27 for S&P100 and κ > 250 for Russell3000. Therefore, our result does not

contradict a commonly accepted evidence that MV portfolios perform poorly even when

T is moderately larger than N (Ao et al.; 2019).

4 Ill-conditioned case

We now consider the case where we have no control over the condition number of Σ and

it can even be degenerate. We will state the bound in the regime where only the effective
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rank r(Σ) has to be small, and no requirements on the total dimension N are needed.

In this section, we only consider the GMV portfolio.

For minimizing the GMV risk R(w; Σ), we consider the following updates,

ws = Π1 [ws−1 − ηâ(ws−1)] , s = 1, . . . , S

where â(w) is some family of estimators for the action of covariance operator Σw. Sim-

ilarly to the previous section, we first show a deterministic result that controls the

convergence through the error of this estimator.

Lemma 4.1. Denote, w∗ = arg minw>1=1R(w; Σ). Suppose that we have an access to

a family of estimators â(w) satisfying uniformly for all w ∈ Rd,

‖â(w)− Σw‖2 ≤ ∆Σ‖w‖2 .

Assume that η ≤ 1/λmax and let the number of steps S satisfies S∆Σ ≤ 1. Then,

R(wS ; Σ)−R(w∗; Σ) . max{‖w0 − w∗‖, ‖w∗‖}2
(

1

ηS
+ η∆2

ΣS

)
.

For the optimal choice S ∼ 1/(η∆Σ), we have

R(ws; Σ)−R(w∗; Σ) . max{‖w0 − w∗‖, ‖w∗‖}2∆Σ.

Proof. It is well known that the true minimum of the risk is w∗ = Σ−11/(1>Σ−11).

Observe also that Π0Σw∗ vanishes. Write ∆(w) = Π0[Σw − â(w)]. Then,

‖ws+1 − w∗‖2 = ‖ws − w∗ − ηΠ0Σws − η∆(ws)‖2

= ‖ws − w∗‖2 − 2η[Σws]
>(ws − w∗) + η2‖Π0Σws‖2 + η2‖∆(ws)‖2

− 2η∆(ws)
>(ws − w∗ − ηΠ0Σws)

= ‖ws − w∗‖2 − 2η[Σws]
>(ws − w∗) + η2‖Π0Σws‖2 − η2‖∆(ws)‖2

− 2η∆(ws)
>(ws+1 − w∗) .

It is easy to see that (which in more general terms is due to the convexity and smoothness

of our objective to be minimized),

−2η[Σws]
>(ws − w∗) + η2‖Π0Σws‖2 = −2η(ws − w∗)>Σ(ws − w∗) + η2‖Π0Σws‖2

≤
(
−2

η

‖Σ‖
+ η2

)
‖Π0Σws‖2 .
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Using the condition η ≤ 1/‖Σ‖ this sums up to at most zero. Combining the remaining

terms we arrive at the inequality,

‖ws+1 − w∗ + ∆(ws)‖2 ≤ ‖ws − w∗‖2 .

Applying further the triangle inequality, we have that

‖ws+1 − w∗‖ ≤ ‖ws − w∗‖+ ‖∆(ws)‖ ≤ (1 + ∆Σ)‖ws − w∗‖+ ∆Σ‖w∗‖

≤ . . .

≤ (1 + ∆Σ)s+1 (‖w0 − w∗‖+ s∆Σ‖w∗‖) .

Assume that n∆Σ ≤ 1. Then, using the inequality (1+1/n)n ≤ e, for each s = 0, 1, . . . , n,

max(‖ws‖, ‖ws − w∗‖) ≤ (e+ 1) (‖w0 − w∗‖+ ‖w∗‖) def
= M . (10)

Further, we apply a standard trick for convex smooth optimization, see e.g., The-

orem 3.5 in Bubeck (2014). Let us denote R∗(w) = R(w; Σ), which is a convex and

‖Σ‖-smooth function. Therefore, it holds that for any u,w,

0 ≤ R∗(u)−R∗(w)−∇R∗(w)(u− v) ≤ ‖Σ‖
2
‖w − u‖2 . (11)

Applying this inequality for ws and ws+1 = ws− ηΠ0Σws− η∆(ws), we first obtain that

R∗(ws+1)−R∗(ws) ≤− η(Σws)
> [Π0Σws + ∆(ws)] +

η2‖Σ‖
2
‖Π0Σws + ∆(ws)‖2

≤− η(Σws)
> [Π0Σws + ∆(ws)] +

η

2
‖Π0Σws + ∆(ws)‖2

=− η

2
‖Π0Σws‖2 −

η

2
(Σws)

>∆(ws) +
η

2
[2Π0Σws + ∆(ws)]

>∆(ws)

=− η

2
‖Π0Σws‖2 +

η

2
[Π0Σws + ∆(ws)]

>∆(ws)

≤− η

2
‖Π0Σws‖2 +

η

2
‖Π0Σws‖‖∆(ws)‖+

η

2
‖∆(ws)‖2

≤− η

4
‖Π0Σws‖2 +

3η

4
‖∆(ws)‖2 .

Observe that due to (11),

R∗(ws)−R∗(w∗) ≤ (Σws)
>(ws − w∗) ≤ ‖Π0Σws‖‖ws − w∗‖ ≤M‖Π0Σws‖,

where in the last inequality we also use the bound (10). Furthermore, ‖∆(ws)‖ ≤ ∆ΣM .

Denoting δs = R∗(ws)−R∗(w∗), we obtain the recursive inequality,

δs+1 ≤ δs −
η

4M2
δ2
s + η∆2

ΣM
2 .
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Denoting additionally αs = max{0, δs − sη∆2
ΣM

2}, we can easily derive that αs+1 ≤

max
{

0, αs − η
4M2αs

}
. It is straightforward to check that α0 ≤ ‖Σ‖M2 ≤ 4M2

η and

αs+1 ≤ αs. Therefore, we conclude that we can drop the positive part, so that 1
αs
≤

1
αs+1

− η
4M2

αs
αs+1

≤ 1
αt+1

− η
4M2 . Hence, follows the bound 1

αt
≥ η

4M2 t. Therefore, the

following inequality holds

R∗(ws)−R∗(w∗) = δt ≤ αt + tη∆2
ΣM

2 ≤ 4M2

ηt
+ tη∆2

ΣM
2 ,

which completes the proof.

Once again, we plug our estimator âδ(w) into the update rule. In addition, we take

the initial approximation to be an EW portfolio. Namely, our sequence is as follows

w0 = N−11, ws = Π1[ws−1 − âδ(ws−1)], s = 1, . . . , S . (12)

Corollary 4.1. Suppose that Assumption 2.1 holds. Take η = 1/λmax and S ∼

T (r(Σ) log r(Σ) + log(1/δ)), and set ŵδ = wS. Then, with probability at least 1− δ,

R(ŵδ; Σ)−R(w∗; Σ) . ‖Σ‖‖w∗‖2
√

r(Σ) log r(Σ) + log(1/δ)

T
.

Proof. Simply substitute the bound (8) into Lemma 4.1. We also notice that ‖w∗ −

w0‖2 ≤ 2‖w∗‖2 + 2‖w0‖2, and that ‖w∗‖2 ≥ (1>w∗)2/N = ‖w0‖2.

Remark 4.1. We remark that the scaling value ‖Σ‖‖w∗‖2 is only an upperbound on the

optimal risk R(w∗; Σ) = 1
2(w∗)>Σw∗ and we cannot guarantee a ratio-type bound of the

form R(ŵδ; Σ) = (1+o(1))R(w∗; Σ). However, this is not uncommon. For instance, Fan

et al. (2012) shows that a portfolio with GEC constraints
∑

i |wi| ≤ C satisfies,

R(ŵ; Σ)−R(w∗; Σ) ≤ (1 + C)2 max
ij
|Σ̂ij − Σij |,

where one typically has a bound maxij |Σ̂ij − Σij | .
√

(logN)/T . Our bound may be a

lot more beneficial if the optimal portfolio is well-diversified (i.e., ‖w∗‖2 ∼ 1/N), even

though we do not impose any restrictions on the selected portfolio.
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5 Evaluation of empirical results

To test the performance of our approach, we apply it to two data sets of stocks. The

first data set consists of 81 constituents of S&P100 index (as on January 1, 2021) and

covers time span from January 2, 2000 to December 31, 2020 summing up to 5282 daily

log-returns. These 81 stocks have a continuous return time-series over the period of our

study. The second data set consists of 600 random constituents of Russell3000 index as

on January 1, 2021, period of analysis is limited by 11 years: from January 2, 2010 to

December 31, 2020. The length of analyzed time series is 2768 observations.

For the portfolio construction, we employ a rolling-window approach with monthly

rebalancing. Specifically, we choose an estimation window of length T days starting on

date T + 1, for each rebalancing period l (l = 1 . . . L, with L the number of rebalancing

periods) we use the data in the previous T days to estimate the parameters required

to implement a particular strategy. For the S&P100 data set, the input parameters

are estimated using the most recent 12 months’ daily returns, corresponding roughly

to 252 daily returns of past data (with the length of estimation window T = 252). As

for Russell3000 data set, the input parameters are estimated according to benchmark

portfolio policies, using the past 24 months of daily returns or roughly 500 daily returns

(T = 500). Thus, the out-of-sample period for S&P100 data set starts on January 2,

2011 with length 5031 observations what corresponds to number of rebalancing periods

L = 228 and for Russell3000 data set - on January 3, 2012 with 2265 out-of-sample

observations corresponding to L = 108. The source for both data sets is Thompson

Reuters.

5.1 Benchmark portfolios

Here we present the empirical results for GMV portfolio and evaluate its relative per-

formance. The allocation rules included into the empirical study with corresponding

reference and abbreviation are listed in Table 1.
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Equally weighted (EW). DeMiguel and Nogales (2009) argue that a naive allocation

strategy with weights wi = 1/N is hard to outperform in practice. It is often used as a

benchmark for comparative analysis.

Sample-based Global minimum portfolio (GMV). This is the most straightfor-

ward way to GMV optimization. The sample covariance matrix Σ̂ is plugged into the

objective in (1). We should note that this strategy is only included for S&P100 data

set, since for the Russell3000 we have N > T , and the sample covariance matrix is not

invertible.

Global minimum portfolio with short-sale constraint (GMV long). This port-

folio is a sample-based GMV portfolio with only long positions allowed. This means that

GMV objective corresponding to the empirical covariance is optimized subject to the

constraints wj ≥ 0.

Global minimum portfolio with linear shrinkage estimator (GMV lin).

Ledoit and Wolf (2004b) propose an asymptotically optimal convex linear combination

of the sample covariance matrix Σ̂ with the identity matrix. Optimality is meant with

respect to a quadratic loss function, asymptotically, as the number of observations and

the number of assets go to infinity together. Ledoit and Wolf (2004b) use as a covariance

matrix estimator as a convex linear combination of the sample covariance matrix and

the identity matrix (shrinkage target) as follows:

Σ̂ = ρI + (1− ρ)S,

where ρ is the shrinkage intensity parameter and S is the sample covariance matrix.

Their R package code is used in this horse race exercise.

Global minimum portfolio with non-linear shrinkage estimator (GMV nlin).

Ledoit and Wolf (2017) use the spectral decomposition for the empirical covariance

Σ̂
def
= UD̂U>
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Model Reference Abbreviation

Equally weighted DeMiguel et al. (2009) EW

Robust Global Minimum Variance GMV robust

GMV with sample covariance Merton (1980) GMV

GMV with linear shrinkage cov estimator Ledoit and Wolf (2004b) GMV lin

GMV with non-linear shrinkage cov estimator Ledoit and Wolf (2017) GMV nlin

GMV with short sale constraint Jagannathan and Ma (2003) GMV long

Table 1: Benchmark portfolios

where D̂
def
= diag

(
d̂ (λ1) , . . . , d̂ (λN )

)
, where λ1, . . . , λN are the sample eigenvalues, and

d̂ is some nonlinear cutoff threshold based on N/T and the magnitude of the eigenvalues

λj .

5.2 Performance measures

We report the following five out-of-sample performance measures for each benchmark

portfolio rule.

• Cumulative wealth (CumWealth)

CumWealth generated by each benchmark strategy with initial investment W0 =

1USD is computed as follows:

Wl+1 = Wl + ŵ>l Xl+1.

• Sharpe ratio (SR)

To measure a risk adjusted performance, we compute Sharpe ratios (SR) for every

strategy as a fraction of annualized average return of out-of-sample returns series

to annualized standard deviation, showing the excess wealth which investor earns

for accepting of every additional unit of risk. Such approach assumes implicitly

setting the risk-free rate to 0, see e.g. (Ledoit and Wolf; 2017).
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SR =
AV

SD
,

where AV and SD are average out-of-sample returns and their standard deviations

for each strategy multiplied by 252 and
√

252 respectively to annualize.

• Turnover (TO)

The main practical objective of the introduced methodology is stabilizing of portfo-

lio weights, aiming at reduction of transaction costs. To assess the impact of poten-

tial trading costs associated with portfolio rebalancing, we calculate two measures

for turnover. First, following DeMiguel et al. (2009) and DeMiguel and Nogales

(2009), we present Turnover, which is defined as an average sum of the absolute

value of the rebalancing trades across the N assets of the investment universe and

over the L rebalancing months (13).

TO = L−1
L∑
l=1

N∑
j=1

|ŵj,l+1 − ŵj,l+| . (13)

where ŵj,l and ŵj,l+1 are the weights assigned to the asset j for rebalancing periods

l and l+ 1 and ŵj,l+ denotes its weight just before rebalancing at l + 1. Thus, one

accounts for the price change over the period, as one needs to execute trades to

rebalance the portfolio towards the wl target. High turnover will imply significant

transaction costs; consequently, the lower TO of a strategy, the less its performance

would be harmed by non-zero transaction costs.

• Target Turnover (TTO)

Further, following Petukhina et al. (2021) we also calculate a target turnover, which

is constructed as follows.

TTO = L−1
L∑
l=1

N∑
j=1

|ŵj,l+1 − ŵj,l| .

In contrast to equation (13) this definition of turnover implies by construction a

value of zero for the EW portfolio. We provide this measure to focus on modi-

fications of the target portfolio weights due to active management decisions and

cleaned from the influence of assets’ price dynamics.
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Since the focus of this research is the reduction of portfolio weights’ fluctuations,

following Ledoit and Wolf (2017) we also compute the following five characteristics of

weights’ vectors ŵt averaged through number of rebalancing periods. Thus, we calculate

minimum weight (min) for every benchmark strategy as follows:

min =
1

Tmax − T

Tmax∑
t=T

min(ŵt) .

We similarly compute maximum weight (max), standard deviation (sd), and range of

weights (max-min).

In addition, we provide MAD from EW portfolio (mad-ew), which is defined as:

mad-ew =
1

Tmax − T

Tmax∑
t=T

N−1
N∑
j=1

∣∣∣∣ŵj,t − 1

N

∣∣∣∣ .

6 Empirical study

Discussion of S&P100 data set results

First, we discuss portfolio weight stability, since it is the main focus of the research.

Figure 2 demonstrates the dynamics of weights for S&P100. It can be observed that

weights of plug-in GMV portfolio are characterized by a lot of extremes in comparison

with all other policies and can vary from less than -40% to over 50 %. The least dispersed

weights are observed for, introduced in this paper, GMV robust approach. This visual

result is confirmed by descriptive statistics of portfolio weights reported in the Table 2.

It can be found that the average range of weights for GMV robust 0.11 is the lowest one,

what is twice less than the range of GMV lin, GMV nlin and GMV long and almost

four times less than plug-in GMV policy. mad − ew also is the lowest for GMV robust

strategy, pointing out the more balanced distribution of weights. Table 2 reports these

results, which can be summarized as follows.

First, the main two characteristics of the interest for this research would be Turnover
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and Target Turnover. Not surprisingly, the best performing policy in this dimension is

GMV long with imposed non-negative constraints; it requires on average almost 14%

(TO) of trading volume to rebalance the portfolio. GMV long is followed by EW with

21% and GMV robust with 37%. The highest turnover is reached by GMV with almost

95% of portfolio value to rebalance the portfolio to target weights ŵt. As for TTO we can

conclude that cleaned from stochastic price dynamics the GMV robust performs as good

as GMV long. Namely, 0.02 % of trading volume necessary for rebalancing is caused

by change of computed GMV long and GMV robust portfolio policies, compared with

0.06% for GMV lin or 0.09% for GMV.

Naturally, for investors, cumulative wealth (CumWealth) is of high interest as a

measure of performance for the period considered. The best performing portfolio is

GMV with 300% of gained value, followed by GMV lin and GMV nlin. GMV robust

earns 282% of initial portfolio value, what is higher than GMV long and EW. The

evolvement of cumulative wealth of all benchmark strategies for the considered period is

plotted in Figure 1.

In terms of risk-adjusted performance, the winning strategies are shrinkage strate-

gies with annual Sharpe ratio 41.9% for GMV lin and 41.38% for GMV nlin. Thus,

GMV robust gains a comparable 40.00% of excess return for taking an extra unit of risk.

Discussion of Russell3000 data set results

Outcomes of weights stability analysis are consistent with ones described for S&P100 data

set. GMV robust weights are characterized by harmonized weights without extreme short

or long values. It is visible in the Figure 4 and in the Table 5: GMV robust MAD−EW

and max−min are the lowest in comparison with benchmark portfolios (excluding EW).

In terms of accumulated wealth, GMV robust for large portfolios performs very close

to shrinkage estimators, Table 4 summarizes investment performance characteristics.

Thus, GMV robust gains in the end of the period 201.7% of initial value while GMV lin

and GMV nlin 209% and 201.9%. But considering non-zero trading fees would change

the rank drastically. For example, transaction costs rate on the level of 50 basis points,
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likewise in DeMiguel et al. (2009), would reduce the cumulative wealth of GMV lin to

140% and to 172 % for GMV robust or 177% for EW. Such disproportional reduction

occurs due to the prominent difference in Turnover values: for GMV robust it is 0.54

while for GMV lin – 1.27.

As for risk-adjusted performance, the annual Sharpe ratio of GMV robust is almost

9% lower than Shrinkage portfolio rules but at the same time much higher than EW or

GMV long policies.

Thus, according to outcomes of empirical experiments we can claim that

GMV robust portfolio policy achieves its goal and substantially reduces fluctuations

of weights, leading to the lowest level of accumulated transaction costs. The risk ad-

justed performance is equal or slightly lower than shrinkage benchmarks and higher than

constrained rules. This conclusion stays robust for small and large portfolios.

CumWealth SR TTO TO

EW 2.6635 24.9370 0.0000 0.2124

GMV robust 2.8282 40.0069 0.0002 0.3695

GMV long 2.6719 36.7571 0.0002 0.1393

GMV lin 2.9701 41.9005 0.0006 0.7000

GMV nlin 2.9038 41.3884 0.0005 0.6190

Table 2: Out-of-sample performance of benchmark portfolios, 81 stocks

of S&P100, monthly rebalancing. Time period: 20010101 - 20201231

RobustM PerformanceSP100

7 Conclusion and discussion

“Robustifying Markowitz” has seen many attempts that are mostly based on robustifying

the original simple inversion formula for exact determination of optimal GMV weights.

In bypassing this “error maximizing” technique, we have presented a tool fixing the

portfolio weights in a low cost re-balancing ballpark. Using modern results from robust

statistics, we have constructed an algorithm that provides a computationally effective
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Figure 1: Cumulative wealth of benchmark portfolios EW, GMV, GMV lin, GMV long,

GMV nlin, GMV robust for 81 stocks from S&P100, 20010101-20201231

RobustM PerformanceSP100
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Figure 2: Weights of assets in GMV portfolios, 81 S&P100 constituents, 20010101 -

20201231

RobustM PerformanceSP100
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Figure 3: Cumulative wealth of benchmark portfolios EW, GMV lin, GMV long,

GMV nlin, GMV robust, 600 random constituents of Russell3000, 20120101 - 20201231
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Figure 4: Weights of assets in GMV portfolios, 600 Russell3000 constituents, 20120101

- 20201231

RobustM PerformanceRussell3000
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min max sd mad-ew max-min

EW 0.0123 0.0123 0.0000 0.0000 0.0000

GMV robust -0.0461 0.0691 0.0240 0.0192 0.1153

GMV long 0.0000 0.2484 0.0389 0.0201 0.2484

GMV lin -0.0995 0.1793 0.0497 0.0374 0.2788

GMV nlin -0.0832 0.1478 0.0423 0.0323 0.2310

Table 3: Average characteristics of the weight vectors of GMV portfolios, 81

stocks of S&P100, monthly rebalancing. Time period: 20010101 - 20201231

RobustM PerformanceSP100

CumWealth SR TTO TO

EW 1.9191 38.3565 0.0000 0.2682

GMV robust 2.0172 70.5979 0.0000 0.5488

GMV long 1.8065 57.8239 0.0000 0.1974

GMV lin 2.0905 79.1200 0.0001 1.2729

GMV nlin 2.0186 78.5869 0.0001 0.9181

Table 4: Out-of-sample performance of benchmark portfolios, 600 stocks

of Russell3000, monthly rebalancing. Time period: 20120101 - 20201231

RobustM PerformanceRussell3000

estimator for GMV Markowitz portfolios. We have shown that it suffices to utilize a PGD

procedure to optimize the portfolio weights without estimating the covariance operator

itself. The focus on just the PGD updates significantly distinguishes our approach from

the previous techniques. We have successfully derived almost Gaussian properties of this

estimator in nice (N/T small) and not so nice (N/T big) condition cases.

The weights developed with the robustified approach are less sensitive to deviations

of the asset-return distribution from normality than those of the traditional minimum-

variance policy. Empirical studies confirm that the proposed policies are indeed more

stable and cost reducing. The stability of the proposed portfolios makes them a feasible

alternative to traditional portfolios.
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min max sd mad-ew max-min

EW 0.0017 0.0017 0.0000 0.0000 0.0000

GMV robust -0.0103 0.0164 0.0038 0.0029 0.0267

GMV long 0.0000 0.1382 0.0100 0.0031 0.1382

GMV lin -0.0290 0.0430 0.0095 0.0073 0.0720

GMV nlin -0.0185 0.0319 0.0067 0.0050 0.0503

Table 5: Average characteristics of the weight vectors of GMV portfolios, 600 stocks of

Russell3000, monthly rebalancing. Time period: 20120101 - 20201231

- RobustM PerformanceRussell3000

The proposed toolbox improves stability properties of weights, leading to better in-

vestment characteristics of allocation policies. The “Robustifying Markowitz” algorithm

outperforms conventional minimum-variance portfolios in terms of their out-of-sample

Sharpe ratios due to substantial reduction of trading volume measured by turnover. Fi-

nally, these performance results are confirmed across small and large portfolios. Even

for dimensions of portfolio size larger than the length of estimation window (e.g. the

Russell3000 data) the above claim pertains.

8 Proofs

8.1 Proof of Proposition 2.1

Before we proceed, let us recall some of the results and definitions from (Lugosi and

Mendelson; 2019b) and (Hopkins et al.; 2020). We start by giving the definition of

combinatorial centers, which is the central object in the original construction of Lugosi

and Mendelson, but the definition itself is due to Hopkins, Li and Zhang.

Definition 8.1 (Combinatorial center). A point θ ∈ RN is called a (r, κ)-combinatorial

center of Y1, . . . , Y` if for all unit vectors v ∈ RN , the inequality

|v>(Yj − θ)| ≤ r

takes place for at least (1− κ)` of indices j = 1, . . . , `.
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Essentially, Lugosi and Mendelson (2019b) prove that for appropriately chosen rδ,

the true mean is a (rδ, 1/4)-combinatorial center with probability at least 1 − δ, where

Yj being the bucket means. The estimation strategy is then executed by what is called

a median-of-means tournament : one needs to pick an (r, 1/4)-combinatorial center with

r as small as possible. The deviation bound then follows by a simple triangle inequality.

One difficulty of implementing this strategy computationally is the lack of control on

how these subsets of indices behave for different directions v ∈ RN .

In addition, Hopkins et al. (2020) define the spectral center of bucket means, which

can serve as a relaxation of the combinatorial one.

Definition 8.2 (Spectral center). For ε ∈ (0, 1/2), denote

∆`,ε =

u ∈ R` :
∑̀
j=1

uj = 1, 0 ≤ uj ≤ 1/{`(1− ε)}

 .

A point θ ∈ RN is called a (r, ε)-spectral center if there are weights (u1, . . . , u`) ∈ ∆`,ε

such that ∥∥∥∥∥∥
∑̀
j=1

uj(Yj − θ)(Yj − θ)>
∥∥∥∥∥∥ ≤ r2.

It is straightforward to see that if θ is a (r, ε)-spectral center with minimal r, then

it has the form θ =
∑`

j=1 ujYj for some (u1, . . . , u`) ∈ ∆`,ε, i.e. the solution should be a

weighted mean of Yj . The two definitions are “equivalent” in the following sense.

Lemma 8.1. Suppose that θ is (r, κ)-combinatorial center. Then it is also a

(5r, 10κ)-spectral center. Conversely, if θ is an (r, ε)-spectral center, then it is also a

(
√

(1− ε)/ε r, 2ε)-combinatorial center.

Hopkins et al. (2020) state this lemma for some particular constants ε and κ. Their

proof consists of some arguments of the proof of Proposition 1 in (Depersin and Lecué;

2019). For the sake of completeness, we reproduce these arguments in Section 8.2, slightly

changed.

We deal with both notions of centers for the following reason: it is easier to deal with

the statistical properties of combinatorial centers, whereas the spectral centers are more
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convenient from computational perspective. Hopkins, Li and Zhang (2020) develop an

algorithm that finds a center with a spectral signature that is guaranteed at most (say)

twice as large as minimal possible. Namely, we denote the output of their algorithm as

HLZ(Y1, . . . , Y`; ε) and they show that the output µ̂ satisfies

min
u∈∆`,ε

∥∥∥∥∥∥
∑̀
j=1

uj(Yj − µ̂)(Yj − µ̂)>

∥∥∥∥∥∥ . min
θ

min
u∈∆`,ε

∥∥∥∥∥∥
∑̀
j=1

uj(Yj − θ)(Yj − θ)>
∥∥∥∥∥∥ . (14)

Hence our goal is to show that with high probability, the spectral signature of the true

mean is sufficiently small, which we can do using the median-of-means analysis and

switching back and forth between spectral and combinatorial centers.

Let us now give the description of the estimator âδ(w). It consists of the following

steps:

1. First we centralize our observations. For this, consider the transformations X̃1 =

(X1−X2)/
√

2, X̃2 = (X3−X4)/
√

2, . . . Obviously, each of these new “observations”

has zero mean and the same covariance as Xi, and moreover they are independent.

2. Fix ε < 10/21 and set ` = d2(ε/10)−2 log(2/δ)e. Split the observations

X̃1, . . . , X̃bT/2c into ` non-intersecting buckets

B1 t · · · tB` = {1, . . . , bT/2c}.

3. Next, using the data from each of the buckets, we construct the following covariance

estimators,

Σj =
1

|Bj |
∑
i∈Bj

X̃iX̃i1‖X̃i‖≤R

4. For a given direction w ∈ RN , we output the result of the HLZ algorithm applied

to the bucket means

âδ(w)
def
= HLZ(Σ1w, . . . ,Σ`w; ε) .

Remark 8.1. Notice that given ε < 10/21 and fixing, say, δ = 0.05, we have that the

number of buckets ` = d2(ε/10)−2 log(2/δ)e has to be at least 1500, which makes the

algorithm rather impractical. Unfortunately, the theory that we use does not allow more

adequate constants. In the empirical study we heuristically choose ε = 1/3 and ` = 10.
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Transforming the observations as (X1 −X2)/
√

2, (X3 −X4)/
√

2, . . . is done for the

sole purpose of centralization. We have done so by reducing the size of the sample by at

most two. To avoid the notation overloading, we assume below that µ = 0 and proceed

to work with the original Xi.

Set Zi = XiX
>
i 1[‖Xi‖ < R]. According to step 2 of the algorithm, we split the data

into ` blocks B1, . . . , B` and consider the trimmed covariances,

Σj =
1

|Bj |
∑
i∈Bj

Zi .

Below we derive the following bound: with probability 1 − δ, we have that for any

directions v, w, the inequality

|u>Σjw − u>Σw| . ∆Σ
def
= ‖Σ‖

√
r(Σ) log r(Σ) + `

T
(15)

holds for at least 1− κ fraction of the indices j = 1, . . . , `, where κ = ε/10 is fixed. Let

us first complete the proof given this inequality.

At step 5 of the algorithm, we produce the vectors Yj = Σjw. On the event from

(15), we have that for any unit u ∈ RN , the inequality

|u>(Yj − Σw)| ≤ C∆Σ

holds for at least 1 − κ a fraction of indices. Hence, Σw is a (C∆Σ, κ)-combinatorial

center of Yj . By Lemma 8.1, it also means that Σw is a (5C∆Σ, 10κ)-spectral center of Yj .

Hence, by (14), the output of âδ(w) = HLZ(Y1, . . . , Yj ; ε) is a (C ′∆Σ, 10κ)-spectral center,

and using the second part of Lemma 8.1, we conclude that it is also a (C ′
√

10/κ∆Σ, 20κ)-

combinatorial center. Since 21κ < 1, we get that 1− 20κ+ 1− κ > 1, which means that

for any direction u ∈ Rd, by the pigeonhole principle, we can pick a single Yj that is

close to both combinatorial centers Σw and âδ(w) in this direction. Therefore, by the

triangle inequality,

|u>(âδ(w)− Σw)| . ∆Σ,

and since the bound holds in arbitrary direction u, we get the required bound in Euclidean

norm.

It remains to prove the bound (15).
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Let Σ̃ = EZi. We have by Lemma 2.1 of Mendelson and Zhivotovskiy (2020),

‖Σ− Σ̃‖ . ‖Σ‖
2r(Σ)

R2
. (16)

Let Quantα(z1 . . . z`) of a sequence of real numbers denotes an order statistics z(dα`e),

where z(1) . . . z(k) is a non-decreasing rearrangement of the original sequence. Then, we

can rewrite (15) as follows,

max
{
Quant1−κ(u>Σjw)− u>Σw, u>Σw −Quantκ(u>Σjw)

}
. ∆Σ .

Let us apply (Klochkov, Kroshnin and Zhivotovskiy; 2020, Lemma 2.3) to the class of

functions {fu,w(Y ) = u>Y w}. We have that with probability at least 1− 2e−κ
2`/2,

max
{
Quant1−κ(u>Σjw)− u>Σw, u>Σw −Quantκ(u>Σjw)

}
. E sup

u,w

(
1

T

N∑
i=1

εiu
>Yiw

)
+

√
sup
u,w

E(u>Y1w)2
`

T
+ ‖Σ̃− Σ‖ ,

where ε1, . . . , εn are independent Rademacher signs, i.e. taking ±1 with probability 1/2.

The supremum in both terms of the RHS is over unit vectors u,w in RN . Let us first

bound the second, weak term. We have that

E(u>Y1w)2 ≤ E(u>X1)2(w>X1)2 ≤ E1/2(u>X1)4E1/2(w>X1)4 .

By the L4–L2 equivalence assumption we get that E1/2(u>X1)4 . E(u>X1)2 ≤ ‖Σ‖. The

weak term is therefore bounded by C‖Σ‖
√
`/T .

Now let us deal with the first, strong term. We rewrite it as follows,

E sup
u,w

(
1

T

N∑
i=1

εiu
>Yiw

)
= E sup

u,w
u>

(
1

T

N∑
i=1

εiYi

)
w = E

∥∥∥∥∥ 1

T

N∑
i=1

εiYi

∥∥∥∥∥
The right-most expression is the expected value of the norm of a sum of centered matrices

εiYi, which are bounded by R2 pointwise. We therefore can apply the Matrix Bernstein

inequality, the details are carried out by Mendelson and Zhivotovskiy (2020) in Section 3.

They show that this leads eventually to the bound

E

∥∥∥∥∥ 1

T

T∑
i=1

εiYi

∥∥∥∥∥ . ‖Σ‖
√

r(Σ) log r(Σ)

T
+
R2 log r(Σ)

T
.
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Recalling the bound (16) we get that, with probability 1− 2e−κ
2`/2,

max
{
Quant1−κ(u>Σjw)− u>Σw, u>Σw −Quantκ(u>Σjw)

}
. ∆Σ +

R2 log r(Σ)

T
+
‖Σ‖2r(Σ)

R2
.

For R ∼ ‖Σ‖1/2
(
Tr(Σ)

log r(Σ)

)1/4
the RHS simplifies to ∆Σ = ‖Σ‖

√
r(Σ) log r(Σ)+`

T . It remains

to notice that 1− 2e−κ
2`/2 ≥ 1− δ as long as ` ≥ 2κ−2 log

(
2
δ

)
.

8.2 Proof of Lemma 8.1

Let us first recall the following basic fact from linear algebra: for a symmetric matrix

A, its largest eigenvalue satisfies λmax(A) = supM�0,Tr(M)=1 Tr(MA). Hence, we can

rewrite

min
w∈∆`,ε

∥∥∥∥∥∥
∑̀
j=1

wj(Yj − θ)(Yj − θ)>
∥∥∥∥∥∥ = min

w∈∆`,ε

max
M�0,Tr(M)=1

∑̀
j=1

wj(Yj − θ)>M(Yj − θ).

The latter can be seen as semi-definite program (SDP) and using the strong duality

of SDP one can show that the minimum over w and the maximum over M can be

swapped (see formula (5.2) in (Hopkins et al.; 2020); see also (Depersin and Lecué; 2019;

Diakonikolas et al.; 2020)):

min
w∈∆`,ε

max
M�0,Tr(M)=1

∑̀
j=1

wj(Yj−θ)>M(Yj−θ) = max
M�0,Tr(M)=1

min
w∈∆`,ε

∑̀
j=1

wj(Yj−θ)>M(Yj−θ)

The right-hand side form is closer to what Lugosi and Mendelson (2019b) do: for any

direction M = vv> we can pick its own weights. This property allows to show the

equivalence.

We write yj = Yj − θ for short everywhere in this section.

First, assume that θ is a (r, κ)-combinatorial center. We will show by contradiction

that it is also a (R, ε)-spectral center, where R = 5r and ε = 10κ. Suppose it is not, so

that for some M � 0 with Tr(M) = 1 we have that

min
w∈∆`,ε

∑
j

wjy
>
j Myj ≥ R2 .

38



If w ∈ ∆`,ε delivers the minimum it must put non-zero weights to at least d`(1 − ε)e

terms. Since the weights sum up to one, we conclude that for at least d`εe indices

j = 1, . . . , `, it holds that y>j Myj ≥ R2. We denote this set of indices as B. Now, let

M =
∑`

k=1 λkuku
>
k be its spectral decomposition. Since M � 0 and Tr(M) = 1, we

have that
∑

k λk = 1 and λk ≥ 0.

Let us take a random unit vector v =
∑

k

√
λkukεk, where εk are independent

random signs, so that the equality
∑

k λk = 1 ensures that it is indeed a unit vector.

Moreover,

y>j v =
∑
k

(
√
λky

>
j uk)εk =

∑
k

a
(j)
k εk,

where we denote a
(j)
k =

√
λky

>
j uk, and we also denote by a(j) ∈ R` the vector with

corresponding coordinates. Observe that for j ∈ B, we have that

‖a(j)‖2 =
∑
k

λky
>
j uku

>
k yj = y>j Myj ≥ R2.

The Khintchin inequality due to Szarek (1976) states that,

1√
2
‖a(j)‖ ≤ E

∣∣∣∣∣∑
k

a
(j)
k εj

∣∣∣∣∣ ≤ ‖a(j)‖ .

Furthermore, the lower tail of the bounded differences inequality due to Theorem 6.9 in

Boucheron et al. (2013) implies that

P

(∣∣∣∣∣∑
k

a
(j)
k εj

∣∣∣∣∣ < 1√
2
‖a(j)‖ − t

)
≤ e
− t2

2(‖a(j)‖2+t‖a(j)‖/3)

Taking t = 1−c√
2
‖a(j)‖, we get that

P

(∣∣∣∣∣∑
k

a
(j)
k εj

∣∣∣∣∣ ≥ c√
2
‖a(j)‖

)
≥ 1− e−

(1−c)2

4(1+(1−c)/(3
√
2)) ,

which for c =
√

2/5 is greater than 0.1. Hence, we can find a unit vector v such that for

at least one tenth of the indices j ∈ B,

|y>j v| ≥
1

5
R = r.

One tenth of B accounts for 0.1ε = κ, hence θ cannot be an (r, κ)-combinatorial center.

Suppose that θ is a (r, ε)-spectral center. Again we will prove that it is also a (R, κ)-

combinatorial center by contradiction, with R =
√

(1− ε)/ε r, κ = 2ε. Suppose it is not.
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Then, there is a unit vector v, such that for strictly more than `κ indices j, |y>j v| > R.

Denote this set of indices as B. Since θ is a spectral center, we get that for M = vv>,

min
w∈∆`,ε

∑̀
j=1

wj |y>j v|2 ≤ r2

The minimum puts weight 1/(`(1− ε)) for b`(1− ε)c with the smallest values |y>j v|. By

the pigeonhole principle, strictly more than `κ− d`εe of them are in the set B. Hence,

min
w∈∆`,ε

∑̀
j=1

wj |y>j v|2 >
κ− ε
1− ε

R2 =
ε

1− ε
R2 = r2.

This completes the proof by contradiction.

8.3 Proof of Corollary 3.1

Simply substitute ∆µ = C‖Σ‖1/2
√

r(Σ)+log(1/δ)
T and ∆Σ = C‖Σ‖

√
r(Σ) log r(Σ)+log(1/δ)

T

into Lemma 3.1, and take η = 1/(γλmax). The condition (9) ensures that ∆Σ ≤ λmin/2.

We get that

‖ws − w∗‖ ≤
(

1− 1

2κ

)s
‖w0 − w∗‖+ C ′

‖Σ‖1/2 + γ‖Σ‖‖w∗‖
λmin

√
r(Σ) log r(Σ) + log(1/δ)

T

Taking s ∼ log T steps, the first term will be dominated by second one. Furthermore,

since the objective is quadratic and w∗ its optimum, we have that

Mγ(w∗; Σ, µ)−Mγ(ws; Σ, µ) =
γ

2
‖Σ1/2(ws − w∗)‖2

.
γ‖Σ‖2 + γ3‖Σ‖3‖w∗‖2

λ2
min

r(Σ) log r(Σ) + log(1/δ)

T
,

hence follows the bound.
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Petukhina, A., Trimborn, S., Härdle, W. K. and Elendner, H. (2021). Investing with

cryptocurrencies–evaluating their potential for portfolio allocation strategies, Quanti-

tative Finance pp. 1–29.

URL: https://doi.org/10.1080/14697688.2021.1880023

Stock, J. H. and Watson, M. W. (2002). Forecasting using principal components

from a large number of predictors, Journal of the American statistical association

97(460): 1167–1179.

Strongin, S., Petsch, M. and Sharenow, G. (2000). Beating benchmarks, The Journal of

Portfolio Management 26(4): 11–27.

Szarek, S. (1976). On the best constants in the khinchin inequality, Studia Mathematica

2(58): 197–208.

Xidonas, P., Steuer, R. and Hassapis, C. (2020). Robust portfolio optimization: A

categorized bibliographic review, Annals of Operations Research 292(1): 533–552.

Zhivotovskiy, N. (2021). Dimension-free bounds for sums of independent matrices and

simple tensors via the variational principle, arXiv preprint arXiv:2108.08198 .

45



Zhu, B., Jiao, J. and Steinhardt, J. (2020). Robust estimation via generalized quasi-

gradients, arXiv preprint arXiv:2005.14073 .

46



IRTG 1792 Discussion Paper Series 2021

For a complete list of Discussion Papers published, please visit
http://irtg1792.hu-berlin.de.

001 ”Surrogate Models for Optimization of Dynamical Systems” by Kainat Khowaja,
Mykhaylo Shcherbatyy, Wolfgang Karl Härdle, January 2021.

002 ”FRM Financial Risk Meter for Emerging Markets” by Souhir Ben Amor, Michael
Althof, Wolfgang Karl Härdle, February 2021.
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