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The S&P500 or DAX30 are important benchmarks for the financial industry. These and
other indices describe different compositions of certain segments of the financial markets.
For currency markets, the IMF offers the index SDR. Prior to the Euro, the ECU existed,
which was an index representing the development of European currencies. It is surprising,
though, to see that the common index providers have not mapped emerging e-coins into an
index yet because with cryptos like Bitcoin, a new kind of asset of great public interest has
arisen. Index providers decide on a fixed number of index constituents which will represent
the market segment. It is a huge challenge to set this fixed number and develop the rules
to find the constituents, especially since markets change and this has to be taken into
account. A method relying on the AIC is proposed to quickly react to market changes and
therefore enable us to create an index, referred to as CRIX, for the cryptocurrency market.
The codes used to obtain the results in this paper are available via www.quantlet.de .
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1 Introduction

More and more companies have started offering digital payment systems. Smartphones
have evolved into a digital wallet, telephone companies offer banking related services: clear
signal that we are about to enter the era of digital finance. In fact we are already acting
inside a digital economy. The market for e-x (x = “finance,” “money,” “book,” you name
it . . . ) has not only picked up enormous momentum but has become standard for driving
innovative activities in the global economy. A few clicks at y and payment at z brings our
purchase to location w. Own-currencies for the digital market were therefore just a matter
of time. The idea of the Nobel Laureate Hayek, see Hayek (1990), of letting companies offer
concurrent currencies seemed for a long time scarcely probable, but the invention of the
Blockchain has made it possible to bring his vision to life. Cryptocurrencies (abbr. cryptos)
have surfaced and opened up an angle towards this new level of economic interaction.
Since the appearance of bitcoins, several new cryptos have spread through the Web and
offered new ways of proliferation. Even states accept them as legal payment method or
part of economic interaction. E.g., the USA classifies cryptocurrencies as commodities,
Kawa (2015), and lately Japan announced that they accept them as a legal currency,
EconoTimes (2016). Obviously, the crypto market is fanning out and shows clear signs of
acceptance and deepening liquidity, so that a closer look at its general moves and dynamics
is called for.

The technical aspects behind cryptocurrencies have been reviewed by several researchers.
For a well written technical survey, we refer to Tschorsch and Scheuermann (2015). The
transaction graph of Bitcoin, the Blockchain, has received much attention too, see e.g.
Ron and Shamir (2013) and Reid and Harrigan (2013). Even the economics of the Bitcoin
has been studied, e.g. Kristoufek (2014). To our knowledge, the development of the
entire cryptocurrency market has not been studied so far, only subsamples have been
taken into account. Elendner et al. (2016) studied the top 10 cryptocurrencies by market
capitalization and found that their returns are weakly correlated which each other. This
brings us to the conclusion that Bitcoin, even though it dominates the market in terms of its
market capitalization, does not lead the market. The movements of other cryptocurrencies
are important too, when one analyzes the market of cryptocurrencies. We contribute to
this area of research by designing CRIX, a market index (benchmark) which will enable
each interested party to study the performance of the crypto market as a whole or single
cryptos. Studying the stochastic dynamics of CRIX will allow to create ETFs or contingent
claims.
First, the term benchmark has to be defined:

Definition 1. A benchmark is a measure which consists of a selection of cryptos that are
representing the market.

Index providers construct their indices in terms of Definition 1 with a fixed number of
constituents, see e.g. FTSE (2016), S&P (2014) and Deutsche Boerse AG (2013). But
markets change which should cause the chosen number of index constituents to be altered
too. While trying to mimic the movements of an innovative market like the crypto market,
one is confronted with a frequently changing market structure. This calls for a dynamic
structure of the benchmark, especially for the number of constituents. The StrataQuant
index family, see NYSE (2015), for example alters the number of constituents in each
sector index dependent on their affiliation with a certain sector and membership in the
Russell1000 index. But the benchmark for the crypto market would not have a parent index
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since it is meant to be the leading index. Therefore a different approach is necessary that
enables to react to changes in the market structure. A dynamic methodology guaranteeing
the diversity of an index at any time is to be constructed. Furthermore, the benchmark is
meant to be investable. Regarding the portfolio choice, we define the following selection
definition:

Definition 2. Between investment portfolios with equal performance, the one with the
least assets is preferable.

This definition corresponds to Occam’s Razor. Following definitions 1 and 2, for the
crypto market CRIX: a CRyptocurrency IndeX, hu.berlin/crix has been established. To
compute CRIX, we evaluate the differences in the log returns of the market against a
selection of possible benchmarks. We figure out, that the AIC works well to evaluate the
differences. It penalizes the index for the number of constituents, so definitions 1 and 2
are met. For the calculation of the respective likelihoods, a non-parametric approach using
the Epanechnikov (1969) kernel is applied. We proof the impact of the value of an asset
in the market on the AIC method, thus we are applying a top-down approach to select
the assets for the benchmarks to choose from. The number of constituents is recalculated
quarterly to ensure an up-to-date fit to the current market situation. With CRIX one may
study the contingent claims and the stochastic nature of this index, Chen et al. (2016), or
study the crypto market characteristics against traditional markets, Härdle and Trimborn
(2015).

This paper is structured as follows. Section 2 introduces the topic and reviews the
basics of index construction. In Section 3 the method for dynamic index construction
is described and Section 4 introduces the remaining rules for CRIX. Section 5 describes
further variants to create a CRIX family. Their performance is tested in Section 6. In
Sections 7 and 8 the new method is applied to the German and Mexican stock markets to
check the performance of the methodology against existing indices. The codes used to
obtain the results in this paper are available via www.quantlet.de.

2 Index construction

The basic idea of any price index is to weight the prices of its constituent goods by the
quantities of the goods purchased or consumed. The Laspeyres index takes the value of a
basket of k assets and compares it against a base period:

PL
0t(k) =

∑k
i=1 PitQi0∑k
i=1 Pi0Qi0

(1)

with Pit the price of asset i at time t and Qi0 the quantity of asset i at time 0 (the base
period). For market indices, such as CRSP, S&P500 or DAX, the quantity Qi0 is the
number of shares of the asset i in the base period. Multiplied with its corresponding price,
the market capitalization results, hence the constituents of the index are weighted by
their market capitalizations. But markets change. A company which was representative
for market developments yesterday might no longer be important today. On top of that,
companies can go bankrupt, a corporation can raise the number of its outstanding shares,
or trading in it can become infrequent. All these situations must produce a change in the
index structure, so that the market is still adequately represented. Hence companies have
to drop out of the index and have to be replaced by others. The index rules determine in
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which cases such an event happens. The formula of Laspeyres (1) can not handle such
events entirely because a change of constituents will result in a change in the index value
that is not due to price changes. Therefore, established price indices like DAX or S&P500,
see Deutsche Boerse AG (2013) and S&P (2014) respectively, and the newly founded index
CRIX(k), a CRyptocurrency IndeX, hu.berlin/crix, use the adjusted formula of Laspeyres,

CRIXt(k, β) =
∑k
i=1 βi,t−

l
PitQi,t−

l

Divisor(k)t−
l

(2)

with P , Q and i defined as before, βi,t−
l
the adjustment factor of asset i found at time

point t−l , l indicates that this is the l-th adjustment factor, and t−l the last time point
when Qi,t−

l
, Divisor(k)i,t−

l
and βi,t−

l
were updated. In the classical setting, βi,t−

l
is defined

to be βi,t−
l

= 1 for all i and l. Anyhow, some indices use βi,t−
l
to achieve maximal weighting

rules, e.g. Deutsche Boerse AG (2013) and MEXBOL (2013). The Divisor ensures that
the index value of CRIX has a predefined value on the starting date. It is defined as

Divisor(k, β)0 =
∑k
i=1 βi0Pi0Qi0

starting value . (3)

The starting value could be any possible number, commonly 100, 1000 or 10000. It ensures
that a positive or negative development from the base period will be revealed. Whenever
changes to the structure of CRIX occur, the Divisor is adjusted in such a way that only
price changes are reflected by the index. Defining k1 and k2 as number of constituents, it
results∑k1

i=1 βi,t−
l−1
Pi,t−1Qi,t−

l−1

Divisor(k1, β)t−
l−1

= CRIXt−1(k1, β) = CRIXt(k2, β) =
∑k2
j=1 βi,t−

l
Pj,tQj,t−

l

Divisor(k2, β)t−
l

. (4)

In indices like FTSE, S&P500 or DAX the number of index members is fixed, k1 = k2,
see FTSE (2016), S&P (2014) and Deutsche Boerse AG (2013). As long as the goal
behind these indices is the reflection of the price development of the selected assets, this
is a straightforward approach. But, e.g., DAX is also meant to be an indicator for the
development of the market as a whole, see Janßen and Rudolph (1992). This raises
automatically the question of whether the included assets are representing the market.
Since the constituents are chosen using a top-down approach, meaning that the biggest
companies by market capitalization are included, the intuitive answer is yes. But it leaves
a sour taste that additional assets may describe the market more appropriately. One may
object by referring to total market indices like the Wilshire 5000, S&P Total Market Index
or CRSP U.S. Total Market Index, see Wilshire Associates (2015), S&P (2015) and CRSP
(2015), that are providing a full description. But financial praxis has shown that smaller
indices like DAX30 and S&P500 receive more attention in evaluating the movements of
their corresponding markets. It is therefore appealing to know which are the representative
assets in a market and which smaller number of index constituents eases the handling of a
tracking portfolio. Additionally, one may be concerned that an index would include illiquid
and non-investable assets which makes the management of a tracking portfolio even more
difficult. Figure 1 shows that this is indeed a problem in the crypto-currencies market.
Some cryptos have a fairly high market capitalization while their respective trading volume
is very low. An asset which is not frequently traded can not add enough information to a
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Figure 1: Comparison of the log mean trading volume and log mean market capitalization,
both measured in USD, for all cryptos in the dataset over the time period
20140401 - 20160807

VolMarketCapComparison

market index to display market changes and is difficult to trade for an investor.
These thoughts raise the question which value of k is "optimal" for building an investable

benchmark for the market. Additionally, especially young and innovative markets may
change their structure over time. Therefore, a quantification of an accurate crypto
benchmark with sparse number of constituents is asked for. Since the crypto market shows
a frequently changing market structure with a huge number of illiquid cryptos, we apply a
time varying index selection structure.

3 Dynamic index construction

This section is dedicated to describing the composition rule which is used to find the
number of index members—the spine of CRIX. Since CRIX will be a benchmark for the
crypto market, the dimension and evaluation of the market has to be defined:

Definition 3. The total market (TM) consists of all cryptos in the crypto universe. Its
value is the combined market value of the cryptos.

To compare the TM with a benchmark candidate, it will be normalized by a Divisor,

TM(K)t =
∑K
i=1 PitQi,t−

l

Divisor(K)t−
l

(5)

with K the number of all cryptos in the crypto universe. Note that no adjustment factor
is used for TM(K)t. Further define the log returns:

5
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ε(K)TMt = log{TM(K)t} − log{TM(K)t−1} (6)
ε(k, β)CRIXt = log{CRIX(k, β)t} − log{CRIX(k, β)t−1}, (7)

where CRIX(k, β)t is the CRIX with k constituents at time point t.
The goal is to optimize k and β so that a sparse but accurate approximation in terms of

min
k,β
‖ε(k, β)‖2 = ‖ε(K)TM − ε(k, β)CRIX‖2, (8)

is achieved. We chose a squared loss function in (8), since it heavily penalizes deviations.
The expected squared loss is defined as

E(‖ε(k, β)‖2) =
∫ ∞
−∞
‖ε(k, β)‖2

2f{ε(k, β)}dε(k, β) (9)

The density, f , is estimated nonparametrically with an Epanechnikov kernel, since
according to Härdle et al. (2004) the Epanechnikov (1969) kernel shows a good balance
between variance optimization and numerical performance. In nonparametric estimation
with an Epanechnikov kernel, Epa, the estimator of f is derived by

f̂h(x) = 1
nh

n∑
i=1

Epa(x− xi
h

), Epa(u) = 3
4(1− u2)I(|u| ≤ 1)

where h is the bandwidth.
The bandwidth selection is performed with the plug-in selector by Sheather and Jones

(1991) and further described in Wand and Jones (1994). The plug-in selector is derived
under the loss function Mean Integrated Squared Error, MISE. Hall (1987) found that the
Kullback-Leibler (KL) loss function for selecting the smoothing parameter of the kernel
density is highly influenced by the tails of the distribution. Devroye and Györfi (1985)
mention that Mean Integrated Error (MIE) is stronger affected than MISE by the tails
of the distribution and Kanazawa (1993) claims that MIE shall be used if interest is in
modeling the tails. Kanazawa (1993) investigates that the use of a Kullback-Leibler loss
function would put more weight on the tails compared to MISE. Since this is not in our
interest, the choice of the density smoothing parameter, h, is performed under MISE. As
already mentioned, the AIC will be used later to choose the index.

Since the value of TM(K)t is unknown and not measurable due to a lack of information,
the total market index will be defined and used as a proxy for the TM(K). The definition
is inspired by total market indices like CRSP (2015), S&P (2015) and Wilshire Associates
(2015). They use all stocks for which prices are available.

Definition 4. The total market index (TMI) contains all cryptos in the crypto universe
for which prices are available. The cryptos are weighted by their market capitalization.

This changes (5) to

TMIt(kmax) =
∑kmax
i=1 PitQi,t−

l

Divisor(kmax)t−
l

6



with kmax the maximum number of cryptos with available prices and (8) to

min
k,β
‖ε̂(k, β)‖2 = ‖ε(kmax)TM − ε(k, β)CRIX‖2 (10)

s.t.: 1 ≤ k ≤ ku

ku ∈ [1, kmax]
s ∈ [1, kmax − k]

β1×(k+s) = (1, . . . , 1, βk+1, . . . , βk+s)>

βk+1, . . . , βk+s ∈ (−∞,∞).

We introduced several constraints with (10). We will search for an index under the
classical approach of Laspeyres, where β = 1. We include βk+1, . . . , βk+s to evaluate
if adding s more assets to the index explains the difference between ε(kmax)TM and
ε(k, β)CRIX better. The first k assets won’t be adjusted by a parameter, so no parameter
estimation is necessary. This makes the first term a constant. The parameters of the next
s assets have to be estimated.
A number of criteria are applicable. In this context: cross validation (CV), full cross

validation (FCV), Generalized Cross Validation (GCV), Generalized Full Cross Validation
(GFCV), Mallows’ Cp, Akaike’s Final Prediction Error (FPE), Shibata (SH), AIC, BIC
and Hannan Quinn (HQ), Droge (2006). The first one, CV, see Stone (1974), is a widely
used criterion

CV(k, β) = T−1
T∑
i=1
{ε(kmax)TMt − ε(k, β)CRIX−t }2 (11)

where ε(k, β)CRIX−t is the estimate of ε(k, β)CRIXt without the observation t. It is however
not suitable as FCV in this context because CV does not involve any penalty for the
number of constituents, Bunke et al. (1999). The GCV criterion, see Craven and Wahba
(1978), is defined as

GCV{ε̂(k, β), s} = T−1∑T
t=1 ε̂(k, β)2

t

(1− T−1s)2 (12)

by assuming that s < T . One shall note that s and not k + s defines the number of
variables to penalize for, since k parameters are set to be 1 and need not be estimated.
According to Arlot and Celisse (2010), the asymptotic optimality of GCV was shown in
several frameworks. The GFCV, see Droge (1996):

GFCV{ε̂(k, β), s} = T−1
T∑
t=1

ε̂(k, β)2
t (1 + T−1s)2 (13)

is an alteration.
A further score, SH,

SH{ε̂(k, β), s} = T + 2s
T 2

T∑
t=1

ε̂(k, β)2
t , (14)

was shown to be asymptotically optimal, Shibata (1981), and asymptotically equivalent to
Mallows’ Cp, FPE and AIC.
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Mallows (1973)’ Cp:

Cp{ε̂(k, β), s} =
∑T
t=1 ε̂(k, β)2

t

σ̂(k, β)2 − T + 2 · s (15)

with σ̂(k, β)2 the variance of ε̂(k, β). Cp{ε̂(k, β), s} tends to choose models which overfit
and is not consistent in selecting the true model, see Mallick and Yi (2013), Woodroofe
(1982) and Nishii (1984).

The FPE uses the formula

FPE{ε̂(k, β), s} = T + s

(T − s)T

T∑
t=1

ε̂(k, β)2
t , (16)

see Akaike (1970). So far, the discussed criteria depend on little data information. Just the
squared residuals and, in the case of Mallows’ Cp, the variance are taken into account. The
further criteria use more information by depending on the maximum likelihood, derived by

L{ε̂(k, β)} = max
β

∏
t

f{ε̂(k, β)t}, (17)

where f , in (9), represents the density of the ε̂(k, β)t over all t. The first one is the AIC
which is defined to be

AIC{ε̂(k, β), s} = −2 logL{ε̂(k, β)}+ s · 2, (18)

Akaike (1998). If the true model is of finite dimension, then neither FPE nor AIC are
consistent, compare Hurvich and Tsai (1989). But Shibata (1983) showed the asymptotic
efficiency of Mallows’ Cp, FPE and AIC under the assumption of an infinite number of
regression variables or an increasing number of regression variables with the sample size.
On the other hand, the BIC, defined as

BIC{ε̂(k, β), s} = −2 logL{ε̂(k, β)}+ s · log(T ), (19)

see Schwarz (1978), is consistent in choosing the true model, Nishii (1984). A further
consistent criterion is the one proposed by Hannan and Quinn (1979), defined as

HQ{ε̂(k, β), s} = −2 logL{ε̂(k, β)}+ 2s · log{log(T )}. (20)

We’ll evaluate now which criteria to use for our purpose. Since CRIX is to be a benchmark
model, all possible models under certain restrictions for the number of parameters are
included in the test set, ΘAIC = {CRIX(k1, β),CRIX(k2, β), . . . }, where k1, k2, . . . are
predefined values. Recall that the intention behind CRIX is to discover the best model to
describe the data (benchmark) under a squared loss function.
Define the loss function in (9) for ε̂(k, β),

RT{ε̂(k, β)} = E(||ε̂(k, β)||2), (21)

and define the number of constituents which minimize the risk in RT (k, β) as k∗ and s∗
for the model set Θ, Shibata (1983). For this paragraph, consider ε̂(k, β) ∼ N(0, σ̂(k, β)2).
k∗ and s∗ will be interpreted as the number of constituents which balance the bias and
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variance, define
HT{ε̂(k, β), s} = ||ε̂(k, β)||2 + sσ̂(k, β)2. (22)

Mean efficiency shall be defined as

eff(Θ) = HT (ε̂(k∗, β), s∗)/RT (Θ). (23)

A criteria is defined to be asymptotic mean efficient if

a.eff(Θ) = lim inf
T→∞

HT{ε̂(k∗, β), s∗}/RT (Θ) = 1 (24)

This result holds if the number of constituents , k∗ and s∗, increases with T , Shibata (1983).
Of course, this result was derived under the assumption of normally distributed errors.
Since we are estimating the distribution non parametrically, this result might not hold.
For example, Boisbunon et al. (2013) investigate that the result for gaussian distributed
errors should hold for spherically symmetric and elliptically contoured distributions too.
This leads us to the conclusion that asymptotic optimality might be still given in this case.
We oracle so, because for infinitely many observations, the nonparametric estimator tends
to the true distribution, Härdle et al. (2004).

The assumption of k∗ and s∗ increasing with T is plausible in this case since longer time
horizons T would include cryptos which aren’t part of shorter ones due to bankruptcy or
since they haven’t been found yet. Both lead to more complexity. It follows that all of
the asymptotically optimal criteria would lead to a mean efficient model choice in terms
of squared risk for a given selection of models which fits the intention to discover a best
model. It remains to find the suitable one.
Define the characteristic function as

ϕ(t) =
∫ ∞
−∞

exp(itx)f(x)dx (25)

with i ∈ C and t ∈ R. The Fourier inversion theorem states (Shephard (1991)):

Theorem 1. Suppose g and ϕ are integrable in the Lebesgue sense and

ϕ(t) =
∫ ∞
−∞

exp(itx)g(x)dx, (26)

then
g(x) = 1

2π

∫ ∞
−∞

exp(−itx)ϕ(t)dt. (27)

holds everywhere.

The moment generating function is defined as

M(t) =
∫ ∞
−∞

exp(tx)f(x)dx. (28)

If the moments generating function exists, it holds

ϕ(t) = M(it). (29)

We see that the characteristic function depends on the moment generating function of ε̂.
Most of the asymptotically optimal criteria depend on the empirical versions of the first
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two moments of ε̂. Just the AIC uses the full distribution via the likelihood and therefore
all the moments. This makes its information basis richer. For the derivation of the number
of index members of CRIX, we will use the AIC, because it uses the most information
compared to the other asymptotically optimal criteria: it is the only one which depends
on the likelihood.
To decide with AIC which number k should be used, a procedure was created which

compares the squared difference between log returns of the TMI, see Definition 4, and
several candidate indices,

‖ε̂(kj, β)‖2 = ‖ε(kmax)TM − ε(kj, β)CRIX‖2, (30)

where ε(kj, β)CRIX is the log return of CRIX version with kj constituents and ε̂(kj, β)
is the respective difference. The candidate indices, CRIX(kj, β), have different numbers
of constituents which fulfill k1 < k2 < k3 < · · · , where kj = k1 + s(̇j − 1). Therefore,
the number of constituents between the indices are equally spaced. By definition both
information criteria evaluate the differences, ε̂(kj, β), between the candidates and the TMI
with the respective likelihood L{ε̂(kj, β), s}, see Equations (18) and (19). This procedure
implies that the IC method evaluates if s more assets add information to CRIX. If so,
these assets are added to the intercept and the next s assets are tested for. We expect
assets with a higher market capitalization to have a higher influence on the AIC, so we
formulated the following theorem:
Theorem 2. The rate of improvement of the AIC depends on the relative value of an
asset in the market.

The proof for the Theorem 2 is given in the Appendix, 10.1, under the assumption of
normally distributed error terms. Therefore, we will follow the common practise to include
the assets with the highest market capitalization in the index, see e.g. Deutsche Boerse AG
(2013) or MEXBOL (2013),

arg max
i

k∑
j=1

Pj,i,t−
l
Qj,i,t−

l
, i ∈ {1, . . . , K}. (31)

Thus, we apply a top-down approach to decide about the number of index constituents.
For the sorting of the index constituents by highest market capitalization, we just rely

on the closing data of the last day of a month. We chose to do so, since the next periods
CRIX will just depend on Qi,t−

l
, (2), and not on data which lie further in the past. This is

in line with the methodology of e.g. the DAX.
Since the differences between the TMI(kmax) and CRIX(kj, β) are caused over time by

the missing time series in CRIX(kj, β), the independence assumption of the ε̂(kj, β) for all
j can not be fulfilled by construction. But Györfi et al. (1989) give arguments that under
certain conditions, the rate of convergence is essentially the same as for an independent
sample. Since the same data are used to estimate f j and the information criterion, a
“leave-one-out” cross-validation procedure is performed in order to have in-sample data for
the calculation of the density and pseudo-out-of-sample data for the information criterion,
hence new observations; see Boisbunon et al. (2013). Summarizing the described procedure,
results to:

1. At time point T + 1, construct TMI(kmax)

2. Set j = 1

10



3. Construct CRIX(kj, 1) and CRIX(kj, β), j = 1, 2, 3, . . . , k1 < k2 < k3 < · · ·

4. Compute ε̂(kj, β) and ε̂(kj, 1)

5. Kernel density estimation for density f j(ε̂(kj, β)) and f j(ε̂(kj, 1)) with leave-one-out
cross validation
a) Perform for ε̂(kj, β) and ε̂(kj, 1), where ε̂ belongs to the respective return series:
b) Construct T datasets ε̂−t = {. . . , ε̂t−1, ε̂t+1, . . . }, leaving out ε̂t.
c) Compute the Kernel Density Estimator (KDE) for each ε̂−t.
d) Compute the log likelihood (18) for ε̂t with KDE for ε̂−t.
e) Sum the log likelihoods

6. Derive AIC{ε̂(kj, β), s} and AIC{ε̂(kj, 1), 0}

7. If j = (kmax − s): stop, else jump to 3. and j = j + 1

The next section describes the further index rules for CRIX.

4 CRIX family rules

The constituents of the indices are regularly checked so that the corresponding index
always represents its asset universe well. It is common to do this on a quarterly basis, see
e.g. Deutsche Boerse AG (2013), MEXBOL (2013) and S&P (2014). In case of CRIX this
reallocation is much faster. In the past, coins have shown a very volatile behavior, not just
in the manner of price volatility. In some weeks, many occur out of nothing in the market
and many others vanish from the market even when they were before very important,
e.g., Auroracoin. This calls for a faster reallocation of the market benchmark than on a
quarterly basis. We choose a monthly reallocation to make sure that CRIX catches the
momentum of the cryptocurrency market well. Therefore, on the last day of every month,
the cryptos which had the highest market capitalization on the last day in the last month
will be checked and the first k will be included in CRIX for the coming month.

Since a review of an index is commonly performed on a quarterly basis the number of
index members of CRIX will be checked on a quarterly basis too. The described procedure
from Section 3 will be applied to the observations from the last three months on the last
day of the third month after the markets closed. The number of index constituents, k,
will be used for the next three months. Thus, CRIX corresponds to a monthly rebalanced
portfolio which number of constituents is reviewed quarterly.
It may happen that some data are missing for some of the analyzed time series. If an

isolated missing value occurs alone in the dataset, meaning that the values before and
after it are not missing, then Missing At Random (MAR) is assumed. This assumption
means that just observed information cause the missingness, Horton and Kleinman (2007).
The Last-Observation-Carried-Forward (LOCF) method is then applied to fill the gap for
the application of the AIC. We did not choose a different approach since a regression or
imputation may alter the data in the wrong direction. By LOCF, we imply no change
and just do not exclude the crypto. If two or more data are missing in a row, then the
MAR assumption may be violated, therefore no method is applied. The corresponding
time series is then excluded from the computation in the derivation period. If data are
missing during the computation of the index values, the LOCF method is applied too.
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This is done to make the index insensitive to this crypto at this time point. CRIX should
mimic market changes, therefore an imputation or regression method for the missing data
would distort the view of the market.

Before we continue, we summarize the rules which were described so far:

• Quarterly altering of the number of index constituents

• Monthly altering of the index constituents

• AIC used for model selection

• Nonparametric estimation of the density

• Application of a top-down approach to select the assets for the subset analysis

• Application of LOCF if trading of an asset stops before next reallocation

5 The CRIX family

Using the described methods and rules from above, three indices will be proposed. This
indices provide a different look at the market.

1. CRIX:
The first and leading index is CRIX. While the choice for the best number of
constituents is made, their numbers are chosen in steps of five. It is common in
practice to construct market indices with a number of constituents which is evenly
divisible by five, see e.g. FTSE (2016), S&P (2014), Deutsche Boerse AG (2013).
Therefore this choosing is performed for CRIX(k), k = 5, 10, 15, . . . . Since the global
minimum for the AIC criterion may involve many index constituents, but a sparse
index is the goal, the search for the optimal model terminates at level j whenever

AIC{ε̂(kj, β), 5} < AIC{ε̂(kj, 1), 0}. (32)

Therefore merely a local optimum will be achieved in most of the cases for Θ = ΘAIC ,
in (23). But the choice is still asymptotically optimal by defining Θ = {ΘAIC |ki ≤
kj∀i}. In Section 6 it will be shown that the performance of the index is already
very good.

2. ECRIX:
The second constructed index is called Exact CRIX (ECRIX). It follows the above
rules too. But the number of its constituents is chosen in steps of 1. Therefore the
set of models contains CRIX(k), k = 1, 2, 3, . . . and stops when

AIC{ε̂(kj, β), 1} < AIC{ε̂(kj, 1), 0}. (33)

3. EFCRIX:
Since the decision procedures for CRIX and ECRIX terminate when the AIC rises
for the first time, Exact Full CRIX will be constructed to visualize whether the
decision procedure works fine for the two covered indices. The intention is to have an
index which may approach the TMI but only in case even small assets help improve
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Figure 2: Performance of CRIX
CRIXindex CRIXcode

the view of the total market, a benchmark for the benchmarks. It’ll be derived with
the AIC procedure, compare Section 3. The decision rule is based on

min
kj ,β

AIC{ε̂(kj, β), 1} (34)

for Θ = ΘAIC , in (23). This index computes the AIC for every possible number of
constituents and what is chosen is the number where the AIC becomes minimal.

6 Performance analysis

The indices CRIX, ECRIX, EFCRIX have been proposed to give insight into the crypto
market. Our RDC crypto database covers data for 331 cryptocurrencies, kindly provided
by CoinGecko. The data used for the analysis cover daily closing data for prices, market
volume and market capitalization in USD for each crypto in the time period from 2014-04-
01 to 2016-08-06. Crypto exchanges are open on the weekends, therefore data for weekend
closing prices exist. Since crypto exchanges do not finish trading after a certain time point
every day, a time point which serves as a closing time has to be defined. CoinGecko used
12 am UTC time zone. One should note that missing data are observed in the dataset,
therefore the last rules from Chapter 4 will come into play.

Figure 2 shows the performance of CRIX, and Figure 3 the differences between CRIX and
both ECRIX and EFCRIX. For the purpose of comparison, the indices were recalibrated
on the recalculation dates since the index constituents change then. We do not provide
each index plot individually since they perform almost equally. However, the AIC method
gave very different numbers of constituents for the corresponding indices. The numbers of
constituents are given in Table 3. For comparison, we provide the number of constituents
under the other discussed model selection criteria too. The variance of Cp was derived
with a GARCH(1,1) model, Bollerslev (1986). The corresponding information for ECRIX
and EFCRIX are given in the same Table, 3. Apparently the methodology of EFCRIX
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causes its number of constituents to become close to maximal in every period. ECRIX has
mostly much fewer constituents than CRIX and EFCRIX due to the fact that this index
just runs until a local optimum. Comparing the number of constituents for CRIX derived
with AIC against the other criteria, one sees that GCV, GFCV and SH tend to choose
more or the same number of constituents than AIC. Also all three criteria suggest the
same result. FPE results in much more constituents than any other criteria for CRIX and
ECRIX. Cp stops at the initial value for CRIX and ECRIX, just for EFCRIX it differs.
For CRIX, ECRIX and EFCRIX, AIC chooses less constituents compared to all other
criteria, except Cp which terminates very early.

AIC GCV GFCV SH Cp FPE
CRIX 18.4500 3.4049 3.4049 3.4049 25.7485 0.0312
ECRIX 444.2490 386.8260 386.8260 386.8260 768.4531 0.0324
EFCRIX 0.0314 0.0324 0.0324 0.0324 165.9407 0.0324

Table 1: Comparison of CRIX, ECRIX, EFCRIX, derived under different penalizations,
against TMI under Mean Squared Error

AIC GCV GFCV SH Cp FPE
CRIX 0.9891 0.9946 0.9946 0.9946 0.9864 1.0000
ECRIX 0.9511 0.9592 0.9592 0.9592 0.9117 1.0000
EFCRIX 1.0000 1.0000 1.0000 1.0000 0.9728 1.0000

Table 2: Comparison of CRIX, ECRIX, EFCRIX, derived under different penalizations,
against TMI under Mean Directional Accuracy

Since the indices CRIX and ECRIX are just optimized until a local optimum, they are
expected to perform less optimal than the EFCRIX against the TMI. Table 1 gives the
Mean Square Error (MSE) and Table 2 the Mean Directional Accuracy (MDA), defined as

MSE{CRIX(k)} = 1
T

T∑
t=1
{CRIX(k)t − TMI(kmax)t}2 (35)

MDA{CRIX(k)} = 1
T

T∑
t=1

I[sign{TMI(kmax)t − TMI(kmax)t−1}

= sign{CRIX(k)t − CRIX(k)t−1}] (36)

where I(·) is the indicator function and sign(·) gives the sign of the respective equation.
The recalibration of the indices on the recalculation date is important for the computation
of the MSE, since altering the constituents may change the future development in terms
of MSE. The MDA is insensitive to the recalibration. Apparently EFCRIX performs best,
which can be explained due to its larger number of index constituents. The CRIX, ECRIX
and EFCRIX are close in terms of the MDA but the MSE is much better for EFCRIX.
Additionally, ECRIX performs worse than CRIX in terms of MSE and MDA. Comparing
all the model selection criteria, we see that FPE has the best performance in terms of
MSE and MDA. This is not surprising since this criteria selected the most constituents.
The more important risk criteria is the MDA, since the direction of the TMI shall be
adequately modeled by the criteria. Table 2 shows that the AIC either performs second
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worst or performs equally good to the other criteria. But the MDA is close to the one of
the outperforming ones. The reason for the lower value is the lower number of constituents.
Interestingly, AIC outperforms in terms of MSE and MDA for EFCRIX, which choses the
global optimum.

CRIX was constructed with steps of five which is common in practice, but this analysis
showed that ECRIX would work well for the crypto market too. Additionally, the analysis
showed that it is indeed unnecessary to choose the global optimal AIC. Even a local
optimum and a much lower number of constituents is able to mimic the market movements
very well in terms of the MDA. Furthermore, even for ECRIX there was more than one
constituent selected most of the time. This shows that Bitcoin, which currently clearly
dominates the market in terms of market capitalization and trading volume, doesn’t lead
the market. Other cryptocurrencies are important for the market movements too.
We are aware that the AIC didn’t outperform the other criteria in terms of MDA and

MSE for the local optimum. But for the global optimum, AIC outperforms while having
sometimes less constituents. We conclude that the AIC works best in search of the global
optimum, but for the local optimum we observed a diverging picture. But the AIC still
performed very well. Due to the theoretical choice for the AIC and its global optimal
behavior, we continue working with the AIC.

CRIX ECRIX EFCRIX
AIC GCV GFCV SH Cp FPE AIC GCV GFCV SH Cp FPE AIC GCV GFCV SH Cp FPE

1 10 10 10 10 5 40 1 4 4 4 1 41 41 41 41 41 1 41
2 30 30 30 30 5 115 5 14 14 14 1 117 98 117 117 117 4 117
3 30 30 30 30 5 160 4 4 4 4 1 162 161 162 162 162 1 162
4 5 45 45 45 5 190 3 3 3 3 1 192 187 192 192 192 14 192
5 15 15 15 15 5 205 1 6 6 6 1 208 206 208 208 208 1 208
6 20 35 35 35 5 215 6 16 16 16 1 215 215 215 215 215 20 215
7 5 5 5 5 5 220 1 1 1 1 1 221 220 221 221 221 10 221
8 15 65 65 65 5 170 3 3 3 3 1 167 153 167 167 167 5 167
9 5 5 5 5 5 220 2 5 5 5 1 223 219 223 223 223 3 223

Table 3: Comparison of AIC, GCV, GFCV, SH, Cp and the FPE method for the selection
of the number of index constituents for the CRIX, ECRIX and EFCRIX in the 9
periods

7 Application to the German stock market

The CRIX methodology was derived with the idea of finding a method which allows
mimicking young and fast changing markets appropriately. But well known major markets
usually change their structure too. We tested the proposed methodology on the German
stock market, which has four major indices: DAX, MDAX, SDAX and TecDAX. The DAX
is used to determine the overall market direction, Janßen and Rudolph (1992). Since it is
chosen from the so called prime segment, it has some prior restrictions. It is interesting
to see whether our methodology yields the DAX as an adequate benchmark for the total
market. Following Definition 4, we define all available stocks as the TMI and apply our
new method to find an appropriate index. Again, the 7-step method from Section 3 was
applied to find the number of constituents, but it starts at 30 members to check if more
constituents are necessary. The method for the identification of k and the reallocation
of the included assets is performed quarterly, like DAX. To be in line with the DAX
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Figure 3: Realized difference between TMI and CRIX (solid), ECRIX (dashed), EFCRIX
(dotdashed)

CRIXfamdiff CRIXcode

reallocation dates, the index calculation will start after the third Friday of September and
the reallocation dates are the third Fridays of December, March, June and September, see
Deutsche Boerse AG (2013).
The data were fetched from Datastream in the period 20000616 until 20151218. We

took all stocks which are German companies and are traded on XETRA. Any time series
for which Datastream reported an error either for the price or market capitalization data
was excluded from the analysis. The index, computed with the new methodology, is called
Flexible DAX (FDAX). One should note that the analysis starts three months after the
starting point of the dataset due to the initialization period of FDAX.
Figure 4 shows the number of members of FDAX and DAX in the respective periods.

Most of the time, the number of index constituents for FDAX is higher than the 30
members of DAX. Just around 2004-2005 is the k more frequently 30. Especially while
the turmoil of the financial markets, starting from 2008/2009, is the number of index
constituents much higher. One might hint that a higher reported variability in one period
should cause an increase in k in the next period, since it was shown that the selection
method depends on the variance, see Section 10. Figure 4 shows that this idea can
partially be supported. The derivation of the conditional variance was performed with a
GARCH(1,1) model, Bollerslev (1986), and the daily results were summed up. Obviously,
in the extreme cases increases the k in the next period, see 2001, 2006 and 2011.
The computation of the MSE and MDA, see Table 4, shows that FDAX is a more

accurate benchmark for the total market as DAX. Since Janßen and Rudolph (1992) state
that DAX may be used to analyze the movements of the total market, an MDA of 92 % is
indeed good. But FDAX mimics the market even better, with an MDA of 96 %. Also the
MSE for FDAX is much lower than the one of DAX. Therefore the methodology fulfilled
its goal to find a sparse, investable and accurate benchmark, depending on the MDA.
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Figure 4: Number of constituents of FDAX (solid), DAX (horizontal solid) and cumulated
monthly variance of FDAX (dashed)

CRIXdaxmembersvar CRIXcode

MSE MDA
FDAX vs. TMI 189.47 0.96
DAX vs. TMI 73769.07 0.92

Table 4: Comparison of DAX with CRIX methodology (FDAX) and rescaled DAX against
TMI

8 Application to Mexican stock market

The Mexican stock market is represented by the IPC35, MEXBOL (2013). One of its
rules is a readjustment of the weights to lower the effect of dominant stocks. In the crypto
market Bitcoin is such a dominant asset. The CRIX methodology could help to circumvent
arbitrary rules and develop an index to represent the market accurately.
The data were fetched from Datastream for the period 19960601 until 20150529 and

cover all Mexican companies listed in Datastream. The specifications of the methodology
are the same as for the German stock market except for the recalculation date. In line
with the methodology of the IPC35, we recalculated the index with the closing data of the
last business days of August, November, February and May, therefore the recalculated
index starts on the first business days of September, December, March and June. The
TMI will be all fetched companies. The choice of k starts with 35 since this is the amount
of constituents of IPC.
Again, the CRIX methodology works well. The MSE is very low compared to the one

for the IPC35 and the MDA gives a much better performance too, see Table 5. We can
conclude that the methodology helped to circumvent the usage of arbitrary rules for the
weights in the rules of the indices and enhances at the same time the performance of the
market index. Figure (5) shows the number of index members of the FIPC compared to
the IPC. Obviously, the methodology also suggests using more than 35 index members
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most of the time which is the number of members of the IPC.

MSE MDA
FIPC vs. TMI 319.25 0.97
IPC vs. TMI 27177417.58 0.91

Table 5: Comparison of IPC with CRIX methodology (FIPC) and rescaled IPC against
TMI
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9 Conclusion

The movements of cryptocurrencies are very different from each other, Elendner et al.
(2016). So studying the entire market of cryptocurrencies requires an instrument which
adequately captures and displays the market movements, an index. But index construction
for cryptocurrencies requires a new methodology to find the right number of index members.
Innovative markets, like the one for cryptocurrency’s, change their structure frequently.
The proposed methods were applied to oracle a new family of indices, which are displayed
and updated on a daily basis on hu.berlin/crix. The performance of the new indices
were studied and it was shown that the dynamic AIC based methodology results in indices
with stable properties. The results show that a market like the crypto market - momentarily
dominated by Bitcoin - still needs a representative index since Bitcoin does not lead the
market. The AIC based method was also applied to the German stock market. The results
yield a more accurate benchmark in terms of MDA. In applying the CRIX methodology
to the Mexican stock market, which is dominated by Telmex, one finds high accuracy of it
in terms of MSE and MDA.
We conclude, that the CRIX technology enhances the construction of an index if the

goal is to find a sparse, investable and accurate benchmark.
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10 Appendix

10.1 Proof of Theorem 2
Proof: Assume normally distributed error terms: ε(k, β) ∼ N{0, σ(k, β)2}, ε̂(k, β) ∼
N{0, σ̂(k, β)2}. Then

logL{ε(k, β)} = −T2 log(2π)− T

2 log σ(k, β)2 − 1
2σ(k, β)2

T∑
t=1

ε(k, β)2
t . (37)

Denote RSS{ε̂(k, β)} = ∑T
t=1 ε̂(k, β)2

t and σ̂(k, β)2 = T−1RSS{ε̂(k, β)}. Then

logL{ε̂(k, β)} = −T2 log(2π)− T

2 log T−1RSS{ε̂(k, β)} − 1
2T−1RSS{ε̂(k, β)}RSS{ε̂(k, β)}

(38)

= −T2 log(2π)− T

2 log T−1RSS{ε̂(k, β)} − T

2 (39)

= −T2 log T−1RSS{ε̂(k, β)}+ C (40)

with C = −T
2 log(2π)− T

2 . Since C does not depend on any model parameters, just on
the data length T , this part of the equation could be omitted.

AIC{ε̂(k, β), s} = T log T−1RSS{ε̂(k, β)}+ 2 · s (41)
= T log σ̂(k, β)2 + 2 · s (42)

The enhancement in the fit to the Total Market Index (TMI) by adding more constituents,
s, determines the degree of improvement of the likelihood.

With the linearity property of the expectation operator, assume without loss of generality

E{ε(kmax)TM} = E{ε(k, β)CRIX} = 0
t ∈ {1, . . . , T}
t−l = 0
s = 1
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σ̂(k, β) = Var{ε̂(k, β)}
= Var{ε(kmax)TM − ε(k, β)CRIX}

=
T∑
t=1

[
log


kmax∑
i=1

PitQi,0(
k∑
i=1

Pi,t−1Qi,0 + β1Pk+1,t−1Qk+1,0)


− log

kmax∑
i=1

Pi,t−1Qi,0(
k∑
i=1

Pi,tQi,0 + β1Pk+1,tQk+1,0)

]2

=
T∑
t=1

[
log


kmax∑
i=1

PitQi,0

k∑
i=1

Pi,t−1Qi,0 +
kmax∑
i=1

PitQi,0β1Pk+1,t−1Qk+1,0


− log


kmax∑
i=1

Pi,t−1Qi,0

k∑
i=1

Pi,tQi,0 +
kmax∑
i=1

Pi,t−1Qi,0β1Pk+1,tQk+1,0


]2

Using the relation log(a+ b) = log(a) + log(1 + b

a
), it results:

=
T∑
t=1

[
log


kmax∑
i=1

PitQi,0

k∑
i=1

Pi,t−1Qi,0

+ log
{

1 +
∑kmax
i=1 PitQi,0β1Pk+1,t−1Qk+1,0∑kmax
i=1 PitQi,0

∑k
i=1 Pi,t−1Qi,0

}

− log

kmax∑
i=1

Pi,t−1Qi,0

k∑
i=1

Pi,tQi,0

+ log
{

1 +
∑kmax
i=1 Pi,t−1Qi,0β1Pk+1,tQk+1,0∑kmax
i=1 Pi,t−1Qi,0

∑k
i=1 Pi,tQi,0

}]2

=
T∑
t=1

(
log


kmax∑
i=1

PitQi,0

k∑
i=1

Pi,t−1Qi,0

− log

kmax∑
i=1

Pi,t−1Qi,0

k∑
i=1

Pi,tQi,0


+
[
log

{
1 + β1Pk+1,t−1Qk+1,0∑k

i=1 Pi,t−1Qi,0

}
− log

{
1 + β1Pk+1,tQk+1,0∑k

i=1 Pi,tQi,0

}])2

(43)

Solving the derivation and writing the terms which do not depend on β1 as At and the
last part of (43) as Bt:

σ̂(k, β) =
T∑
t=1

At + 2 log

kmax∑
i=1

PitQi,0

k∑
i=1

Pi,t−1Qi,0

Bt − 2 log

kmax∑
i=1

Pi,t−1Qi,0

k∑
i=1

Pi,tQi,0

Bt +B2
t

=
T∑
t=1

At + 2Bt

log

kmax∑
i=1

PitQi,0

k∑
i=1

Pi,t−1Qi,0

− log

kmax∑
i=1

Pi,t−1Qi,0

k∑
i=1

Pi,tQi,0


+B2

t

=
T∑
t=1

At + 2Bt

[
ε(kmax)TM − ε(k, 1)CRIX

]
+B2

t

Since normally distributed error terms are assumed, note that β1 = Cov{ε̂(k,1),εk+1}
V ar{εk+1}

, where
εk+1 is the log return of Pi,tQi,0. We see that the change in the variance will depend on
the additional variance which the new constituent can explain, see β1. Furthermore, it
depends on the value of Pk+1,tQk+1,0 relative to ∑k

i=1 Pi,tQi,0, (43), which is the summed
market value of the constituents in the index. This infers that constituents with a higher
market capitalization are more likely to be part of the index. �

This gives support to using the often applied top-down approach, which we use for the
construction of CRIX too.
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