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Abstract

The cryptocurrency (CC) market is volatile, non-stationary and non-
continuous. Together with liquid derivatives markets, this poses a unique
opportunity to study risk management, especially the hedging of options,
in a turbulent market. We study the hedge behaviour and effective-
ness for the class of affine jump diffusion models and infinite activity
Lévy processes. First, market data is calibrated to SVI-implied volatil-
ity surfaces to price options. To cover a wide range of market dynamics,
we generate Monte Carlo price paths using an SVCJ model (stochastic
volatility with correlated jumps) assumption and a close-to-actual-
market GARCH-filtered kernel density estimation. In these two markets,
options are dynamically hedged with Delta, Delta-Gamma, Delta-Vega
and Minimum Variance strategies. Including a wide range of market
models allows to understand the trade-off in the hedge performance
between complete, but overly parsimonious models, and more complex,
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2 Hedging Cryptocurrency options

but incomplete models. The calibration results reveal a strong indi-
cation for stochastic volatility, low jump frequency and evidence of
infinite activity. Short-dated options are less sensitive to volatility or
Gamma hedges. For longer-date options, good tail risk reduction is con-
sistently achieved with multiple-instrument hedges. This is persistently
accomplished with complete market models with stochastic volatility.

Keywords: cryptocurrency options, hedging, bitcoin, digital finance, volatile
markets

1 Introduction

Consider the problem of hedging contingent claims written on cryptocurrencies
(CC). The dynamics of this new expanding market is characterized by high
volatility, as is evident from the Cryptocurrency volatility index VCRIX (see
Kim et al. (2021)) and large price jumps Scaillet et al. (2018). We approach
hedging options written on Bitcoin (BTC) with models from the class of
affine jump diffusion models and infinite activity Lévy processes. Similarly to
Branger et al. (2012), we assess the hedge performance of implausible, yet com-
plete as well as plausible, but incomplete asset pricing models. Since April 2019,
contingent claims written on BTC and Ethereum (ETH) have been actively
traded on Deribit (www.deribit.com). The Chicago Merchantile Exchange
(CME) introduced options on BTC futures in January 2020. In contrast to tra-
ditional asset classes such as equity or fixed income, the market for CC options
has only recently emerged and is still gaining liquidity, see e.g. (Trimborn and
Härdle, 2018) for an early description of the market. Despite growing market
volume, cryptocurrency markets continue to exhibit high volatility and fre-
quent jumps, posing challenges to valuation and risk management. From the
point of view of market makers and in the interest of financial stability, it is
of high priority to understand and monitor risks associated with losses.

As the option market is still immature and illiquid, in the sense that quotes
for many specific strikes or maturities are not directly observable or may be
stale, we derive options prices by interpolating prices from stochastic volatility
inspired (SVI) parametrized implied volatility (IV) surfaces (Gatheral, 2004).
In order to capture a variety of market dynamics, the BTC market is imi-
tated with two different Monte Carlo simulation approaches. In a parametric
price path generation approach, we assume that the data-generating process
is described by the SVCJ model. The second scenario generation method is
based on GARCH-filtered Kernel-density estimation (GARCH-KDE) close to
actual market dynamics. Under each of the two different market simulation
methods, options are hedged where the hedger considers models of different
complexity. This deliberately includes models that are “misspecified” in the
sense that relevant risk factors may be omitted (Branger et al., 2012). On the

https://thecrix.de/
https://bitcoin.org/de/
https://ethereum.org/en/
https://www.deribit.com/
https://www.deribit.com/
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other hand, those models are possibly parsimonious enough to yield a com-
plete market. It is known that, when comparing the hedge performance to a
more realistic, albeit incomplete market model, the simpler model may out-
perform the complex model (Detering and Packham, 2015). In our context, a
model is “misspecified” if it contains fewer or different parameters than the
SVCJ model. Specifically, as models included in the class of SVCJ models, we
consider the Black and Scholes (1973) (BS) model, the Merton (1976) jump-
diffusion model (JD), the Heston (1993) stochastic volatility model (SV), the
stochastic volatility with jumps model (SVJ) (Bates, 1996) and the SVCJ
model itself. Infinite activity Lévy hedge models under consideration are the
Variance-Gamma (V G) model (Madan et al., 1998) and the CGMY model
(Carr et al., 2002). Options are hedged dynamically with the following hedge
strategies: Delta (∆), Delta-Gamma (∆ − Γ), Delta-Vega (∆ − V) and min-
imum variance strategies. To gain further insights, we separate the full time
period, ranging from April 2019 to June 2020, into 3 different market scenarios
with a bullish market behavior, calm circumstances with low volatility and a
stressed scenario during the SARS-COV-2 crisis. In addition to evaluating the
hedge performance, we aim to identify BTC risk-drivers such as jumps. This
contributes to the understanding of what actually drives fluctuations on this
market.

A number of papers investigate the still young market of CC options.
Trimborn and Härdle (2018) describe the CC market dynamics via the cryp-
tocurrency index CRIX. Madan et al. (2019) price BTC options and calibrate
parameters for a number of option pricing models, including the Black-Scholes,
stochastic volatility and infinite activity models. Hou et al. (2020) price CRIX

options under the assumption that the dynamics of the underlying are driven
by the (SVCJ) model introduced in Duffie et al. (2000) and Eraker et al. (2003).
The literature on the aspects of risk management in CC markets is scarce but
growing. Dyhrberg (2016), Bouri et al. (2017) and Selmi et al. (2018) investi-
gate the role of BTC as a hedge instrument on traditional markets. Sebastião
and Godinho (2020) and Alexander et al. (2021) investigate the hedge effec-
tiveness of BTC futures, while Nekhili and Sultan (2021) hedge BTC risk with
conventional assets. To the best of our knowledge, hedging of CC options has
not yet been investigated in this depth and detail. The aspect of risk man-
agement and the understanding of the dynamics of CCs is therefore a central
contribution of this study.

The remainder of the paper is structured as follows: Section 2 describes the
methodology, decomposed into market scenario generation, option valuation
and hedge routine. The hedge routine presents the hedge models and explains
the model parameter calibration and hedge strategy choices. In Section 3,
we present and evaluate the results of the hedge routine and in Section 4,
we conclude. The code is available as quantlets, accessible through Quantlet

under the name hedging cc.

https://thecrix.de/
https://thecrix.de/
https://www.quantlet.com/
https://github.com/QuantLet/hedging_cc
https://github.com/QuantLet/hedging_cc
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2 Methodology

In this section, we introduce the methodology, comprising market scenario
generation, option valuation and hedging.

2.1 Market generation

We describe how to generate synthetic market data, which serves as the input
for the remainder of the analysis. The principal goal of synthetic scenario
generation is to imitate the BTC market behavior, especially retaining its sta-
tistical properties. Monte Carlo simulation provides the flexibility to create a
large amount of plausible scenarios. In addition, we consider two simulation
methods capturing different statistical properties. They represent a trade-off
between a parametric model with valuable and traceable risk-factor infor-
mation and a flexible non-parametric closer-to-actual-market approach. The
parametric model is simulated under the risk neutral measure Q with a for-
ward looking perspective. The non-parametric simulation relates to the past
market behavior performed under the physical measure P. The time frame
under consideration is from 1st April 2019 to 30th June 2020. The BTC mar-
ket behavior in this time period is time-varying. This makes it convenient to
segregate the time frame into three disjoint market segments from April to
September 2019 (bullish), October 2019 to February 2020 (calm) and March
to June 2020 (covid), respectively. Bearing in mind that we are going to hedge
1-month and 3-month options, the minimal segment length is chosen to exceed
three months. A graphical representation of the BTC closing price trajectory
is illustrated in Figure 1 with the corresponding summary statistics in
Table 1. The first interval is labeled as the bullish segment, because, to a great
extent, the market behaves upward-trending. The second period labeled as the
calm period. With an overall standard deviation σ̂ = 756.55, price movements
are more stagnant compared to the bullish segment. The last segment is the
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Fig. 1: BTC closing price from 1st April 2019 to 30th June 2020, where the
blue trajectory represents the bullish market behavior, the black path the calm
period and red path the stressed scenario during the Corona Crisis.

LoadBTC



Hedging Cryptocurrency options 5

behavior µ̂ σ̂ min q25 q50 q75 max
bullish 0.0038 0.0428 -0.1518 -0.0157 0.0050 0.0227 0.1600
calm 0.0009 0.0290 -0.0723 -0.0162 -0.0015 0.0098 0.1448
covid 0.0012 0.0490 -0.4647 -0.0107 0.0009 0.0162 0.1671

Table 1: Summary statistics of the bullish, calm and covid market log returns

rt. hedging cc

Corona Crisis or stressed scenario, where financial markets, especially CC
markets, experienced high volatility. A notable mention is the behavior of the
BTC on 12th March 2020, where its price dropped by nearly 50%.

We now turn to a formal mathematical framework. Let the BTC market to
be a continuous-time, frictionless financial market. Borrowing and short-selling
are permitted. The constant risk-free interest rate r ≥ 0 and the time horizon

T < ∞ are fixed. On a filtered probability space
(

Ω,F , (Ft)t∈[0,T ] ,P
)

, the

asset price process and the risk-free asset are defined by adapted semimartin-
gales (St)t≥0 and (Bt)t≥0, where B0 = 1 and Bt = ert, t ≥ 0, respectively.
The filtration is assumed to satisfy the usual conditions (e.g. (Protter, 2005)).
To ensure the absence of the arbitrage, we assume the existence of a risk-
neutral measure Q. We consider an option writer’s perspective and short a
European call option. The price of the option with strike K and time-to-
maturity (TTM) τ = T−t at time t < T is C(t, τ,K). For multiple-instrument
hedges, we further assume the existence of a liquidly traded call option suit-
able for hedging C2 (t, τ,K2), where K2 6= K. The dynamic hedging strategy
ξ = (ξ0, ξ1) = (ξ0(t), ξ1(t)))0≤t≤T is an F-predictable process, where ξ0(t) and
ξ1(t) denote the amounts in the risk-free security and the asset, respectively.
The resulting portfolio process Π = (Πt)t≥0 is admissible and self-financing.
The evolution of the value process Π is reviewed in detail in Appendix A.1,
A.2 and A.3.

The finite time horizon T is partitioned into T = {0, δt, 2δt, . . . ,mδt = T},
where m ∈ N denotes the m-th trading day and δt = 1

365 . Scenarios are N =
100000 trajectories of the asset price process S(t) = (St,i), where i = 1, . . . , N
and t = 0, 1, . . . T . The parametric scenario generation approach assumes that
the dynamics of the asset price process St and the volatility process Vt are
described by the SVCJ model introduced in Duffie et al. (2000). This particular
choice is motivated by the methodology in Hou et al. (2020), where the model
is applied to pricing options on the CRIX. A high degree of free parameters
enables to model various market dynamics. Precisely, the model dynamics are

dSt
St

= µδt+
√
VtdW

s
t + Zst dNt

dVt = κ (θ − Vt) δt+ σv
√
VtdW

v
t + Zvt dNt

Cov {dW s
t , dW

v
t } = ρδt

(1)

where W s
t ,W

v
t are two standard Wiener processes correlated with correlation

coefficient ρ. The mean reversion speed is denoted by κ, θ is the mean reversion

https://github.com/QuantLet/hedging_cc
https://thecrix.de/
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level and σv the scale of Vt. The model allows for contemporaneous arrivals
of jumps in returns and jumps in volatility goverened by the Poisson process
Nt = Ns

t = Nv
t with constant intensity λ = λs = λv. Jump sizes in volatility

Zvt are exponentially distributed Zvt ∼ ε (µv) and jumps sizes in asset prices
are conditionally normally distributed

Ξ
def
= Zst |Zvt ∼ N

(
µs + ρjZ

v
t , σ

2
s

)
(2)

where µs is the conditional mean jump size in the asset price given by

µs =
exp

{
µs + (σs)2

2

}
1− ρjµv

− 1

In detail, µs is the unconditional mean, σs the jump size standard deviation
and ρj is the correlation coefficient between jumps. From an empirical point
of view, in most markets, jumps occur seldomly and are difficult to detect,
and, as a consequence, the calibration of ρj is unreliable (Broadie et al., 2007).
We follow the recommendation of Broadie et al. (2007), Chernov et al. (2003),
Eraker et al. (2003), Eraker (2004) and Branger et al. (2009) and set ρj = 0.
Furthermore, the risk premium is set to zero, so that µ = r and P = Q. The
resulting paths are simulated according to the Euler-Maruyama discretization
of (1) suggested in Belaygorod (2005). The corresponding model parameters
are re-calibrated daily according to the methodology described in section 2.3.2.

Compared to the empirical price process, the SVCJ may appear quite
restrictive: aside from being an incomplete market model, the price dynamics
are limited by the specification of the stochastic volatility component as well as
the jump intensity and size. The semi-parametric method loosens the assump-
tions by generating scenarios using GARCH-filtered kernel density estimation
(GARCH-KDE) as in e.g. McNeil and Frey (2000). Let (rt) denote BTC log-
returns and (σ̂t) the estimated GARCH(1,1) volatility (Bollerslev, 1986). The
kernel density estimation is performed on ”de-garched” residuals

ẑt =
rt
σ̂t
. (3)

The rationale is to capture the time-variation of volatility by the GARCH
filter and perform kernel density estimation on standardised residuals. The
estimated density function is

f̂h(z) =
1

nh

n∑
t=1

K

(
ẑt − z
h

)
, (4)
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where K denotes the Gaussian Kernel. The resulting generated paths are

S(T ) = S(0) exp

[
T∑
t=1

σ̂tẑt

]
. (5)

Throughout this paper, the parametric and the semi-parametric method are
referred to as the SVCJ and GARCH-KDE framework, respectively.

2.2 Valuation

This section describes how option prices are derived from the market IV quotes.
As the market for CC claims, during the time period of our dataset, is still
relatively immature with only a limited number of actively traded options on
Deribit and the Chicago Mercantile Exchange, arbitrage-free option prices
are derived through the stochastic volatility inspired (SVI) parameterization
of the volatility surface of Gatheral and Jacquier (2014). Let σBS(k, τ) denote
the BS IV with log-moneyness k = log (K/S0) and total implied variance
w(k, τ) = σ2

BS(k, τ)τ . For a fixed τ , the raw SVI parameterization of a total
implied variance smile as initially presented in Gatheral (2004) is

w (k; χR) = a+ b
{
ρ(k −m) +

√
(k −m)2 + σ2

}
. (6)

In the parameter set χR = {a, b, ρ,m, σ}, a ∈ R governs the general level
of variance, b ≥ 0 regulates the slopes of the wings, ρ ∈ [−1, 1] controls the
skew, m ∈ R enables horizontal smile shifts and σ > 0 is the ATM curvature
of the smile (Gatheral and Jacquier, 2014). For each maturity, the smile is
recalibrated daily. The implied volatility is obtained by a simple root-finding
procedure, whereas the parameters χR are calibrated according to the opti-
mization technique explained in Section 2.3.2. In addition, the calibration is
subject to non-linear constraints prescribed in Gatheral and Jacquier (2014).
These constraints ensure convexity of the option price which rules out butter-
fly arbitrage. Calendar spread arbitrage is avoided by penalizing fitted smiles
which induce a decrease in the level of the total implied variance for a given
strike level. For interpolation, the ATM total implied variance θT = w(0, T ) is
interpolated for t1 < T < t2 as in Gatheral and Jacquier (2014). The resulting
option price C(T,K) is a convex combination

αT =

√
θt2 −

√
θT√

θt2 −
√
θt1
∈ [0, 1] ,

C(T,K) = αTC(t1,K) + (1− αT )C(t2,K).

(7)

https://www.deribit.com/
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2.3 Hedge routine

This section describes the models selected to hedge BTC options as well as
the model parameter calibration procedure. Given these model classes, hedge
strategies are chosen for the hedge routine.

2.3.1 Hedge models

For hedging purposes, the choice of a hedge model faces the trade-off between
sufficient complexity to describe the actual market dynamics and market com-
pleteness (Detering and Packham, 2015). In practice, a trader may therefore
initiate hedging with an evidently wrong but simple model, such as the com-
plete BS option pricing model. A lower number of parameters provides a
parsimonious setup with potentially manageable explanatory power. In our
setting, a European option is hedged employing models of increasing com-
plexity. In the following, the model granularity is gradually extended by the
addition of risk-factors such as local volatility, jumps, stochastic volatility and
others. This covers the empirical finding of the previous literature on CC’s, e.g.
(Kim et al., 2021; Scaillet et al., 2018). Accordingly, the hedge models selected
encompass affine jump diffusion models and infinite activity Levy processes.

The class of affine jump diffusion models covers well-known models nested
in (1). Due to its popularity in the financial world, the simple but complete
BS option pricing is selected as a hedge model. The volatility is constant with
Vt = σ and there are no discontinuities from jumps Ns

t = Nv
t = 0. A slightly

more complex model is the JD model. It assumes constant volatility with
Vt = θ, σV = 0 and extends the BS model by allowing for jumps in returns,
but with Nv

t = 0. The jump size is log ξ ∼ N
(
µs, δ

2
s

)
distributed.

Evidence for stochastic volatility motivates the choice of the SV model. The
jump component is excluded with λ = 0 and Ns

t = Nv
t = 0. We also examine

the SVCJ model itself as a model used for hedging. It serves as the most
general model and its hedge performance provides a meaningful insight for the
comparison of the SVCJ and GARCH-KDE framework, while in the SVCJ
framework, it provides “anticipated” hedge results (cf. Branger et al. (2012)).
Due to the jump scarcity and latent nature of the variance process Vt, we also
consider the SVJ model for hedging. In this model, the jump component in
the variance process Vt is dropped while keeping the jump component in the
spot process St, i.e. Nv

t = 0.
In contrast to affine jump processes, there exists a well-established class of

processes that do not entail a continuous martingale component. Instead, the
dynamics are captured by a right-continuous pure jump process, such as the
Variance Gamma (VG) model (Madan et al., 1998). The underlying St evolves
as

dSt = rSt−dt+ St−dX
VG
t

XVG
t = θGt + σWGt

,
(8)
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with the characteristic function of the VG-process XVG
t given by

ϕVG(u; σ, ν, θ) =

(
1− iuθν +

1

2
σ2νu2

)−1/ν

, (9)

where r is the risk-free rate,Wt is a Wiener process andGt is a Gamma process.
The overall volatility level is represented by σ; θ governs the symmetry of the
distribution and therefore controls the implied volatility skew; ν controls for
tails, kurtosis and thus regulates the shape of the volatility surface. An alter-
native representation of the V G process pleasant for practical interpretation
has the characteristic function

ϕVG(u; C,G,M) =

(
GM

GM + (M −G)iu+ u2

)C
, (10)

where C, G, M > 0. The detailed link between (9) and (10) is described
in Appendix A.4. An increase in G (M) increases the size of upward jumps
(downward jumps). Accordingly, θ, M and G account for the skewness of the
distribution. An increase in C widens the Levy-measure. An extension of the
VG model is the CGMY model by Carr et al. (2002). On a finite time interval,
the additional parameter Y permits infinite variation as well as finite or infinite
activity. Formally, in (8) the source of randomness is replaced by a CGMY
process XCGMY

t with the characteristic function

ϕCGMY (u; C,G,M, Y ) = exp
[
CtΓ(−Y )

{
(M − iu)Y −MY + (G+ iu)Y −GY

}]
.

(11)
The XV G

t -process in the representation in equation (9) is a special case of
the CGMY process for Y = 1. On a finite time interval, the behavior of the
path depends on Y . For Y < 0, there is a finite number of jumps, else infinite
activity. In case of Y ∈ (1, 2], there is also infinite variation.

2.3.2 Calibration routine

The model parameters are calibrated following to the FFT option pricing tech-
nique of Carr and Madan (1999). The price of a European-style option C (K,T )
is given by

C(K,T ) =
1

π
e−α log(K)

∫ ∞
0

e−iv log(K) ρ(v)dv

ρ(v) =
ϕT (v − (α+ 1)i)

α2 + α− v2 + i(2α+ 1)v
,

(12)

where cT (k) denotes the α-damped option price cT (k) = eαkCT (k) and ϕcT (t)
its characteristic function. The ill-posed nature of calibration can lead to
extreme values of the model parameters. This is avoided by employing a
Tikhonov L2-regularization (Tikhonov et al., 2011). At the cost of accepting
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some bias, this penalizes unrealistic values of the model parameters by giving
preference to parameters with smaller norms.

Calibration is performed by the optimizer

θ∗ = argmin
θ∈Θ

R(θ)

R(θ) =

√
1

n

∑
i

{IVModel(hi, θ)− IVMarket((Ti,Ki))}2 + θ>Γθ,
(13)

where Γ is a diagonal positive semi-definite matrix. The matrix Γ corresponds
to the Tikhonov L2-regularization, which gives preference to parameters
with smaller norms. The entries in the matrix Γ are chosen individually for
each parameter to ensure that they maintain the same reasonable order of
magnitude.

The parameter space Θ ⊂ Rd of each model in scope is subject to linear
inequality constraints. Given that the objective is not necessarily convex, it
may have multiple local minima. In order to explore the entire parameter space,
simplex-based algorithms are more appropriate than local gradient-based tech-
niques. In our case, we employ the Sequential Least Squares Programming
optimization (Kraft, 1988) routine. We adjust for time effects by calibrating
parameters on the IV surface instead of option prices. As deep out-of-the-
money or deep in-the-money instruments do not provide valuable input for
calibration in our case, the ∆25 criterion is imposed: all claims whose ∆BS is
smaller than 0.25 or larger than 0.75 in terms of the absolute value, that is
0.25 < |∆Market| < 0.75, are disregarded.

2.3.3 Hedging strategies

To protect against broad market movements, we examine hedging with market-

risk-related sensitivities (∆,Γ,V) =
(
∂C
∂S ,

∂2C
∂2S ,

∂C
∂σ

)
. The goal is to protect

the position against first-order changes in the underlying S = {St, t ∈ T},
second-order changes (i.e., first-order changes in ∆) and to changes in σ,
respectively. To achieve ∆−Γ- or ∆−V-neutrality, an additional liquid option
C2(S(t), T,K1) with strike K1 6= K is priced from the SVI parameterized IV
surface, as explained in Section 2.2. For performance comparison of linear and
non-linear effects, the dynamic ∆- and ∆−Γ-hedging strategies are applied to
all hedge models. The ∆−V-hedge is only considered for affine jump diffusion
models. The technical aspects of the dynamic hedging strategies are described
in Appendices A.2 and A.3. Models that incorporate jumps are incomplete
and difficult to hedge. Jumps and infinite activity Lévy processes are there-
fore often hedged with quadratic variance-related hedging strategies. Under
the assumption of symmetric losses and gains, the aim is to find the strategy
ξ∗ under Q that minimizes the hedging error in terms of the mean-squared
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model tailored hedge strategy comparison
Black-Scholes ∆BS ∆− ΓBS , ∆− VBS

SV ∆− VHeston MV, ∆Heston, ∆− ΓHeston

JD MV ∆JD, ∆− ΓJD, ∆− VJD

SVJ MV ∆SV J , ∆− ΓSV J , ∆− VSV J

SVCJ MV ∆SV CJ , ∆− ΓSV CJ , ∆− VSV CJ

VG MV ∆V G, ∆− ΓV G

CGMY MV ∆CGMY , ∆− ΓV G

Table 2: Hedge strategy summary, where a tailored hedge refers to the pro-
posed hedge model and strategy comparison refers other hedges applied for
comparison.

error (Föllmer and Sondermann, 1986)

(Π(0), ξ∗(t)) = argmin
Π(0),ξ1(t)

EQ

(CT −Π(0)−
∫ T

0

ξ1(u)dS(u)

)2
 . (14)

Table 2 summarizes the hedging strategies applied to the respective hedge mod-
els. The calibrated model parameters are used to compute hedging strategies
ξ(t) for each model.

Each model’s hedge performance is evaluated by indicators derived from
the relative Profit-and-Loss (PnL)

πrel = e−rT
ΠT

C {S0,K, T}
. (15)

In a perfect hedge in a complete market we have πrel = 0. However, in practice,
due to model incompleteness, discretization and model uncertainty, πrel 6= 0.
We evaluate the hedge performance with the relative hedge error εhedge as
applied in e.g. Poulsen et al. (2009), defined as

εhedge = 100
√

Var (πrel). (16)

The rationale behind εhedge is that standard deviation represents a measure of
uncertainty. A sophisticated hedge strategy reduces or ideally eliminate uncer-
tainty (Branger et al., 2012). The tail behavior is evaluated by the expected
shortfall

ESα = E
[
πrel | πrel > F−1

πrel
(α)
]
. (17)

3 Empirical results

3.1 Data

Models are calibrated on the market prices of European-style Deribit options
written on BTC futures. The number of liquidly traded instruments varies

https://www.deribit.com/
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F0 1 M 3 M
BULLISH 4088.16 206.38 417.87
CALM 8367.51 838.01 1449.82
COVID 9804.85 610.36 1201.46

Table 3: Interpolated option prices for initial underlying price F (0) and strike

KATM for maturities T = {1 M, 3 M}. hedging cc

period mean std skew kurt q25 q50 q75
BULLISH 0.13 0.99 0.17 0.87 -0.44 0.15 0.66
CALM -0.02 0.74 0.34 0.12 -0.51 -0.06 0.38
COVID 0.05 0.70 -0.04 0.23 -0.34 0.04 0.47

Table 4: Summary statistics of estimated historical densities ẑt defined in (3)

for a respective scenario. hedging cc

significantly with maturity. Therefore, the data is filtered with liquidity cut-
offs. All claims without trading volume are disregarded. In addition, the ∆25-
criterion is imposed.

3.2 Option pricing

Option prices are obtained at every day of the hedging period. This is necessary
for the calculation of the initial value of the hedging portfolio and to perform
multi-asset dynamic hedging. Each option is priced according to the IV surface
on the given day. If the option is not traded for the given strike or maturity,
the SVI parametrized IV surface is interpolated in an arbitrage-free way. For
illustration, we take a look at CC option prices at the beginning of each market
period. Figure 2 displays the SVI parametrized interpolated IV surfaces for
SVI parameters listed in Table 23. The resulting option prices used in the
hedging routine are displayed in Table 3. Recall that for a given IV surface
the SVI parameters related by the formula (6) are calibrated for each TTM.
The temporal dynamics of the SVI parameters provide the following insights:
parameter a increases with TTM, which aligns with the increase of the ATM
total variance as TTM rises. Parameter σ decreases with TTM, indicating
decrease of the ATM curvature. Increasing values of parameter b indicate
higher slopes of the wings as TTM increases. Skewness, expressed in terms
of the parameter ρ, varies across market segments. Usually negative values of
ρ indicate a preference for OTM puts over OTM calls. In the bullish period,
skewness is close to zero across most maturities.

3.3 Scenario generation results

For the GARCH-KDE approach, the estimated residual distributions f̂h(z)
from (4) are displayed in Figure 3. The empirical moments and quantiles are
listed in Table 4. Figure 9 illustrates the GARCH(1, 1) estimates of BTC
returns. As a consequence from de-garching, all three distributions are roughly
symmetric and mean-zero. Deviations are direct results from market moves:

https://github.com/QuantLet/hedging_cc
https://github.com/QuantLet/hedging_cc
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Fig. 2: Market IVs in red and interpolated IV surface in blue on (a) 1st

April 2019 (b) 1st October 2019 (c) 1st February 2020. Fitted smiles with very
short maturities of τ ≤ 1 week are excluded from plots, because they are not
relevant for the hedging routine. Calibrated SVI parameters shorter maturities

are given in Table 23. hedging cc

the upward-moving market behavior in the bullish period leads to a left-skewed
residual distribution. High drops in the stressed period result in a negatively
skewed distribution.
SVCJ paths are simulated with daily re-calibrated parameters, which are

4 3 2 1 0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 3: Estimated residual density f̂h(z) in (4) during bullish market behavior,
calm period and the stressed scenario during the Corona Crisis for h = 0.2.

hedging cc

summarized in Appendix Table 6. Selected statistical properties of both sce-
nario generation approaches are given in Table 22. We observe differences in
tails, extreme values and standard deviation. Discrepancies in σ̂ are natural
consequences from different methodological assumptions. The SVCJ approach
assumes volatility to be stochastic, whereas GARCH-KDE models σt with
GARCH(1,1). Discrepancies in path extremes result from the SVCJ model
assumptions on return jump size ΞSV CJ in (2). In the calibration routine, the

https://github.com/QuantLet/hedging_cc
https://github.com/QuantLet/hedging_cc
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segment µ̂ σ̂ min q1 q50 q99 max
bullish -0.03 0.18 -0.39 -0.37 -0.00 0.46 0.61
calm -0.23 0.24 -0.44 -0.43 -0.34 0.53 0.58
covid -0.28 0.17 -0.49 -0.48 -0.33 0.11 0.67

Table 5: Summary statistics of calibrated SVCJ jump size Ξ per market

segment. hedging cc

period κ ρ V0 θ σ λ µy σy µv
BSbullish - - - - 0.84 - - - -
BScalm - - - - 0.68 - - - -
BScovid - - - - 0.78 - - - -
Mertonbullish - - - - 0.17 0.11 0.0 0.82 -
Mertoncalm - - - - 0.42 0.72 0.0 0.55 -
Mertoncovid - - - - 0.48 0.40 0.0 0.69 -
SVbullish 0.75 0.16 0.76 0.42 0.82 - - - -
SVcalm 1.60 0.17 0.35 1.10 0.68 - - - -
SVcovid 1.43 0.01 0.63 0.95 0.56 - - - -
SV Jbullish 0.72 0.15 0.75 0.42 0.80 0.16 0.01 0.0 -
SV Jcalm 1.28 0.18 0.33 1.05 0.68 0.37 0.01 0.0 -
SV Jcovid 0.98 0.14 0.50 0.74 0.72 0.86 -0.15 0.0 -
SV CJbullish 0.51 0.14 0.74 0.09 0.88 0.31 -0.04 0.0 0.45
SV CJcalm 0.75 0.28 0.30 0.38 0.83 0.85 -0.30 0.0 0.99
SV CJcovid 0.61 0.22 0.52 0.18 0.89 1.04 -0.35 0.0 0.54

Table 6: Average calibrated parameters of affine jump diffusion models per

market segment. hedging cc

L2-regularization is applied to control extreme parameter values. Yet, esti-
mated return jump sizes can be very large. Resulting Euler discretized paths
contain trajectories with extreme moves of the underlying. These are e.g.
extremely low and high prices during the calm and stressed scenario displayed
in Table 22. The sometimes erratic BTC price evolution suggests that such
price moves are entirely implausible.

3.4 Calibration results

In each period, calibration is performed daily using instruments satisfying
the ∆25-criterion. For an overview, average numbers of options per maturity
range used for calibration are summarized in Table 7. As a consequence of the
∆25-criterion, more longer-dated options are selected. The average parameter
values per period are summarized in Table 6. Section 3.4.1 and 3.4.2 provide a
detailed perspective on the dynamics of the calibrated parameters. Calibration
is carried out on the market’s mid IVs. Of course, ignoring bid-ask spreads and
the possibility of stale prices may produce arbitrage opportunities as well as
spikes in parameters and calibration errors. However, this is considered a minor
issue and ignored. RMSE’s for the models are illustrated in Appendix C.3.
Naturally, the model fit improves with increasing model complexity. Hence,
the BS model has the highest RMSE values on average while the SVCJ model
has the lowest.

https://github.com/QuantLet/hedging_cc
https://github.com/QuantLet/hedging_cc
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period / maturity ≤ 1 W (1 W, 2 W] (2 W, 3 M] (3 M, 6 M] (6 M, 9 M]
bullish 2.77 1.72 4.61 7.14 2.53
calm 2.53 2.24 3.75 4.28 3.18
crisis 3.00 3.03 4.44 5.58 5.33

Table 7: Overview of average maturity counts of all options in a daily IV

surface fullfiling the ∆25-selection criteria. hedging cc

behavior average σBS std. dev. min q25 q50 q75 max
bullish 0.84 0.16 0.50 0.72 0.85 0.97 1.20
calm 0.68 0.06 0.61 0.64 0.66 0.70 0.89
stressed 0.78 0.21 0.57 0.63 0.73 0.87 1.75

Table 8: Summary statistics of daily σBS calibration. hedging cc

3.4.1 Affine jump diffusion models

The calibrated parameter σBS provides meaningful insights into market expec-
tations. Levels vary in the range σBS ∈ [50 %, 175 %], with summary statistics
for this parameter provided in Table 8. Due to the volatile nature of the CC
markets, levels of σBS are generally higher than in traditional markets (Madan
et al., 2019). In comparison, the VIX index in the time period 1990-2021 ranges
between 9.5% and 60%, with the 95%-quantile at 33.5%. Figure 4 shows the
dynamics of σBS over the entire time frame. In the bullish period, volatility
levels rise up to 120%. In the calm period, as expected, the levels are lower than
in the other two periods with σBS ∈ [0.61, 0.91]. Figure 5 plots the calibrated
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Fig. 4: Daily calibration σBS segregated by market segment in chronological
order. Volatility levels are very high compared to equities or indices such as S

& P 500. hedging cc

parameters σJD and λJD of the JD model over time. In general, levels of σJD
are lower than σBS , clearly visible during the calm and stressed scenario. As

https://github.com/QuantLet/hedging_cc
https://github.com/QuantLet/hedging_cc
https://github.com/QuantLet/hedging_cc
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the JD model is an extension of the BS model, higher levels of σBS are par-
tially compensated by the jump component. On many days σJD is close to
σBS . The reason for this are generally low values of the annual jump intensity
λJD and jump size µy. On average, the JD model expects less than one jump in
returns per year. The evolution of λJD is compared to the jump intensities of
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Fig. 5: Interplay between σJD and λJD segregated by market segment in
chronological order. Mostly, for high levels of σJD we observe low levels of λJD

and vice versa. hedging cc

extended models λSV J and λSV CJ in Figure Appendix 10. Throughout, yearly
jump intensities are low with mostly λSV (C)J ≤ 2.5. Overall, the conclusion is
that jumps are infrequent. We observe contrasting levels of λSV CJ and λJD.
They are not directly comparable, as the jump intensity λSV CJ contributes to
simultaneous jumps in returns and stochastic volatility, while λJD and λSV J
corresponds solely to jumps in returns. For example, levels of λSV CJ in the
calm period are high whereas λSV J is close to zero.

The plausibility of the stochastic volatility assumption is analyzed by the
evolution and levels of σv. In most periods, levels of σv are higher compared
to traditional markets. In the broad picture, the evolution of σv does not
depend on model choice a shown in Figure Appendix 11. Table 24 summarizes
statistical properties of this parameter by model and market segment. In the
bullish and calm period, the indication for stochastic volatility is strong with
vol-of-vol levels at q50 ≥ 80% and q50 ≥ 75%, respectively. In the stressed
period, levels of σvSV (C)J

remain high for q50 ≥ 73%.
Empirical evidence suggests that in traditional markets the correlation

parameter ρSV (CJ) is usually negative. Specifically, when prices fall, volatility
increases. However, across all three market segments and models, ρSV (CJ) is
mainly positive and close to zero as illustrated in Figure Appendix 12. Hou
et al. (2020) name this phenomenon the inverse leverage effect in CC mar-
kets. This relationship in the CC markets is also supported by the correlation

https://github.com/QuantLet/hedging_cc
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market segment C G M Y
CGMYbullish 4.24 22.21 24.79 1.20
CGMYcalm 10.37 7.67 9.30 0.14
CGMYcovid 7.94 11.38 17.24 0.68

Table 9: Average calibrated parameters of the CGMY model segregated by

market segment. hedging cc

between the CRIX and the VCRIX under the physical measure P. Pearson’s cor-
relation coefficient is ρpearson = 0.51 in the bullish and ρpearson = 0.64 in the
calm period, respectively. In the stressed segment, correlation is negative with
ρpearson = −0.73.

3.4.2 VG and CGMY

The prospect of infinite variation is evaluated by the calibration of the CGMY
model with average calibrated parameters in Table 9. Precisely, we are inter-
ested in the evolution of the infinite activity parameter YCGMY portrayed
in Figure 6. In each market segment, as Y > 0 widely, there is strong evi-
dence for infinite activity. In the bullish period, for YCGMY ∈ (1, 2] largely,
there is also evidence for infinite variation (Carr et al., 2002). The bullish
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Fig. 6: Daily calibration of YCGMY segregated by market segment. As
YCGMY > 0, there is strong indication for infinite activity. For YCGMY ∈ (1, 2]

in the bullish segment, there is evidence for infinite variation. hedging cc

period catches high magnitudes of jump size direction increase parameters
GCGMY and MCGMY , reflecting the nature of this market segment. Similarly,
the increase in decreased jump size parameter MCGMY is mainly higher in the
stressed scenario. A graphical illustration is given in Figure Appendix 14. The
VG is calibrated under representation (9). Overall, volatility levels of σV G are
comparable to σBS , as illustrated in Figure Appendix 13.

https://github.com/QuantLet/hedging_cc
https://thecrix.de/
https://thecrix.de/
https://github.com/QuantLet/hedging_cc
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3.5 Hedge results

At the beginning of each market period, we short at-the-money options with
maturities T = 1 M and T = 3 M at the option prices listed in Table 3. As
outlined earlier, the price process is simulated in both SVCJ and the GARCH-
KDE setting. The exposure in each option is dynamically hedged using the
strategies summarized in Table 2. The hedge performance is evaluated in terms
of πrel with regard to the median q50, hedge error εrel, tail measures ES5% and
ES95% as well as extremes with results in Table 10 to Table 21. For a concise
graphical representation, the best performing hedge strategies across models
are compared in boxplots displayed in Figures 7 and Figures 8. For each model,
the best performing strategy is selected according to ES5%.

These are the main findings: First, with some exceptions, using multi-
ple instruments for hedging, i.e., Delta-Gamma and Delta-Vega hedges, when
compared to a simple Delta-hedge lead to a substantial reduction in tail
risk. Hence, whenever liquidly traded options are available for hedging, they
should be used. The calm and COVID periods in the GARCH-KDE approach
are exceptions for the short-maturity option as well as the calm period and
GARCH-KDE approach for the long-date option – here, no significant improve-
ment is achieved by including a second hedge instrument. In any case, no
deterioration takes place when using a second security for hedging. In the
GARCH-KDE approach, paths are simulated from return residuals Ẑt. By
definition, returns are correlated with St. Hence, under this market simula-
tion, an important risk factor is the underlying itself. Especially on short time
intervals, the option is most sensitive to the underlying itself.

Second, for short-dated options, no substantial differences occur in the opti-
mal hedging strategies across models. The sole exception is worse performance
of the VG- and CGMY-models in calm period when price paths are generated
in the SVCJ model.

Third, turning to the long-dated option, although not always best perform-
ing, it can be said that stochastic volatility models perform consistently well.
Amongst the stochastic volatility model, the SV model as the simplest model,
does not underperform and sometimes even is the best-performing model. For
the choice of a SV hedge model, the ∆SV − VSV hedge is a replicating strat-
egy (Kurpiel and Roncalli, 1999) and performs often better than other models
under the same or different strategies. As calibrated jump intensities λSV J
and λSV CJ are low, the SVJ or SVCJ are often similar to the SV leading to
comparable hedge results.
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Fig. 7: Boxplot hedge performance comparison of πrel for T = 1 M under (a)
GARCH-KDE and (b) SVCJ market simulation. For illustrative purposes πrel
is truncated at q5% and q95%. The vertical axis portrays ∆BS hedge results
compared to the best performing strategy of a given hedge model. The best

performing strategy is selected for the minimal ES5%. hedging cc

https://github.com/QuantLet/hedging_cc
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∆BS ∆− ΓBS ∆− VSV ∆− ΓJD ∆− VSV J ∆− VSV CJ ∆− ΓV G ∆− ΓCGMY

Min -3.35 -2.58 -2.62 -2.48 -2.63 -2.59 -2.51 -2.53
ES5% -1.75 -1.34 -1.32 -1.21 -1.32 -1.27 -1.24 -1.27

ES95% 1.17 1.49 1.51 1.65 1.5 1.57 1.64 1.61
Max 3.31 5.32 5.29 5.33 5.28 5.35 4.77 5.05
πrel 63.14 59.55 59.39 60.43 59.40 59.75 60.97 60.87

Table 10: Hedge performance for T = 1 M under GARCH-KDE simulation in
the bullish segment with the best and the worst in worst performing strategy.

∆BS ∆− VBS ∆− VSV ∆− ΓJD ∆− VSV J ∆− VSV CJ ∆− ΓV G ∆− ΓCGMY

Min -11.35 -9.46 -9.65 -9.69 -9.65 -9.58 -8.13 -8.07
ES5% -1.48 -1.16 -1.16 -1.06 -1.16 -1.12 -1.08 -1.10

ES95% 1.02 0.98 0.98 1.11 0.98 1.04 1.12 1.10
Max 18.69 20.15 20.46 20.51 20.46 20.58 22.56 24.47
πrel 56.12 50.7 50.2 51.36 49.86 50.37 52.32 52.56

Table 11: Hedge performance for T = 1 M under SVCJ simulation in the
bullish segment with the best and the worst in worst performing strategy.

∆BS MVSV ∆JD MVSV J MVSV CJ ∆V G ∆CGMY

Min -0.94 -1.01 -1.07 -1.03 -1.1 -1.16 -1.18
ES5% -0.16 -0.17 -0.19 -0.15 -0.15 -0.2 -0.2

ES95% 1.04 1.05 1.03 1.07 1.09 1.08 1.08
Max 1.77 1.81 1.8 1.91 1.86 1.8 1.81
πrel 25.44 25.52 25.97 25.78 26.01 26.8 26.87

Table 12: Hedge performance for T = 1 M under GARCH-KDE calm with
the best and worst performing strategy.

∆BS ∆− ΓBS ∆− VSV ∆− ΓJD ∆− VSV J ∆− VSV CJ ∆− ΓV G ∆− ΓCGMY

Min -8.07 -4.45 -4.45 -5.07 -4.45 -4.46 -5.04 -6.24
ES5% -2.20 -1.01 -1.00 -1.01 -0.96 -1.01 -1.19 -1.14

ES95% 1.13 1.12 1.12 1.13 1.09 1.13 1.15 1.17
Max 8.81 8.86 8.88 12.07 8.88 9.69 8.73 9.95
πrel 67.72 43.78 43.66 44.58 42.29 44.34 48.69 48.24

Table 13: Hedge performance for T = 1 M under SVCJ calm segment with
the best and worst performing strategy.

∆BS MVSV ∆JD MVSV J MVSV CJ ∆V G ∆CGMY

Min -1.39 -1.28 -1.38 -1.29 -1.23 -1.39 -1.39
ES5% -0.49 -0.46 -0.55 -0.51 -0.39 -0.48 -0.48

ES95% 0.88 0.89 0.83 0.87 0.96 0.88 0.88
Max 1.37 1.39 1.33 1.38 1.54 1.44 1.43
πrel 30.21 29.52 30.3 30.08 30.78 29.62 29.56

Table 14: Hedge performance for T = 1 M under GARCH-KDE covid with
the best and worst performing strategy.

∆BS ∆− ΓBS ∆− VSV ∆− ΓJD ∆− ΓSV J ∆− ΓSV CJ ∆− ΓV G ∆− ΓCGMY

Min -16.51 -10.93 -10.88 -14.36 -14.92 -29.05 -24.66 -17.07
ES5% -3.13 -1.64 -1.72 -1.76 -1.76 -1.84 -1.85 -1.75

ES95% 1.08 0.98 1.01 1.09 1.08 1.11 1.00 1.06
Max 7.74 8.92 7.00 21.48 14.13 20.24 11.11 11.54
πrel 88.09 56.03 57.62 60.19 60.53 63.85 61.3 58.33

Table 15: Hedge performance for T = 1 M under SVCJ covid with the best

and worst performing strategy. hedging cc

https://github.com/QuantLet/hedging_cc
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Fig. 8: Boxplot hedge performance comparison of πrel for T = 3 M under (a)
GARCH-KDE and (b) SVCJ market simulation. For illustrative purposes πrel
is truncated at q5% and q95%. The vertical axis portrays ∆BS hedge results
compared to the best performing strategy of a given hedge model. The best

performing strategy is selected for the minimal ES5%. hedging cc
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∆BS ∆− ΓBS ∆− VSV ∆− ΓJD ∆− VSV J ∆− VSV CJ ∆− ΓV G ∆− ΓCGMY

Min -6.55 -6.36 -6.35 -6.32 -6.35 -6.34 -6.36 -6.37
ES5% -2.38 -1.99 -1.95 -1.96 -1.97 -1.95 -1.98 -1.99

ES95% 2.43 2.83 2.8 2.85 2.81 2.81 2.83 2.83
Max 11.46 11.73 11.74 11.76 11.00 11.73 11.72 11.71
πrel 101.91 101.76 100.30 101.77 101.02 100.72 101.75 101.75

Table 16: Hedge performance for T = 3 M GARCH-KDE bullish with the
best and worst performing strategy.

∆BS ∆− ΓBS ∆− VSV ∆− ΓJD ∆− VSV J ∆− VSV CJ ∆− ΓV G ∆− ΓCGMY

Min -14.67 -11.58 -11.57 -11.51 -11.55 -9.30 -11.6 -11.6
ES5% -1.10 -0.64 -0.63 -0.62 -0.63 -0.62 -0.63 -0.63

ES95% 0.84 0.64 0.62 0.66 0.62 0.64 0.65 0.65
Max 10.14 11.42 11.29 11.34 11.26 9.02 11.27 11.27
πrel 44.14 26.5 25.86 26.45 25.89 25.26 26.55 26.39

Table 17: Hedge performance for T = 3 M SVCJ bullish with the best and
worst performing strategy.

∆BS MVSV ∆JD MVSV J ∆SV CJ ∆V G ∆CGMY

Min -0.29 -0.27 -0.28 -0.25 -0.25 -0.28 -0.28
ES5% 0.18 0.20 0.15 0.19 0.20 0.19 0.19

ES95% 0.76 0.76 0.73 0.77 0.75 0.75 0.75
Max 1.04 1.06 1.05 1.12 1.07 1.12 1.12
πrel 13.59 13.11 13.53 13.82 12.82 13.18 13.18

Table 18: Hedge performance for T = 3 M GARCH-KDE calm with the best
and worst performing strategy.

∆BS ∆− ΓBS ∆− VSV ∆− VJD ∆− VSV J ∆− VSV CJ ∆− ΓV G ∆− ΓCGMY

Min -12.63 -8.68 -12.75 -6.32 -7.79 -12.75 -12.73 -12.74
ES5% -1.56 -0.85 -0.71 -0.79 -0.78 -0.89 -0.96 -0.97

ES95% 0.88 0.82 0.69 0.77 0.79 0.88 0.89 0.90
Max 7.74 5.19 7.79 4.15 7.78 8.99 8.97 9.25
πrel 53.39 33.36 28.28 31.01 31.26 36.05 38.82 39.09

Table 19: Hedge performance for T = 3 M SVCJ calm with the best and
worst performing strategy.

∆BS ∆− ΓBS ∆− VSV ∆− ΓJD ∆− ΓSV J ∆− ΓSV CJ ∆− ΓV G ∆− ΓCGMY

Min -4.36 -2.69 -2.64 -2.64 -2.44 -2.58 -2.7 -2.71
ES5% -1.56 -0.8 -0.76 -0.77 -0.70 -0.78 -0.83 -0.84

ES95% 0.6 0.93 0.9 0.97 1.11 1.00 0.91 0.9
Max 3.88 3.33 3.32 4.52 4.57 4.45 4.49 4.55
πrel 50.06 34.48 33.09 34.57 40.02 37.4 34.63 34.67

Table 20: Hedge performance for T = 3 M GARCH-KDE covid with the best
and worst performing strategy.

∆BS ∆− ΓBS ∆− VSV ∆− ΓJD ∆− ΓSV J ∆− ΓSV CJ ∆− ΓV G ∆− ΓCGMY

Min -13.53 -7.89 -7.9 -14.3 -11.76 -11.75 -20.99 -11.72
ES5% -2.77 -1.18 -1.26 -1.34 -1.36 -1.39 -1.26 -1.25

ES95% 0.87 0.71 0.68 0.78 0.94 0.93 0.73 0.73
Max 13.48 10.78 10.77 13.60 13.66 13.6 13.67 13.65
πrel 88.42 38.24 39.34 43.95 48. 49.06 42.99 41.27

Table 21: Hedge performance for T = 3 M SVCJ covid with the best and

worst performing strategy. hedging cc

https://github.com/QuantLet/hedging_cc
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4 Conclusion

From a risk management perspective, CC markets are a highly interesting new
asset class: on the one hand CC prices are subject to extreme moves, jumps
and high volatility, while on the other hand, derivatives are actively traded –
and have been for several years – on several exchanges. This paper presents an
in-depth comparison of different hedging methods, providing concise answers
to the trade-off between hedging in a complete, albeit oversimplified model
and hedging in a more appropriate, albeit incomplete market model.

As a central part of the methodology, we simulate price paths given the
Bitcoin price history in two different ways: First, a semi-parametric approach
(under the physical measures P) combines GARCH volatilities with KDE esti-
mates of the GARCH residuals. These paths are statistically close to the actual
market behaviour. Second, paths are generated (under the risk-neutral mea-
sure Q) in the parametric SVCJ model, where the SVCJ model parameters
include valuable information on the contributing risk factors such as jumps.
The time period under consideration features diverse market behaviour, and
as such, lends itself to being partitioned into “bullish”, “calm” and “Covid-19”
periods.

We hedge options with maturities of one and three months. If not directly
quoted on the BTC market, option prices are interpolated from an arbitrage-
free SVI-parametrization of the volatility surface. The options are then hedged
assuming risk managers use market models from the classes of affine jump diffu-
sion and infinite activity Lévy models, which feature risk factors such as jumps
and stochastic volatility. The calibration of these models strongly support the
following risk factors: stochastic volatility, infrequent jumps, some indication
for infinite activity and inverse leverage effects on the market. Under GARCH-
KDE and SCVJ, options are hedged with dynamic Delta, Delta-Gamma,
Delta-Vega and minimum variance hedging strategies.

For longer-dated options, multiple-instrument hedges lead to considerable
tail risk reduction. For the short-dated option, using multiple hedging instru-
ments did not significantly outperform a single-instrument hedge. This is
in-line with traditional markets, where even in highly volatile market peri-
ods, short-dated options are less sensitive to volatility or Gamma effects.
For longer-dated options, multiple-instrument hedges consistently improve the
hedge quality. Hence, if several liquidly traded options are available for hedg-
ing, they should be used. Among all models, persistently good hedge results
are achieved by hedging with stochastic volatility models. This demonstrates
that complete market models with stochastic volatility perform well, while
models allowing for jump risk, although more realistic, do not produce better
hedges due to the associated market incompleteness.
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Appendix A Hedging details

A.1 Hedge routine

We illustrate the dynamic hedging routing on a single instrument self-financed
hedging strategy ξ and apply it analogously for all other hedging strategies
considered in this study. At time t = 0 and for B(0) = B0,i = 1 the value of
the portfolio for the self-financed strategy ξ is

V (0) = C (0, S(0)) = ξ(0)S(0) + {C (0, S(0))− ξ(0)S(0)}B(0)

M(0) = C (0, S(0))− ξ(0)S(0)
(18)

where B(t) is a risk-free asset and M(t) the money market account vector.
The value of the portfolio at time t > 0 is

M(t) = M(t− dt) + {ξ(t− dt)− ξ(t)} S(t)

B(t)

V (t) = ξ(t− dt)S(t) +M(t− dt)B(t− dt)erdt = ξ(t)S(t) +
V (t)− ξ(t)S(t)

B(t)︸ ︷︷ ︸
=M(t)

B(t)

(19)
At maturity T , the final PnL distribution vector is

V (T ) = ξ(T − dt)S(t) +M(T − dt)B(t) (20)

A.2 Dynamic Delta-hedging

The option writer shorts the call C(t), longs the underlying S(t) and sends the
remainder to a money market account B(t) for which

dB(t) = rB(t)dt

https://www.https://tardis.dev/
https://blockchain-research-center.de/
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At time t, the value of portfolio V (t) is

V (t) = −C(t) + ∆(t)S(t) +
{C(t)−∆(t)S(t)}

B(t)
B(t) (21)

The changes evolve through

dV (t) = −dC(t) + ∆(t)dS(t) + {C(t)−∆(t)S(t)} rdt (22)

A.3 Dynamic Delta-Gamma-hedging

We will explain the ∆ − V hedge in detail. The ∆ − Γ- hedge is performed
accordingly. This strategy eliminates the sensitivity to changes in the underly-
ing and changes in volatility. The option writer shorts the call option C, takes
the position ∆ in the asset and Λ in the second contingent claim. At time t,
the value of the portfolio is

V (t) = −C(t) + ΛC1(t) + ∆S(t) (23)

with the change in the portfolio V (t)

dV (t) = ∆(t)dS + {C(t)−∆S(t)− ΛC2(t)} rdt− dC(t) + ΛdC2(t) (24)

That is

dV (t) = (C(S, V, t)−∆S(t)− ΛC2(S, V, t)) rdt

−

(
∂C

∂t
+

1

2

∂2C

∂S2
V S2 +

1

2

∂2C

∂V 2

2

V +
∂2C

∂V ∂S
ρV S

)
dt

+ Λ

(
∂C2

∂t
+

1

2

∂2C2

∂S2
V S2 +

1

2

∂2C2

∂V 2

2

V +
∂2C2

∂V ∂S
ρV S

)
dt

+

(
Λ
∂C2

∂S
− ∂C

∂S
+ ∆

)
dS +

(
Λ
∂C2

∂V
− ∂C

∂V

)
dV

(25)

For the choice of

∆ =
∂C

∂S
− Λ

∂C2

∂S

Λ =
∂C/∂v

∂C2/∂v

the portfolio is ∆− V hedged. Analogously, for the choice of

∆ =
∂C

∂S
− Λ

∂C2

∂S

Λ =
∂2C

∂2S
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this is a ∆− Γ hedge. For comparison, these hedges are applied to all models
in the class of affine jump diffusion models.

A.4 Alternative representation of the VG process

The alternative representation of the VG process has the characteristic
function

ϕVG(u; C,G,M) =

(
GM

GM + (M −G)iu+ u2

)C
(26)

where C,G,M > 0 with

C = 1/ν

G =

(√
1

4
θ2ν2 +

1

2
σ2ν − 1

2
θν

)−1

M =

(√
1

4
θ2v2 +

1

2
σ2ν +

1

2
θν

)−1

(27)

An increase in G increases the size of upward jumps, while an increase in M
increases the size of downward jumps. Accordingly, θ, M and G account for
the skewness of the distribution. C governs the Levy-measure by widening it
with its increase and narrowing it with its decrease.
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Appendix B Tables

framework µ̂ σ̂ min q1 q50 q99 max

SV CJBULLISH30
4087.32 343.05 1352.90 3411.83 4065.04 5177.02 15819.48

SV CJCALM30
8369.33 1650.21 646.68 3475.29 8367.51 13092.95 26271.20

SV CJCOVID30
9800.32 1269.66 1435.49 5406.93 9804.85 13341.72 41464.61

KDEBULLISH30
4393.95 606.01 2089.55 3237.62 4277.65 6248.48 10209.30

KDECALM30
8359.21 746.38 4545.46 6608.25 8349.06 10524.45 15611.32

KDECOVID30
9933.81 836.48 5579.96 8007.32 9848.62 12365.51 16863.17

SV CJBULLISH90
4087.50 657.29 419.77 2961.11 4001.56 6336.31 56189.20

SV CJCALM90
8367.54 2982.34 37.40 2488.41 8124.74 18415.20 118249.15

SV CJCOVID90
9796.71 2456.05 119.85 3620.50 9682.93 17545.53 115020.35

KDEBULLISH90
5116.43 1419.86 1325.30 3038.41 4762.11 9988.82 28593.53

KDECALM90
8345.58 1407.72 3034.41 5341.07 8274.30 12590.88 22406.78

KDECOVID90
10718.15 3457.73 1560.16 4729.19 10007.73 23519.87 81081.55

Table 22: Summary statistics of scenario generations framework per market

segment and maturity hedging cc

TTM a b ρ m σ penalty
0.01 0.17 0.10 0.00 0.00 1.00 24.53
0.03 0.003 0.01 0.15 0.01 0.17 0.00001
0.07 0.01 0.04 0.00 -0.01 0.08 0.000004
0.24 0.02 0.10 -0.11 -0.01 0.45 0.001
0.49 0.01 0.17 -0.02 0.04 0.77 0.002
0.74 0.14 0.09 0.00 0.01 0.93 0.03
0.01 0.001 0.05 -0.13 0.02 0.08 0.09
0.03 0.01 0.05 -0.39 0.01 0.16 0.01
0.07 0.01 0.10 -0.02 0.12 0.32 0.02
0.16 0.06 0.15 -0.50 -0.17 0.54 0.01
0.24 0.04 0.19 -0.27 -0.10 0.76 0.03
0.49 0.18 0.21 0.23 0.38 1.00 0.01
0.02 0.004 0.02 0.50 0.02 0.01 0.03
0.04 0.003 0.05 -0.07 -0.03 0.11 0.01
0.07 0.01 0.08 -0.09 -0.05 0.15 0.02
0.15 0.02 0.13 0.19 0.07 0.29 0.04
0.40 0.06 0.20 -0.15 -0.21 0.56 0.01
0.65 0.14 0.18 0.16 -0.12 0.88 0.02

Table 23: Calibrated SVI parameters at the beginning of the bullish, calm

and stressed segment. hedging cc

https://github.com/QuantLet/hedging_cc
https://github.com/QuantLet/hedging_cc
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SV SVJ SVCJ
µ̂ 0.82 0.78 0.87
σ̂ 0.32 0.33 0.35
min 0.00 0.00 0.00
q25 0.62 0.62 0.69
q50 0.84 0.81 0.92
q75 1.04 0.99 1.06
max 1.49 1.57 2.43
µ̂ 0.68 0.72 0.90
σ̂ 0.30 0.36 0.37
min 0.00 0.00 0.00
q25 0.50 0.56 0.70
q50 0.75 0.79 1.02
q75 0.90 0.95 1.19
max 1.43 1.40 1.44
µ̂ 0.56 0.72 0.84
σ̂ 0.49 0.66 0.45
min 0.00 0.00 0.00
q25 0.27 0.29 0.61
q50 0.50 0.73 0.88
q75 0.78 1.01 1.04
max 3.83 6.33 3.83

Table 24: Summary statistics of σv for all 3 market segments and models.

hedging cc

Appendix C Additional plots

C.1 GARCH(1,1) model

2019-05 2019-07 2019-09 2019-11 2020-01 2020-03 2020-05 2020-07

0.05
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0.15

0.20

0.25

Fig. 9: Estimated GARCH(1,1) volatility σ̂t during bullish market behavior,

calm period and stressed scenario. hedging cc

https://github.com/QuantLet/hedging_cc
https://github.com/QuantLet/hedging_cc
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C.2 Calibration
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Fig. 10: Daily calibrated jump intensity λJD, λSV J and λSV CJ segregated
chronologically by market segment. In all market segments, yearly jump

intensity is generally λ ≤ 2. hedging cc

https://github.com/QuantLet/hedging_cc
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Fig. 11: Daily calibrated volatility of volatility σvSV
, σvSV J

and σvSV CJ
plotted

in chronological order by market segment. For illustrative purposes, extremes
are disregarded. Information on extremes is provided in Table 24. Regardless
of the model choice, levels of σv are high. This provides strong indication for

stochastic volatility. hedging cc

https://github.com/QuantLet/hedging_cc
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Fig. 12: Daily calibrated correlation parameter ρSV , ρSV J and ρSV CJ plotted
in chronological order by market segment. For illustrative purposes, extremes
are disregarded. As generally ρ > 0, there is an indication for an inverse

leverage effect. hedging cc

https://github.com/QuantLet/hedging_cc
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Fig. 13: Daily calibration of σV G plotted against σBS . Both models capture
comparable volatility levels.
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Fig. 14: (a) Evolution of GCGMY and (b) MCGMY segregated by market
segment. High magnitudes for both parameter values are observed during the
bullish and stressed scenario. For illustrative purposes, extremes are excluded
from this graph.
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C.3 RMSE
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(b) JD
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Fig. 15: RMSE with 95 %-confidence band of the (a) BS, (b) JD and (c) SV

model. hedging cc

https://github.com/QuantLet/hedging_cc
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Fig. 16: RMSE with 95 %-confidence band of the (a) SVJ, (b) SVCJ, (c) VG

and (d) CGMY model. hedging cc

https://github.com/QuantLet/hedging_cc


Hedging Cryptocurrency options 35

Apr
2019

May Jun Jul Aug Sep

date

0.0

0.1

0.2

0.3

0.4

0.5

Oct Nov Dec Jan
2020

date

0.0

0.1

0.2

0.3

0.4

0.5

Feb
2020

Mar Apr May Jun

date

0.0

0.1

0.2

0.3

0.4

0.5

(a) VG

Apr
2019

May Jun Jul Aug Sep

date

0.0

0.1

0.2

0.3

0.4

0.5

Oct Nov Dec Jan
2020

date

0.0

0.1

0.2

0.3

0.4

0.5

Feb
2020

Mar Apr May Jun

date

0.0

0.1

0.2

0.3

0.4

0.5

(b) CGMY

Fig. 17: RMSE with 95 %-confidence band of the (a) VG and (b) CGMY

model. hedging cc
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Poulsen R, Schenk-Hoppé K, Ewald CO (2009) Risk minimization in stochas-
tic volatility models: model risk and empirical performance. Quantitative
Finance 9(6):693–704. https://doi.org/10.1080/14697680902852738

Protter PE (2005) Stochastic Integration and Differential Equations. Stochas-
tic Modelling and Applied Probability, Springer Berlin Heidelberg

Scaillet O, Treccani A, Trevisan C (2018) High-frequency jump analysis of the
bitcoin market*. Journal of Financial Econometrics 18(2):209–232. https:
//doi.org/10.1093/jjfinec/nby013

Sebastião H, Godinho P (2020) Bitcoin futures: An effective tool for hedging
cryptocurrencies. Finance Research Letters 33:101,230. https://doi.org/10.
1016/j.frl.2019.07.003

Selmi R, Mensi W, Hammoudeh S, et al. (2018) Is bitcoin a hedge, a safe haven
or a diversifier for oil price movements? a comparison with gold. Energy
Economics 74(C):787–801. https://doi.org/10.1016/j.eneco.2018.07.007

Tikhonov A, Leonov A, Yagola A (2011) Nonlinear ill-posed problems. De
Gruyter, https://doi.org/doi:10.1515/9783110883237.505

Trimborn S, Härdle WK (2018) Crix an index for cryptocurrencies. Journal
of Empirical Finance 49:107–122. https://doi.org/10.1016/j.jempfin.2018.
08.004

https://doi.org/10.2139/ssrn.1031927
https://doi.org/10.2139/ssrn.1031927
https://doi.org/https://doi.org/10.1023/A:1009703431535
https://doi.org/https://doi.org/10.1023/A:1009703431535
https://doi.org/10.1007/s42521-019-00002-1
https://doi.org/10.1007/s42521-019-00002-1
https://doi.org/10.1016/S0927-5398(00)00012-8
https://doi.org/10.1016/S0927-5398(00)00012-8
https://doi.org/10.1016/0304-405X(76)90022-2
https://doi.org/10.1016/0304-405X(76)90022-2
https://doi.org/10.1016/j.bir.2021.09.003
https://doi.org/10.1080/14697680902852738
https://doi.org/10.1093/jjfinec/nby013
https://doi.org/10.1093/jjfinec/nby013
https://doi.org/10.1016/j.frl.2019.07.003
https://doi.org/10.1016/j.frl.2019.07.003
https://doi.org/10.1016/j.eneco.2018.07.007
https://doi.org/doi:10.1515/9783110883237.505
https://doi.org/10.1016/j.jempfin.2018.08.004
https://doi.org/10.1016/j.jempfin.2018.08.004


IRTG 1792 Discussion Paper Series 2021

For a complete list of Discussion Papers published, please visit
http://irtg1792.hu-berlin.de.

001 ”Surrogate Models for Optimization of Dynamical Systems” by Kainat Khowaja,
Mykhaylo Shcherbatyy, Wolfgang Karl Härdle, January 2021.
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Wolfgang Karl Härdle, April 2021.
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