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lCARE - localizing Conditional AutoRegressive

Expectiles∗

Xiu Xu†, Andrija Mihoci‡, Wolfgang Karl Härdle§

Abstract

We account for time-varying parameters in the conditional expectile based value at

risk (EVaR) model. EVaR appears more sensitive to the magnitude of portfolio losses

compared to the quantile-based Value at Risk (QVaR), nevertheless, by fitting the models

over relatively long ad-hoc fixed time intervals, research ignores the potential time-varying

parameter properties. Our work focuses on this issue by exploiting the local parametric

approach in quantifying tail risk dynamics. By achieving a balance between parameter

variability and modelling bias, one can safely fit a parametric expectile model over a stable

interval of homogeneity. Empirical evidence at three stock markets from 2005- 2014 shows

that the parameter homogeneity interval lengths account for approximately 1-6 months of

daily observations. Our method outperforms models with one-year fixed intervals, as well

as quantile based candidates while employing a time invariant portfolio protection (TIPP)

strategy for the DAX portfolio. The tail risk measure implied by our model finally provides

valuable insights for asset allocation and portfolio insurance.
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1 Introduction

Value at risk (VaR) is commonly used to measure the downside risk in finance, especially

in portfolio risk management. Given a predetermined probability level, VaR evaluates

the potential maximum loss for the targeted portfolio value; statistically it represents the

quantile of the portfolio loss distribution, see Jorion (2000). Although it is straightforward

to understand the VaR concept, it has been recently criticized. VaR lacks the property

of sub-additivity, that is, under the VaR risk measure, the risk of a diversified portfolio is

larger than the sum of each individual asset risk, which in turn contradicts the common

wisdom of diversification. In light of this, Artzner et al. (1999) proposed the expected

shortfall (ES) to measure portfolio risk, i.e., the expected loss below a given threshold

(e.g., VaR) given the risk probability level.

Another undesirable aspect of the VaR measure is its insensitivity to the magnitude of

the portfolio loss. Kuan et al. (2009) provide an example where, under a given probability

level, the potential downside risk changes under different tail loss distributions while the

corresponding VaR remains the same. Since VaR merely depends on the probability

value and neglects the size of the downside loss, Kuan et al. (2009) proposed a downside

risk measure, the expectile-based Value at Risk (EVaR), a more sensitive measure of

the magnitude of extreme losses than the conventional quantile-based VaR (QVaR). The

expectile at given level is estimated by minimizing the asymmetric weighted least squared

errors, exploring the method proposed by Newey and Powell (1987). The expectile level is

the relative cost of the expected margin shortfall, explained as the level of prudentiality.

EVaR may be interpreted as a flexible QVaR (Kuan et al., 2009), because of the one-

to-one mapping between quantiles and expectiles for a given loss distribution, see Efron

(1991), Jones (1994) and Yao and Tong (1996).

Models based on the expectile risk measure framework have thus been proposed, see

e.g. Taylor (2008) and Kuan et al. (2009) after Engle and Manganelli (2004) successfully

initialize the conditional autoregressive framework to model VaR. Kuan et al. (2009)

moreover extend the EVaR to conditional EVaR and propose various Conditional Au-

toRegressive Expectile (CARE) specifications as well as establishing the asymptotic re-

sults of Newey and Powell (1987) to allow for stationary and weakly dependent data.
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Potential time-varying parameters resulting from the dynamic state of the economic and

financial environment are however barely analysed. This is where this research comes

into play. We focus on incorporating and reacting to potential structural breaks in order

to estimate the tail risk measure.

The proposed local parametric approach (LPA) targets a parametric stable model in an

adaptively chosen interval. The essential idea of the LPA is to find the longest inter-

val length guaranteeing a relatively small modelling bias, see e.g. Spokoiny (1998) and

Spokoiny (2009). The main advantage of the approach is the achievement of a balance

between modelling bias and parameter variability. This approach has been successfully

applied in many research areas: Čížek et al. (2009) analyse the GARCH(1, 1) models,

Chen et al. (2010) explore it to forecast realised volatilities, Chen and Niu (2014) predict

the interest rate term structure, whereas Härdle et al. (2015) utilise it successfully in high

frequency time series modelling and forecasting.

In this paper, we locally estimate the expectile risk measure rather than following a tradi-

tional approach of assuming constant CARE parameters. Based on one of the conditional

expectile model specifications in Kuan et al. (2009) and assuming that the error term

follows the asymmetric normal distribution, Gerlach et al. (2012) and Gerlach and Chen

(2014), we dynamically estimate the time-varying CARE parameters over potentially

varying intervals of homogeneity. The desired interval of homogeneity is found by mul-

tiple testing the null hypothesis that the model parameters are constant. The resulting

time-varying interval lengths indicate potential structural changes in tail risk assessment.

It is worth mentioning that several articles consider the dynamic window selection of

time-varying parameters, Pesaran and Timmermann (2007) and Inoue et al. (2014), or

introduce varying-coefficient models for tail risk measure estimation, Honda (2004), Kim

(2007) and Cai and Xu (2008). Most of the research however mainly explores non-

parametric approaches or considers polynomial splines to estimate the conditional quan-

tile. A state space signal extraction algorithm to iteratively formulate quantile and non-

parametrically obtain the quantile and expectile has been applied by De Rossi and Harvey

(2009), whereas Xie et al. (2014) develop a nonparametric varying-coefficient approach

to model the expectile-based value at risk.
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In our research it turns out that the proposed localised conditional autoregressive expec-

tile (lCARE) model successfully captures tail risk dynamics by taking the time-varying

parameter characteristics and potential market condition structure changes into account

while measuring the risk associated with tail events. Based on empirical results, we find

that at the 5% expectile level the typical interval lengths that strike a balance between

bias and variability in daily time series include approximately 100 days. At the lower,

1% expectile level, the selected interval lengths range roughly between 40-60 days. The

resulting time-varying expectile series allows us to consider the dynamics of other tail

risk measures, most prominently quantiles or expected shortfall.

The methodology presented here is successfully applied to a portfolio insurance strategy

for the DAX index portfolio. A portfolio insurance strategy is designed to guarantee

a minimum value for the asset portfolio over a selected investment horizon, where the

downside risk can be reduced and controlled while investors can participate in the po-

tential gains. The proportion of the value invested into the risky asset (here the DAX

portfolio), denoted as the multiplier, is directly related to the estimated tail risk mea-

sure. A standard approach keeps the multiplier fixed regardless of the market conditions,

Estep and Kritzman (1988), Hamidi et al. (2014), whereas we exercise the protection

strategy with the dynamic tail risk measure implied by the lCARE model. Comparison

to the benchmarks - one-year fixed rolling window CARE estimation and quantile-based

(CAViaR) estimation - reveals that the lCARE model presents a striking outperformance

in portfolio insurance.

This paper is structured as follows: firstly, the data is presented in section 2 whereas

section 3 introduces the lCARE model based on the CARE model setup and the local

parametric approach in the tail risk modelling. Section 4 presents the empirical results

and finally, section 5 concludes.

2 Data

In risk modelling we consider three stock markets and focus on the dynamics of the

representative index time series, namely, DAX30, FTSE100 and S&P500 series. Daily
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Figure 1: Selected index return time series from 3 January 2005 to 31 December 2014
(2608 trading days). LCARE_Index_Returns

index returns are obtained from Datastream and our data cover the period from 3 Jan-

uary 2005 to 31 December 2014, in total 2608 trading days. The daily returns evolve

similarly across the selected markets and all present relatively large variations during

the financial crisis period from 2008-2010, see, e.g., Figure 1. Although the return time

series are nearly zero-mean with slightly pronounced skewness values, all present com-

paratively high kurtosis, see, e.g., Table 1 that collects the summary statistics. Not-

ing that the results and the corresponding Matlab codes can be found in the folder at

https://github.com/QuantLet/lCARE-BTU-HUB and http://quantlet.de/d3/ia/.
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Index Mean Median Min Max Std Skew. Kurt.
DAX 0.0003 0.0007 -0.0743 0.1080 0.0137 0.0357 10.1654
FTSE100 0.0001 0.0001 -0.0927 0.0938 0.0120 -0.1498 11.9066
S&P500 0.0002 0.0005 -0.0947 0.1096 0.0127 -0.3364 14.5131

Table 1: Descriptive statistics for the selected index return time series from 3 Jan-
uary 2005 to 31 December 2014 (2608 trading days): mean, median, minimum (Min),
maximum (Max), standard deviation (Std), skewness (Skew.) and kurtosis (Kurt.).

LCARE_Index_Returns_Description

3 Localized Conditional Autoregressive Expectiles

Understanding tail risk plays an essential role in asset pricing, portfolio allocation, invest-

ment performance evaluation and external regulation. Tail event dynamics is commonly

assessed through the employment of parametric, semi-parametric or nonparametric tech-

niques, see, e.g., Taylor (2008). Our paper contributes to the econometric literature by

localizing parametric CARE specifications by Kuan et al. (2009) and, while modelling tail

risk, explores the effects of potential market structure changes. In this section we sum-

marise the current research on expectile-based risk management and conduct a detailed

empirical study concerning the parameter dynamics. The results motivate the usage of

the local parametric approach by Spokoiny (1998) that is presented at the end of the

chapter. The localized Conditional Autoregressive Expectiles (lCARE) model provides a

statistical and applicable framework to analyse the downside risk in quantitative finance.

3.1 Conditional Autoregressive Expectile Model

Tail risk exposure can successfully be captured by an expectile-based risk measure, in

contrast to modelling risk solely using Value at Risk (VaR). Despite being the most com-

monly used (not coherent) tail risk measure, VaR exhibits insensitivity to the potential

magnitude of the loss, see, e.g., Acerbi and Tasche (2002), Taylor (2008). After the condi-

tional autoregressive value at risk (CAViaR) model by Engle and Manganelli (2004) was

proposed, Taylor (2008) found that VaR, based on the conditional autoregressive expectile

model, is more sensitive to the tail risk distribution. Finally, the conditional autoregres-

sive expectile (CARE) model specifications by Kuan et al. (2009) directly model the

6
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return time series and extend the asymmetric least square estimation method by Newey

and Powell (1987) to analyse stationary but weakly dependent time series data.

The CARE model specifications provide insights into the dynamics of financial data and

offer valuable economic interpretation. Although quantiles and expectiles belong to M-

quantiles, see, e.g., Jones (1994), the implications in risk assessment differ considerably.

VaR is a zero-moment whereas expectile is a first-moment tail risk measure, thus in the

former case the proportion of asymmetric downside and upside quantile level is deter-

mined only by the ratio between downside and upside probabilities. Expectiles measure

the proportion of asymmetric downside and upside expectile level while capturing the

ratio between the expected marginal shortfall. Equivalently, the potential cost of more

extreme losses and the opportunity cost due to the expected marginal overcharge is cap-

tured by expectiles. The CARE specifications furthermore accommodate stylised facts

of the return time series, such as weak serial dependence, or volatility heteroskedasticity.

Accommodating asymmetric effects on the tail expectiles of the positive and negative

returns becomes essential in interpreting tail risk dynamics.

Based on the dynamics of an observed return time series y = {yt}nt=1, the CARE frame-

work is introduced as

yt = et,τ + εt,τ (1)

et,τ =α0,τ + α1,τyt−1 + α2,τ
(
y+
t−1

)2
+ α3,τ

(
y−t−1

)2
(2)

where et,τ and εt,τ denote the expectile and the error term at level τ ∈ (0, 1) and time

t, respectively. y+
t−1 = max {yt−1, 0} and y−t−1 = min {yt−1, 0} denote the positive or

negative observed one-period lagged returns, respectively.

Generally, the τ -level expectile et,τ in Equation (2) can be estimated by minimising the

asymmetric least square (ALS) loss function

n∑
t=2
|τ − I (yt ≤ et,τ )| (yt − et,τ )2 (3)

with I (·) denoting the indicator function.

Within the CARE framework, Gerlach and Chen (2014) and Gerlach et al. (2012) assume
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that the error term εt,τ follows the asymmetric normal distribution (AND). We assume

that, conditional on the information set Ft−1, the data process follows an asymmetric

normal distribution AND
(
µ, σ2

ετ , τ
)
with pdf:

f (yt − µ | Ft−1) = 2
σετ

(√
π

|τ − 1| +
√
π

τ

)−1

exp
{
−ητ

(
yt − µ
σετ

)}
(4)

where ητ (u) = |τ − I {u ≤ 0}|u2 is the employed check function, µ represents the expec-

tile value to be estimated and σ2
ετ denotes the variance of the error term. Maximising the

likelihood equation with respect to µ for the distribution (4) is asymptotically equivalent

to minimising the asymmetric least square loss function (3).

Conditional on the information set Ft−1 up to observation (t− 1), the expectile et,τ

includes a lagged return component and it mimics several financial series features, namely,

the volatility clustering and potential asymmetric magnitude effects. Note that at level

τ = 0.5, the expectile equals to the mean value. With specification (3), the parameter

vector finally contains five elements, namely θτ =
(
α0,τ , α1,τ , α2,τ , α3,τ , σ

2
ετ

)>
.

In the specification (2), the parameter α1,τ indirectly measures the persistence level in the

conditional expectile tail through the lagged return series. Since the parameters α2,τ and

α3,τ potentially differ, (2) accounts for the asymmetric effects of the positive and negative

lagged squared returns on the conditional tail expectile magnitude. This similarly mimics

the leverage effect associated with volatility modelling, where negative (positive) returns

are followed by relatively larger (lower) variability. Under the working assumption that

the expectile tail dynamics can be well approximated over a given data interval by a

model with constant parameters, it suffices to include one-lag process dynamics.

The resulting quasi log likelihood function for observed data Y = {y1, . . . , yn} over a fixed

interval I is given by

`I (Y ; θτ ) =
∑
t∈I

log f (yt − et,τ | Ft−1) (5)

The quasi maximum likelihood estimate (QMLE) for the CARE parameter is then ob-

tained through

θ̃I,τ = arg max
θτ∈Θ

`I (Y ; θτ ) (6)

8



over a right-end fixed interval I = [t0 −m, t0] of (m+ 1) observations at observation t0.

3.2 Parameter Dynamics

The idea behind the local parametric approach (LPA) is to find the optimal (in-sample)

data interval over which one can safely fit a parametric model with time-invariant pa-

rameters. This optimal interval, the so-called interval of homogeneity, is selected among

pre-specified right-end interval candidates. Over the resulting optimal data interval the

proposed lCARE model allows the structure break properties of the expectile dynamics

to be captured and therefore it can be used for expectile estimation. In this part we

implement a fixed rolling window exercise in order to provide empirical evidence on the

time-varying characteristics of the CARE estimates, as well as to select the ’true’ pa-

rameter constellation used in the LPA simulation. At the end we discuss the estimation

quality of the QMLE (6).

Dynamics and Distributional Characteristics

In the analysis of the selected (daily) stock market indices presented in Section 2, we

consider different interval lengths (e.g., 20, 60, 125 and 250 observations) and provide the

corresponding estimates. Shorter intervals will, in practice, result in larger variation as

compared to longer ones, whereas the modelling bias behaves in the opposite direction: it

is quite enlarged in the latter case. The distributional features of CARE parameters are

moreover studied through two expectile level cases, namely τ = 0.05 and τ = 0.01. The

following rolling window estimation exercise provides valuable insights into the expectile

(distribution) dynamics.

Parameter estimates are more volatile while fitting the data over shorter intervals with

the modelling bias comparatively smaller as compared to schemes using longer intervals,

see, e.g., Figures 2 and 3. Both figures namely present the estimated parameters α̃1,0.05

and α̃1,0.01 in the rolling window exercise across the three selected stock market indices

from 2 January 2006 to 31 December 2014 at fixed expectile levels τ = 0.05 and τ = 0.01.

The upper panel shows the estimation results with 20 observations and the lower panel

with 250 observations.
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The above mentioned properties are furthermore supported by the density estimates

of the parameters involved, i.e., parameters belonging to the three stock market indices.

Kernel density plots (using, e.g., a Gaussian kernel with optimal bandwidth) of estimated

parameters show that shorter intervals lead to more variability and vice versa. For the

sake of brevity, here we refrain from showing the density estimates. It is further verified

that with fewer observations, such as including one month data (20 observations), the

parameter density is distinguished from the estimates based on longer sample intervals,

such as one year of data.
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Figure 2: Estimated parameter α̃1,0.05 across the three selected stock markets from
2 January 2006 to 31 December 2014, with 20 (upper panel) and 250 (lower panel)
observations used in the rolling window exercise at fixed expectile level τ = 0.05.

LCARE_Estimation_Rolling_005

Descriptive Statistics

The lCARE testing framework demands a set of simulated critical values that rely on rea-

sonable parameter constellations. A data driven approach to select the ’true’ parameters

here is based on a sample window covering one year, i.e., 250 observations as the target

parameters. Descriptive statistics of the resulting estimated CARE parameters given the

ad hoc selected window length of one year, i.e., 250 observations, from 2 January 2006

to 31 December 2014 (2348 trading days) is provided in Table 2. We pool the estimates

together for the three market indices, and label the first quartile as ’low’, the mean as

’mid’ and the third quartile as ’high’ at two expectile levels, τ = 0.05 and τ = 0.01. For a
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Figure 3: Estimated parameter α̃1,0.01 across the three selected stock markets from
2 January 2006 to 31 December 2014, with 20 (upper panel) and 250 (lower panel)
observations used in the rolling window exercise at fixed expectile level τ = 0.01.

LCARE_Estimation_Rolling_001

given expectile level τ , there are three potential ’true’ parameter constellations, i.e., the

parameters that are most likely to be found in practice.

Estimation Quality

The estimation quality of the quasi-maximum likelihood approach is addressed here. De-

note the pseudo true parameter vector as θ∗τ at expectile level τ , the quality of estimating

θ∗τ by quasi-maximum likelihood estimator (QMLE) θ̃I,τ given in (6) is measured in terms

of the Kullback-Leibler divergence

Eθ∗
τ

∣∣∣`I (Y ; θ̃I,τ
)
− `I (Y ; θ∗τ )

∣∣∣r ≤ Rr (θ∗τ ) (7)

with Rr (θ∗τ ) denoting the risk bound, see, e.g., Mercurio and Spokoiny (2004) and

Spokoiny (2009). In practice the modest risk power r = 0.5 leads to relatively shorter

intervals of homogeneity as compared with the conservative risk case with r = 1. Accord-

ing to the pseudo true parameter vector, we simulate thousand time series of the CARE

specification and take the largest average value of the (r-th power) difference between the

respective log-likelihood values, see equation (7), as the corresponding risk bound. Note
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τ = 0.05 τ = 0.01
Low Mid High Low Mid High

α̃0,τ -0.01514 -0.00998 0.00000 -0.02892 -0.02323 0.00000
α̃1,τ -0.01034 0.05234 0.12149 -0.00298 0.10132 0.12637
α̃2,τ -0.31360 -0.85700 0.00421 -0.14472 -2.43912 0.00008
α̃3,τ -0.06366 0.56274 0.17589 -0.00037 2.63032 0.03325
σ̃2
ετ 0.00001 0.00005 0.00007 0.00001 0.00040 0.00004

Table 2: Descriptive statistics of estimated CARE parameters. All estimated CARE
parameters based on the window covering one year, i.e., 250 observations, for the three
stock market indices from 2 January 2006 to 31 December 2014 (2348 trading days)
are pooled together for the two expectile levels τ = 0.05 and τ = 0.01, respectively.
We label the first quartile as ’low’, the mean as ’mid’ and the third quartile as ’high’.

LCARE_Parameter_Dynamics_Quartiles

that the considered interval candidates in this simulation covered

{20, 25, 31, 39, 49, 61, 76, 95, 119, 149, 186, 250}

observations - see the selection details in the following sub-section.

The simulated risk boundRr (θ∗τ ) according to equation (7) across different setups is given

in Table 3. We consider the modest (r = 0.50) and the conservative (r = 1.00) risk case

for two expectile levels, τ = 0.05 and τ = 0.01. The risk bounds are obtained by Monte

Carlo simulation for each selected parameter vector corresponding to Table 2 where we

label the first quartile of estimated parameters as ’low’, the mean as ’mid’ and the third

quartile as ’high’. It turns out that the risk bounds in the conservative risk case (r = 1)

are relatively larger than the bounds obtained in the modest risk case with r = 0.5.

τ = 0.05 τ = 0.01
Low Mid High Low Mid High

r = 0.5 0.24 0.33 0.25 0.38 0.38 0.15
r = 1.0 2.40 4.62 2.75 5.90 5.81 1.15

Table 3: Risk bound Rr (θ∗τ ) given two expectile levels, τ = 0.05 and τ = 0.01. We
consider the modest (r = 0.50) and the conservative (r = 1.00) risk case. The risk bounds
are obtained by Monte Carlo simulation for each selected parameter vector from Table 2
where we label the first quartile of estimated parameters as ’low’, the mean as ’mid’ and
the third quartile as ’high’. LCARE_Risk_Bound_Results

Key empirical results from the presented fixed rolling window exercise can be summarised
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as follows: (a) with different estimation sample windows, a tradeoff between the modelling

bias and parameter variability exists, (b) the estimated parameter characteristics as well

as the estimation quality results demand a method that successfully accommodates time-

varying parameters, (c) data intervals covering 60 to 250 observations may be suitable in

providing a good balance between the bias and variability, (d) it is reasonable practice

to select three data-driven ’true’ parameter constellations for each expectile level in daily

risk management. Motivated by these findings, we now introduce some more details of

lCARE.

3.3 Local Parametric Approach

How to account for the time-varying characteristics of CARE parameters in tail risk mod-

elling? We utilize the aforementioned local parametric approach (LPA), which has been

gradually introduced to modelling time series data in econometrics. The essential idea of

lCARE is to find the longest interval over which the CARE model can be approximated

by constant parameters.

This interval is labelled as the interval of homogeneity. By a sequential testing procedure,

we adaptively select the interval of homogeneity among interval candidates. After the

corresponding critical values of the sequential test have been simulated by employing a

Monte Carlo method, the adaptive parameter estimate at every time point (i.e., trading

day) is selected, based on the test outcome. It is worth noting that at each observation,

the associated critical values curve is selected based on a data-driven approach.

Interval Selection

There are many possible candidates for these intervals of homogeneity. To alleviate

the computational burden, we choose (K + 1) nested intervals of length nk = |Ik|,

k = 0, . . . , K, i.e., I0 ⊂ I1 ⊂ · · · ⊂ IK . Interval lengths are assumed to be geometri-

cally increasing with nk =
[
n0c

k
]
. Based on the empirical results reported above, it is

reasonable to select (K + 1) = 12 intervals, starting with 20 observations (one trading

month) and for convenience to end with 250 observations (one trading year), i.e., we

consider the set

13



{20, 25, 31, 39, 49, 61, 76, 95, 119, 149, 186, 250}.

where within the initial interval I0 the local CARE model with a constant parameter fits

reasonably well. This shortest interval is therefore assumed to be homogeneous.

Local Change Point Detection Test

Based on the selected nested intervals, we utilize a sequential testing procedure to adap-

tively find the homogeneous interval at a fixed data point t0. The initial interval I0 is

assumed to be homogeneous. Consider now Jk = Ik \ Ik−1, and sequentially conduct the

test, i.e., over interval index steps k = 1, . . . , K. The hypotheses of the test at step k

read as

H0 : parameter homogeneity of Ik vs H1 : ∃ change point within Jk = Ik \ Ik−1.

The test statistics is

Tk,τ = sup
s∈Jk

{
`Ak,s

(
Y , θ̃Ak,s,τ

)
+ `Bk,s

(
Y , θ̃Bk,s,τ

)
− `Ik+1

(
Y , θ̃Ik+1,τ

)}
(8)

where Ak,s = [t0 − nk+1, s] and Bk,s = (s, t0] utilize only part of the observation within

the interval Ik+1. Since the change point position is unknown, we test every point s ∈ Jk.

The algorithm at step k is visualized in Figure 4. Assuming that the null of homogeneity

of interval Ik−1 has not been rejected, the testing procedure at step k tests for the ho-

mogenity of Ik. Since the position of a change point within Jk = Ik \Ik−1 is unknown, the

test statistic is calculated based on all points s ∈ Jk, i.e. s ∈ (t0 − nk−1, t0 − nk], utilizing

data from Ik+1. Compute the sum of the log-likelihood values over the sample interval

Ak,s = [t0 − nk+1, s] (dotted area) and Bk,s = (s, t0] (solid area) and subtract the log-

likelihood value over Ik+1. The likelihood ratio test statistics Tk,τ at each predetermined

expectile level τ is then determined by (8).

The test statistics (8) at every step k is compared to the corresponding (simulated) critical

value zk,τ , for a given expectile and significance level at fix point t0. Then the adaptive

estimate is obained by θ̂τ = θ̃Ik̂,τ , with k̂ = max
k≤K
{k : T`,τ ≤ z`,τ , ` ≤ k}. Here the index

and the length of the interval of homogeneity are denoted by k̂ and n
k̂
, respectively. If

the null is already rejected at the interval I1, k̂ = 0 and similarly, if the null has not been

rejected yet up to IK , k̂ = K.
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Figure 4: Sequential testing for parameter homogeneity in interval Ik with length nk

ending at fixed time point t0

Critical Values

The critical value sequence zk,τ , k = 1, . . . , K essentially controls the threshold values

of the likelihood ratio test statistic (8). The true distribution of the test statistics is

unknown and thus we resort to simulate the critical values. Critical values are calculated

through the propagation condition at each step k = 1, . . . , K

Eθ∗
τ

∣∣∣`Ik (Y ; θ̃Ik,τ
)
− `Ik

(
Y ; θ̂τ

)∣∣∣r ≤ ρkRr (θ∗τ ) (9)

with ρk = ρk

K
. Here ρ is a false alarm level.

The resulting critical value curves satisfying equation (9) for the selected six ’true’ param-

eter constellations from Table 2 and associated risk bounds from Table 3 are displayed in

Figure 5. The upper (lower) panel represents critical values in the modest (conservative)

risk case. The blue and red lines consider the expectile levels τ = 0.05 and τ = 0.01,

respectively. Critical values evolve in a decreasing route, with a similar magnitude across

all cases except for the middle ’true’ parameter constellations in the first few steps. It is

therefore reasonable to choose the critical value set in a data-driven fashion: at a fixed

time point, the yearly estimate α̂1,τ serves as a benchmark to select the appropriate curve.

If its value is, for example, higher than the reported upper quartile case in Table 2, then

the corresponding critical value curve is selected.
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Figure 5: Simulated critical values across different parameter constellations given
in Table 2 for the modest (upper panel, r = 0.5) and conservative (lower panel,
r = 1) risk cases. We consider two expectile levels, τ = 0.05 (blue) and τ = 0.01
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4 Empirical Results

lCARE accommodates and reacts to structural changes. From the fixed rolling window

exercise in subsection 3.2 one observes time-varying parameter characteristics while facing

the trade-off between parameter variability and the modelling bias. How to account

for the effects of potential market changes on the tail risk based on the intervals of

homogenity? In this section, we utilize the lCAREmodel to estimate the tail risk exposure

across three stock markets. Using the time series of the adaptively selected interval

length, we improve a portfolio insurance strategy employing our tail risk estimate and

furthermore enhance its performance in the following application part.

4.1 Intervals of Homogeneity

The interval of homogeneity in tail expectile dynamics is obtained here by the lCARE

framework for the time series of DAX, FTSE 100 and S&P 500 returns. Using the

sequential local change point detection test, the optimal interval length is considered

at two expectile levels, τ = 0.05 and τ = 0.01. We set the significance level ρ = 0.25.

Interestingly, the homogeneity intervals are relatively longer at the end of 2009 and at the

beginning of 2010 especially at τ = 0.05, the period following the financial crisis across all

three stock markets, see, e.g., Figures 6 and 7. Figure 6 presents the estimated length of

the interval of homogeneity in trading days across the selected three stock market indices

from 2 January 2006 to 31 December 2014 at the expectile level τ = 0.05, while Figure 7

denotes the results given τ = 0.01. The upper panel depicts the modest risk case r = 0.5,

whereas the lower panel denotes the conservative risk case r = 1.

Recall that the lCARE model aims to select the longest interval over which the null

hypothesis of time homogeneity of CARE parameters is not rejected. In the financial crisis

initial period, the homogeneity intervals became shorter, due to the increasing market

volatility and obvious market turmoil. During the post-crisis period, characterised by the

high volatile regime, the homogeneity intervals became relatively longer.

In a similar way, the intervals of homogeneity are relatively shorter in the modest risk

case r = 0.5, as compared to the conservative risk case r = 1. The average daily selected
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Figure 6: Estimated length of the interval of homogeneity in trading days across the
selected three stock markets from 2 January 2006 to 31 December 2014 for the modest
(upper panel, r = 0.5) and the conservative (lower panel, r = 1) risk cases. The expectile
level equals τ = 0.05. LCARE_Adaptive_Estimation_Length_005
LCARE_Adaptive_Estimation_005

2006 2010 2014

60

120

180
DAX

L
en

gt
h

2006 2010 2014

60

120

180
FTSE 100

2006 2010 2014

60

120

180
S&P 500

2006 2010 2014

60

120

180
DAX

L
en

gt
h

2006 2010 2014

60

120

180
FTSE 100

2006 2010 2014

60

120

180
S&P 500

Figure 7: Estimated length of the interval of homogeneity in trading days across the
selected three stock markets from 2 January 2006 to 31 December 2014 for the modest
(upper panel, r = 0.5) and the conservative (lower panel, r = 1) risk cases. The expectile
level equals τ = 0.01. LCARE_Adaptive_Estimation_Length_001
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optimal interval length supports this, see, e.g., Table 4. The results are presented for both

expectile levels, τ = 0.05 and τ = 0.01, at the modest and the conservative risk cases,

r = 0.50 and r = 1, respectively. At expectile level τ = 0.01, the interval of homogeneity

is comparatively shorter than the interval at τ = 0.05, due to more severe tail events.

This fact is also implied by the associated parameter variability.

τ = 0.05 τ = 0.01
DAX FTSE 100 S&P 500 DAX FTSE 100 S&P 500

r = 0.5 38 38 36 25 23 23
r = 1.0 101 98 103 63 48 40

Table 4: Mean value of the adaptively selected intervals. Note: the average number of
trading days of the adaptive interval length is provided for the DAX, FTSE 100 and
S&P 500 market indices at two expectile levels, τ = 0.05 and τ = 0.01, and the modest
(r = 0.50) and the conservative (r = 1.00) risk case.

4.2 Dynamic Tail Risk Exposure

Based on the lCAREmodel, one can directly estimate dynamic tail risk exposure measures

through the adaptively selected intervals. The tail risk at smaller expectile level is lower

than risk at higher levels, see, e.g., Figure 8. Here the estimated expectile risk exposure

for the three stock market indices from 2 January 2006 to 31 December 2014 is displayed

for levels τ = 0.05 and τ = 0.01, respectively. The left panel represents the conservative

risk case r = 1 results, whereas the right panel considers the modest risk case r = 0.5.

The former leads on average to lower variability, as compared to the modest risk which

results in shorter homogeneity intervals.

Estimated expectiles allow us to calculate other tail risk measures, most prominently

expected shortfall that represents the expected value of portfolio loss above a certain

threshold, e.g., Value at Risk (VaR). The quantile estimation can be improved by em-

ploying an expectile-based expected shortfall (ES) framework. In its derivation one notes

a one-to-one mapping between quantiles and expectiles with the expectile level τα being
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Figure 8: Estimated expectile risk exposure at level τ = 0.05 (blue) and τ = 0.01 (red)
for return time series of DAX, FTSE 100, and S&P 500 indices from 2 January 2006 to
31 December 2014. The left panel shows results of the conservative risk case r = 1 and
the right panel depicts the results of the modest risk case r = 0.5.
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selected such that et,τα = qα, i.e., α-quantile

τα =
α · qα −

∫ qα

−∞
ydF (y)

E [Y ]− 2
∫ qα

−∞
ydF (y)− (1− 2α) qα

(10)

where F (·) denotes the cumulative density function (cdf) of a random variable Y . The

corresponding expected shortfall can be expressed as

ESet,τα =
∣∣∣1 + τα (1− 2τα)−1 α−1

∣∣∣ et,τα (11)

with et,τα denoting the expectile at level τα. In order to apply (11), one needs to fix a
certain cdf F (·) in (10). The asymmetric normal distribution is chosen here considering

the consistency with the aforementioned model specification.

Consider the tail risk exposure of DAX index series at expectile level τ = 0.05 and

conservative risk case r = 1.0. During market distress periods, e.g., the 2008 financial

crisis or the 2012 European sovereign debt crisis, the estimated expected shortfall (11)

exhibits a high variation, as depicted in Figure 9. Note that the asymmetric normal

distribution from subsection 3.1 has been employed in ES calculation. Similarly to current

research developments, the estimated expected shortfall using the proposed lCARE model

exceeds (by magnitude) the estimated expectile et,τ value.
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Figure 9: Adaptively estimated expectile (blue) and expected shortfall (red) for DAX
index returns from 2 January 2006 to 31 December 2014. We choose r = 1 and τ = 0.05.
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4.3 Application: Portfolio Insurance

In practice, dynamic tail risk measures are useful tools in many areas, for example in

portfolio insurance - a portfolio protection strategy tailored especially for mutual fund

management and portfolio optimization. Particularly, a given proportion of an initial

asset portfolio value is preserved at the end of the predetermined time horizon. In this

aspect the downside risk is limited under bearish market conditions. Simultaneously,

the optimal profit return emerges in bullish market situations and thus fund managers

can utilize the time invariant portfolio protection (TIPP) strategy, Estep and Kritzman

(1988), Hamidi et al. (2014). It turns out that this represents an extension of the constant

proportion portfolio insurance (CPPI) strategy by Black and Jones (1987), Black and

Perold (1992).

The CPPI method is applied for a dynamic portfolio allocation along the whole man-

agement period. The fund managers firstly predetermine a floor, which is the lowest

acceptable portfolio value at the end of the investment horizon, and then invest the ex-

posure, the multiple amount of the excess of the portfolio value above the floor by a

multiplier, into the risky asset and the remaining part into riskless asset or cash. The

TIPP strategy is an extension of the CPPI method, i.e., its floor is time-varying, relat-

ing the floor to a proportion of the highest previous portfolio value, which seems more

conservative but more actively responds to the prevailing market conditions.

The proportion of the total portfolio invested in risky assets is determined by the so-

called asset multiplier. The multiplier is the leverage value of the risky exposure. It is a

challenging task to obtain a reasonable multiplier figure. A traditional approach assumes

that the multiplier is a constant, i.e., it is insensitive to the current market conditions.

Our lCARE model certainly adapts to the risk exposure, say at different states of the

economy (bearish or bullish market), and we account for a time-varying nature of the

asset multiplier in portfolio allocation. It is expected that during favourable conditions,

more assets can be allocated into risky investments and vice versa. The trading idea of the

TIPP strategy is explained and thereafter the relationship between the multiplier and the

return of the risky asset is derived. The methodologies (constant vs adaptive multiplier

selection) are then applied to the DAX index return series and evaluated afterwards.
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Time Invariant Portfolio Protection Strategy (TIPP)

Denote the initial asset portfolio value as Vt at time t ∈ (0, T ]. An investor aims to

preserve a predetermined protection value F s
t , the so-called floor, at each day

Vt ≥ s×max
{
F · e−rft·(T−t), sup

p≤t
Vp

}
= F s

t (12)

with an exogenous parameter s ∈ (0, 1) and the cushion value, Ct = Vt − F s
t ≥ 0. rft is

the risky free rate and we set the initial value F = 100 and the proportion value s = 0.9.

The allocation decision states that Gt = m ·Ct is invested into the risky asset with return

rt (here the DAX portfolio). Here m denotes a non-negative multiplier that controls the

portfolio performance. The remaining amount Vt −Gt is invested into a riskless asset.

The portfolio value Vt and consequently the cushion value Ct = Vt − F s
t evolve as:

Vt+1 = Vt +Gtrt+1 + (Vt −Gt) rft+1 (13)

Ct+1 = Ct {1 +m · rt+1 + (1−m) rft+1} (14)

Since the cushion value Ct ≥ 0, for all t ≤ T , an upper bound of the multiple m can

be derived from equation (14) when rft is negligibly small and the risky asset return is

negative
m ≤

(
−r−t+1

)−1
, ∀t ≤ T (15)

with r−t+1 = min(0, rt+1).

Formula (15) reflects a relationship between m and the tail structure of the distribution

of rt. When the downside return loss is, for example, 10%, m ≤ 10, and for a downside

of 20%, m ≤ 5. When the market is bullish, the investor is prone to invest more into the

risky asset and vice versa in the bearish situations.

It is worth to note that in the above TIPP strategy, the cushion value is always expected to

be near or above zero. This property only holds in the continuous time and assumes that

the investor could timely modify their portfolio allocation before a large downside return

happens. In practice, fund managers have to account for the risk that the cushion value

may be negative since there may happen a unpredictable large downside market crash

whereupon the managers fail to reschedule their portfolio allocations in the discontinuous
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rebalancing. This risk is known as the gap risk.

How to deal with gap risk and correspondingly calculate the multiplier? There are two

common approaches: the first is through the quantile hedging method, see e.g. Föllmer

and Leukert (1999), exploiting Value at Risk to imply the multiplier; another method is

based on expected shortfall, see e.g. Hamidi et al. (2014), Ameur and Prigent (2014).

In the quantile hedging framework, for a given level α, the protection portfolio condition

is given by

P (Ct ≥ 0, ∀t ≤ T ) ≥ 1− α.

Similar to the derivation of (15), the multiplier can now be expressed as the 1−α quantile

of the distribution of rt

P
{
mt ≤

(
−r−t+1

)−1
, ∀t ≤ T

}
≥ 1− α

where the upbound of m with quantile can be obtained by the above equation.

Note that the quantile technique does not take the magnitude of tail risk into account.

The expected shortfall is a coherent risk measure and is more suitable to reflect the tail

risk. When the investor is prone to more conservative asset allocation, ES is proposed to

estimate the multiplier, see Hamidi et al. (2014).

Performance Comparison

Here we employ the lCARE method to estimate the ES in order to deal with the gap

risk. The corresponding multiplier selection is expressed by the lCARE-based ES as

mt,τ =
∣∣∣ESet,τ ∣∣∣−1

(16)

with et,τ denoting the associated expectile value. In the ES calculation, the data process

follows an asymmetric normal distribution. The conditional multiplier is the inverse of the

expected shortfall. In practice, a threshold range for mt,τ ∈ {1, 2, . . . 12} is used. Figure

10 presents the dynamics of the implied multiplier for the DAX index corresponding to

ES in Figure 9 based on the lCARE model with r = 1 and τ = 0.05 from 2 January 2006

to 31 December 2014.
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Figure 10: Time-varying multiplier mt,τ for DAX index returns corresponding to the
expected shortfall in Figure 9 based on lCARE (r = 1 and τ = 0.05) from 2 January
2006 to 31 December 2014
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Figure 11: Estimated expectile (blue) and expected shortfall (red) by one-year fixed
rolling window (upper panel), and the corresponding time-varying multiplier (lower panel)
for DAX index returns from 2 January 2006 to 31 December 2014
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In order to better understand adaptive estimation window methods, the one-year rolling

window estimation strategy is also selected as one of the benchmark models. In Figure

11, the upper panel presents the estimated expectile and ES based on a one-year fixed

rolling window estimation while the lower panel shows the corresponding multipliers. The

constant multiplier cases (from 1 to 12) are included for benchmark comparisons.

ES can also be implied by the CAViaR framework, one of the popular conditional au-

toregressive modeling approaches for Value at Risk. Given that there is a one-to-one

mapping between expectiles and quantiles, the expected shortfall can be formulated by

the quantile at the corresponding quantile level when the expectile and quantile values

are equal, see (10). Here we also list the CAViaR based ES and the corresponding mul-

tiplier to implement the insurance strategy as one of the benchmarks. We firstly choose

the corresponding quantile level, then illustrate the CAViaR specification from Engle and

Manganelli (2004), before presenting the results.

Under the asymmetric normal distribution assumption, given expectile level τ = 0.05,

Equation (10) implies the corresponding quantile level α = 0.065. While Engle and

Manganelli (2004) state four CAViaR model specifications, the following asymmetric slope

pattern is selected, which appears similar to the focused model specification equation (2),

yt = qt,α + εt,α Quantα(εt,α|Ft−1) = 0 (17)

qt,α = β0 + β1qt−1,α + β2y
+
t−1 + β3y

−
t−1 (18)

where qt,α denotes quantile (VaR) at α ∈ (0, 1), and Quantα(εt,α|Ft−1) is the α-quantile

of εt,α conditional on the information set Ft−1. In addition, we choose α = 0.065 such

that eτα = qα when τα = 0.05 under the AND assumption.

The estimated quantile (expectile) and ES based on a one-year rolling window estimation

associated to the abovementioned CAViaR model (18), in which ES is implied from

equation (11) with the quantile (expectile) value, is presented in the upper panel in

Figure 12, while the lower panel shows the corresponding multipliers.

The initial value and the target value of a hypothetical portfolio at the end of the one

year investment horizon are both set to 100 (F = 100 in equation (12)). Associated to
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Figure 12: Estimated VaR (blue) (α = 0.065) and expected shortfall (red) by CAViaR -
based one-year rolling (upper panel), and the corresponding multiplier (lower panel) for
DAX index returns from 2 January 2006 to 31 December 2014

the cushioned portfolio strategy, the daily asset allocation decision at time t is to invest

the multiple amount of the difference between the portfolio value and the discounted

floor up to t into the stock portfolio (DAX), the rest into a riskless asset. Figure 13

presents the performance of the portfolio value based on the cushioned portfolio strategy

with unconditional constant multiplier and the conditional time-varying multiplier for

the one-year investment horizon. The black line represents the DAX index, the blue line

represents the cushioned portfolio with lCARE based conditional dynamic multiplier, the

green line represents the portfolio value using a one-year fixed rolling window estimated

multiplier, and the brown line presents the value under CAViaR based one-year rolling

estimated multiplier. The comparatively best performed portfolio among the constant

multipliers considers m = 5, denoted by the red line.

The cushioned portfolio with the dynamic multiplier closely tracks the observed DAX

index and, by construction, simultaneously guarantees the target portfolio value floor

at the end of the investment horizon at every trading day, see Figure 13. It is worth

noting that the lCARE strategy does very well in comparison to the cushioned portfolio

with a constant multiplier, the one-year rolling window estimation based on expectile or
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Figure 13: Performance of the portfolio value: (a) DAX index (black), (b) m = 5 (red),
(c) one-year rolling approach (green), (d) CAViaR based one-year rolling approach (α =
0.065) (brown), (e) mt,τ - lCARE (blue) from 2 January 2006 to 31 December 2014.

quantile.

Table 5 furthermore presents the return moment performance of the portfolio insurance

strategy. We list the statistical results of empirical data, the TIPP strategy with lCARE

- based multiplier, one-year fixed rolling window CARE - implied multiplier, one-year

rolling window CAViaR implied multiplier, and constant multipliers. The average re-

turn of lCARE based strategy, 7.36% is larger than the counterpart based on a fixed

rolling window, 5.70%. It is also observed that the CAViaR based strategy performs

less favourable. Although, the lCARE strategy is slightly lower than the empirical DAX

return of 8.79%, it turns out that it performs favourable relative to other benchmark

strategies.

5 Conclusions

The localized conditional autoregressive expectiles (lCARE) model accounts for time-

varying parameter characteristics and potential structure changes in tail risk exposure

modelling. The parameter dynamics implied by a fixed rolling window exercise of three

stock market indices, DAX, FTSE 100 and S&P 500, indicates that there is a trade-off

between the modelling bias and parameter variability. A local parametric approach (LPA)

assumes that locally one can successfully fit a parametric model. Based on a sequential
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Return(%) Volatility(%) VaR 99% Skewness Kurtosis Sharpe
Data 8.79 22.54 -4.24 0.24 10.33 0.02

lCARE 7.36 13.60 -2.31 0.52 9.16 0.03
Rolling one-year 5.70 10.18 -1.59 0.17 10.05 0.04
CAViaR rolling 0.01 7.35 -1.43 -0.90 13.04 0.00
Multiplier 1 3.51 2.25 -0.41 0.20 10.05 0.10
Multiplier 2 3.97 4.50 -0.84 0.19 10.00 0.06
Multiplier 3 4.41 6.74 -1.27 0.17 9.90 0.04
Multiplier 4 4.78 9.00 -1.71 0.15 9.88 0.03
Multiplier 5 4.86 11.17 -2.10 0.11 9.91 0.03
Multiplier 6 3.36 5.36 -0.99 -0.33 6.48 0.04
Multiplier 7 2.65 6.04 -1.08 -0.51 6.49 0.03
Multiplier 8 2.13 6.55 -1.17 -0.59 7.90 0.02
Multiplier 9 1.70 6.96 -1.25 -0.74 10.38 0.02
Multiplier 10 1.46 7.33 -1.38 -0.93 12.90 0.01
Multiplier 12 0.82 7.56 -1.47 -1.25 16.65 0.01

Table 5: Descriptive statistics of the portfolio returns based on the TIPP strategy. We
employ several models: the lCARE, one-year rolling window, CAViaR rolling window
and constant muliplier approach for the DAX index from 2 January 2006 to 31 December
2014. The investment strategy is based on a one-year investment horizon.

testing procedure, one determines the interval of homogeneity over which a parametric

model can be approximated by a constant parameter vector.

The lCARE model adaptively estimates the tail risk exposure by relying on the (in-

sample) ’optimal’ interval of homogeneity. Setting the expectile levels τ = 0.05 and

τ = 0.01, the dynamic expectile tail risk measures for the selected three stock markets

are successfully obtained by lCARE. Furthermore, ES has been introduced, evaluated and

employed in the asset allocation example: the portfolio protection strategy is improved

by the lCARE modelling framework.
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