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Abstract

Limit order book contains comprehensive information of liquidity on bid and

ask sides. We propose a Vector Functional AutoRegressive (VFAR) model to

describe the dynamics of the limit order book and demand curves and utilize

the fitted model to predict the joint evolution of the liquidity demand and

supply curves. In the VFAR framework, we derive a closed-form maximum

likelihood estimator under sieves and provide the asymptotic consistency of the

estimator. In application to limit order book records of 12 stocks in NASDAQ
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traded from 2 Jan 2015 to 6 Mar 2015, it shows the VAR model presents a strong

predictability in liquidity curves, with R2 values as high as 98.5 percent for in-

sample estimation and 98.2 percent in out-of-sample forecast experiments. It

produces accurate 5−, 25− and 50−minute forecasts, with root mean squared

error as low as 0.09 to 0.58 and mean absolute percentage error as low as 0.3

to 4.5 percent.

Keywords: Limit order book, Liquidity risk, multiple functional time series

JEL Codes: C13, C32, C53

1 Introduction

Liquidity is a fundamental determinant of market quality. It is important for reg-

ulators, market makers and traders to understand the dynamics of liquidity. An

imbalance in market liquidity creates challenges not just for market participants but

also for the financing structure of the economy in long term. While regulators need to

monitor market liquidity to ensure trade transparency and market stability, market

participants are motivated to forecast liquidity for e.g. optimal execution strategies

on order splitting and submissions.

Liquidity is traditionally measured by some single-valued statistics such as market

tightness of bid-ask spread that is computed with the best bid (buy) and ask (sell)

prices and market depth based on the volumes at the best quotes or related. As a

comparison, Limit Order Book (LOB) contains much more comprehensive information

on liquidity, which matches investors’ orders on bid and ask sides based on the price-

time priority. LOB tells not only the bid-ask spread and the volumes at the best

quotes, but also the queuing orders at various sizes and prices.

The information contained in LOB can be well represented by liquidity curves.

The liquidity curves display accumulated volumes against quoted prices on both bid

and ask sides. Figure 1 gives a graphical illustration, which displays the snapshots

of the liquidity curves of two stocks, Sirius XM Holdings Inc. (SIRI) and Comcast

Corporation (CMCSA), traded on March 4, 2015 at 14:45. The liquidity curves

have V-shape that are monotonically decreasing on the bid side and monotonically

increasing on the ask side. In most cases, there is no crossing of the curves and the

gap at the center represents the bid-ask spread. The gradient of the liquidity curves

reflects the market depth that the steeper the curves are, the less price impact there

is for large orders, and thus the more liquidity is ready to be supplied or consumed
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Figure 1: SIRI and CMCSA bid and ask supply curve at an arbitrary selected time
point. SIRI and CMCSA are the most actively and least actively traded stock in our
sample respectively.

VFARrandBidAskCurvePlot

in market. It observes that liquidity is concentrated on relatively few prices near the

best bid and ask prices, while the tails are relatively flat. This flattening out of the

tail, or the gentle gradient in the tails, implies low liquidity. If a trader buys or sells

in large volumes at the extreme prices, a drastic change is triggered in the price.

Though with limited information, the single-valued liquidity measures are found

to be serially dependent in e.g. Bid-ask spread (e.g. Benston and Hagerman, 1974;

Stoll, 1978; Fleming and Remolona, 1999) and Exchange Liquidity Measure (XLM)

(see Cooper, Groth and Avera, 1985; Gomber, Schweickert and Theissen, 2015). Au-

toRegressive models have been employed to describe the dynamics of the liquidity

measures. Groß-Klußmann and Hautsch (2013) proposed a long memory AutoRe-

gressive conditional Poisson model for the quoted bid-ask spreads. Huberman and

Halka (2001) evidenced the serial dependence of bid-ask spread and depth in the

AutoRegressive model. Härdle, Hautsch and Mihoci (2015) proposed a local adap-

tive multiplicative error model to forecast the high-frequency series of one-minute

cumulative trading volumes of several NASDAQ blue chip stocks.

Serial dependence also exists in limit order demand and supply, see Dierker, Kim,

Lee and Morck (2014). Chordia, Sarkar and Subrahmanyam (2003) documented the

cross-sectional dependence among multiple liquidity measures using a Vector AutoRe-

gressive model for bid-ask spreads, depth, volatility, returns, and order flow in the

stock and bond markets, where a liquidity measure not only depends on its own past
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values, but also those of other measures. Çetin, Jarrow and Protter (2004) introduced

liquidity supply curve for robust arbitrage pricing theory. Härdle, Hautsch and Mi-

hoci (2012) studied the de-seasonalized liquidity supply curves in a limit order book

market using a dynamic semiparametric factor model.

To understand the dynamics of LOB, it is of high relevance to simultaneously

consider the pending quantities deeply queuing on both sides, besides the lead-lag de-

pendence among the single-valued liquidity measures of each curve separately. Public

or private information can cause investors to switch from one side to the other, and

simultaneously market-wide events can result in similar changes to both bid and ask

sides of the limit order book. The joint serial dependence suggests richer dynamics

in limit order book and should be utilized in liquidity analysis. In our study, we em-

ploy a Vector Functional AutoRegressive (VFAR) model to describe the dynamics of

two liquidity curves – demand and supply on bid and ask sides of an electronic open

LOB – simultaneously in a unified framework. We derive a closed-form maximum

likelihood estimator under sieve and provide asymptotic consistency of the VFAR

estimator. The proposed VFAR model is general and can be used for modeling other

multiple functional time series.

We investigate the finite sample performance of the proposed forecast model. In

the application to the LOB records of 12 stocks traded in NASDAQ from 2 Jan

2015 to 6 Mar 2015, we find the VFAR presents a strong predictability in liquidity

curves, with R2 values as high as 98.5 percent for in-sample estimation and 98.2

percent in out-of-sample forecast experiments. It also produces accurate 5−, 25−
and 50−minute forecasts, with root mean squared error as low as 0.09 to 0.58 and

mean absolute percentage error as low as 0.3 to 4.5 percent.

This paper is structured as follows. In Section 2, we describe the LOB data.

Section 3 presents the VFAR model including estimation and asymptotic property.

Section 4 reports the analytical results for both in-sample and out-of-sample in real

data analysis. Section 5 provides concluding remarks. All of the theoretical proofs

are contained in the Appendix.

2 Data

We consider 12 stocks traded in the National Association of Securities Dealers Au-

tomated Quotations (NASDAQ) stock market from 2 Jan 2015 to 6 Mar 2015 (44

trading days). The limit order book (LOB) records were obtained from LOBSTER

4



through the Research Data Center of the Collaborative Research Center 649 (https:

//sfb649.wiwi.hu-berlin.de/fedc/). NASDAQ is a continuous auction trading

platform where the normal continuous trading hours are between 9:30 a.m. to 4:00

p.m. from Monday to Friday. During the normal trading, if an order cannot be ex-

ecuted immediately or completely, the remaining volumes are queued in the bid and

ask sides according to a strict price-time priority order.

The 12 stocks are Apple Inc. (AAPL), Microsoft Corporation (MSFT), Intel

Corporation (INTC), Cisco Systems, Inc. (CSCO), Sirius XM Holdings Inc. (SIRI),

Applied Materials, Inc. (AMAT), Comcast Corporation (CMCSA), AEterna Zentaris

Inc. (AEZS), eBay Inc. (EBAY), Micron Technology, Inc. (MU), Whole Foods

Market, Inc. (WFM), and Starbucks Corporation (SBUX). These stocks cover a wide

range in terms of market capitalization, liquidity tightness and depth. The market

value of AAPL is USD737.41 billions the largest compared to USD35.38 millions

for the smallest sample stock AEZS. The 5-minute queueing volume in the LOB

ranges from 3.73 millions for the most active stock (SIRI) to 0.02 millions for the

least active stock (CMCSA) on the bid side and 7.61 millions (SIRI) to 0.03 millions

(SBUX) on the ask side. Moreover, the average value of the bid-ask spread varies

from 0.0062(AEZS) to 0.0213 (SBUX), see Table 1.

Ticker Symbol
Mean spread Bid vol Ask vol

(USD) min max min max
AAPL 0.0125 52,267 710,020 61,305 1,298,696
MSFT 0.0101 90,344 928,319 122,377 621,471
INTC 0.0102 158,900 557,251 146,959 1,142,641
CSCO 0.0101 134,790 1,316,058 266,455 4,458,672
SIRI 0.0101 1,266,528 3,725,304 3,002,680 7,605,467
AMAT 0.0102 78,944 334,794 180,749 787,983
CMCSA 0.0106 23,668 128,916 40,638 146,724
AEZS 0.0062 145,635 767,785 472,689 1,158,740
EBAY 0.0110 42,060 160,572 52,813 415,033
MU 0.0107 95,907 497,910 102,357 595,200
WFM 0.0153 34,538 114,386 41,019 159,488
SBUX 0.0213 27,467 151,022 34,914 166,932

Table 1: Summary statistics on liquidity measures for the 12 stocks traded in NAS-
DAQ. Sampling frequency is 5 minutes.

The LOB records contain the quoted prices and volumes up to 100 price levels on

each side. All the quotes are timestamped with decimal precision up to nanoseconds
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(= 10−9 seconds). In total, the (buy or sell) order book contains 400 values from

the best ask price, best ask volume, best bid price, and best bid volume until the

100-th best ask (bid) price and corresponding volume. For unoccupied price levels,

the variables are filled with 9999999999 for ask and -9999999999 for bid, with volumes

being 0.

To remove the impact of microstructure noise, the sampling frequency is set to

be 5 minutes for a good strike between bias and variance, see Aı̈t-Sahalia, Mykland

and Zhang (2005) and Zhang and Aı̈t-Sahalia (2005). The first 15 minutes after

opening and the last 5 minutes before closing are discarded to eliminate the mar-

ket opening and closing effect. Moreover, the accumulated bid and ask volumes are

log-transformed when constructing liquidity curves to reduce the impact of extraor-

dinarily large volumes. After the data processing, there are 75 pairs of bid and ask

liquidity curves for each stock on each trading day. Over the whole sample period

of 44 trading days, it amounts to 3, 300 pairs of bid and ask supply curves for each

stock.

The liquidity curves, containing the complete information in LOB, exhibit signif-

icant serial dependence. As an illustration, Figure 2 shows the sample cross corre-

lations between the log-accumulated volumes at best bid and ask prices for 6 stocks

including AAPL with the largest market value, AEZS with the smallest value and

the smallest bid-ask spread on average, CMCSA the least active stock and three well-

known MSFT, INTL and EBAY. While the simultaneous dependence between the bid

and ask sides is insignificant or negatively correlated, there is positive dependence on

the lagged values of the opposite side. Similar features are observed in the other 6

stocks. The bid-ask cross dependency motivates analysing the two liquidity curves

jointly.

3 Vector Functional AutoRegressive Model

In this section, we present the Vector Functional AutoRegressive (VFAR) setup that is

directly applicable to multiple (e.g. bivariate) continuous curves over time. We show

how to estimate the functional parameters, with the help of B-spline expansion and

sieve, and provide the asymptotic consistency of the estimator. In functional domain,

Bosq (2000) has proposed Functional AutoRegressive (FAR) model for univariate

functional time series and developed Yule-Walker estimation (see also Besse, Cardot

and Stephenson, 2000; Kim, Chaudhuri and Shin, 2015; Guillas, 2001; Antoniadis

6
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and Sapatinas, 2003; Kokoszka and Zhang, 2010). Mourid and Bensmain (2006)

proposed a maximum likelihood estimation with Fourier expansions. Chen and Li

(2015) adopted an adaptive approach to extend the applicability of the FAR model

in both stationary and non-stationary situations. It is worth noting that the proposed

VFAR model is able to analyze multiple functional time series jointly. Furthermore,

the maximum likelihood estimator is derived with B-spline expansions that provides

more flexibility in fit than e.g. the Fourier expansion.

Our interest is to model the joint dynamic dependence of liquidity curves on the

bid and ask sides. Let X
(a)
t (τ) and X

(b)
t (τ) for τ ∈ [0, 1] be the two processes in the

function space C[0,1] of real continuous functions on [0, 1]. The superscripts (b) and (a)

represent bid and ask respectively. Each pair of the liquidity curves can be thought as

a data object at time t = 1, · · · , n, and together, they form a time series of n functional

objects each on the bid and the ask sides. At each time t, the liquidity curves X
(b)
t

and X
(a)
t are observed containing the quoted prices as well as the corresponding log-

accumulated volumes. To handle the two continuous liquidity curves simultaneously,

we propose a Vector Functional AutoRegressive (VFAR) model:[
X

(a)
t − µa

X
(b)
t − µb

]
=

[
ρaa ρab

ρba ρbb

][
X

(a)
t−1 − µa

X
(b)
t−1 − µb

]
+

[
ε

(a)
t

ε
(b)
t

]
(1)

where (µa, µb)
> are the mean functions and the operators ρaa, ρab, ρba, and ρbb measure

the cross-dependence among the liquidity demand and supply curves on their lagged

values. The operators are bounded linear operator from H to H, a real separable

Hilbert space endowed with its Borel σ-algebra BH. The innovations {ε(a)
t }nt=1 and

{ε(b)
t }nt=1 are strong H-white noise, i.i.d. with zero mean and 0 < E‖ε(a)

1 ‖2 = · · · =

E‖ε(a)
n ‖2 <∞ and 0 < E‖ε(b)

1 ‖2 = · · · = E‖ε(b)
n ‖2 <∞, where the norm ‖·‖ is induced

from the inner product 〈·, ·〉 of H. The innovation processes ε
(a)
t and ε

(b)
t need not be

cross-independent.

The operators ρ can be represented by a convolution kernel Hilbert-Schmidt op-

erator, which gives

X
(a)
t (τ)− µa(τ) =

∫ 1

0

κab(τ − s)
{
X

(b)
t−1(s)− µb(s)

}
ds

+

∫ 1

0

κaa(τ − s)
{
X

(a)
t−1(s)− µa(s)

}
ds+ ε

(a)
t (τ)

X
(b)
t (τ)− µb(τ) =

∫ 1

0

κbb(τ − s)
{
X

(b)
t−1(s)− µb(s)

}
ds

8



+

∫ 1

0

κba(τ − s)
{
X

(a)
t−1(s)− µa(s)

}
ds+ ε

(b)
t (τ) (2)

where the kernel function κxy ∈ L2([0, 1]) and ‖κxy‖2 < 1 for xy = aa, ab, ba, and bb,

where ‖ · ‖2 denotes the L2 norm in C[0,1].

We expand the functional terms in (2) using B-spline basis function in L2([0, 1]):

Bj,m(τ) =
τ − wj

wj+m−1 − wj
Bj,m−1(τ) +

wj+m − τ
wj+m − wj+1

Bj+1,m−1(τ), m ≥ 2,

where m is the order, w1 ≤ · · · ≤ wJ+m denote the sequence of knots, and

Bj,1(τ) =

1 if wj ≤ τ < wj+1,

0 otherwise.

We obtain:

X
(a)
t (τ) =

∑∞
j=1 d

a
t,jBj,m(τ), X

(b)
t (τ) =

∞∑
j=1

dbt,jBj,m(τ),

ε
(a)
t (τ) =

∑∞
j=1 d

a
j (ε

(a)
t )Bj,m(τ), ε

(b)
t (τ) =

∞∑
j=1

dbj(ε
(b)
t )Bj,m(τ),

κaa(τ) =
∑∞

j=1 c
aa
j Bj,m(τ), κbb(τ) =

∞∑
j=1

cbbj Bj,m(τ),

κab(τ) =
∑∞

j=1 c
ab
j Bj,m(τ), κba(τ) =

∞∑
j=1

cbaj Bj,m(τ).

where dat,j and dbt,j are the B-spline coefficients for the observed functional data X
(a)
t

and X
(b)
t respectively; daj (ε

(a)
t ) and dbj(ε

(b)
t ) are the B-spline coefficients for the un-

known innovations ε
(a)
t and ε

(b)
t respectively; and caaj , cabj , cbaj , and cbbj are the B-spline

coefficients for the unknown kernel functions κaa, κab, κba, and κbb respectively.

Plug-in the B-spline expansions to the VFAR model (2), and let pah be the coef-

ficients associated with the expansion of µa(τ) −
∫ 1

0
κab(τ − s)µb(s)ds −

∫ 1

0
κaa(τ −

s)µa(s)ds while pbh be the coefficients for µb(τ) −
∫ 1

0
κbb(τ − s)µb(s)ds −

∫ 1

0
κba(τ −

s)µa(s)ds, we have:

X
(a)
t (τ) =

∞∑
h=1

pahBh,m(τ) +

∫ 1

0

{ ∞∑
j=1

∞∑
i=1

caaj d
a
t−1,iBj,m(τ − s)Bi,m(s)

}
ds

9



+

∫ 1

0

{ ∞∑
j=1

∞∑
i=1

cabj d
b
t−1,iBj,m(τ − s)Bi,m(s)

}
ds+

∞∑
j=1

daj (ε
(a)
t )Bj,m(τ)

=
∞∑
h=1

pahBh,m(τ)

+
∞∑
h=1

∞∑
i=1

{ ∞∑
j=1

(wj+m − wj+1

wj+m − wj
− wj+m+1 − wj+2

wj+m+1 − wj+1

)
caaj − caah

}
wi+m − wi

m
dat−1,iBh,m(τ)

+
∞∑
h=1

∞∑
i=1

{ ∞∑
j=1

(wj+m − wj+1

wj+m − wj
− wj+m+1 − wj+2

wj+m+1 − wj+1

)
cabj − cabh

}
wi+m − wi

m
dbt−1,iBh,m(τ)

+
∞∑
j=1

daj (ε
(a)
t )Bj,m(τ)

X
(b)
t (τ) =

∞∑
h=1

pbhBh,m(τ) +

∫ 1

0

{ ∞∑
j=1

∞∑
i=1

cbbj d
b
t−1,iBj,m(τ − s)Bi,m(s)

}
ds

+

∫ 1

0

{ ∞∑
j=1

∞∑
i=1

cbaj d
a
t−1,iBj,m(τ − s)Bi,m(s)

}
ds+

∞∑
j=1

dbj(ε
(b)
t )Bj,m(τ)

=
∞∑
h=1

pbhBh,m(τ)

+
∞∑
h=1

∞∑
i=1

{ ∞∑
j=1

(wj+m − wj+1

wj+m − wj
− wj+m+1 − wj+2

wj+m+1 − wj+1

)
cbbj − cbbh

}
wi+m − wi

m
dbt−1,iBh,m(τ)

+
∞∑
h=1

∞∑
i=1

{ ∞∑
j=1

(wj+m − wj+1

wj+m − wj
− wj+m+1 − wj+2

wj+m+1 − wj+1

)
cbaj − cbah

}
wi+m − wi

m
dat−1,iBh,m(τ)

+
∞∑
j=1

dbj(ε
(b)
t )Bj,m(τ) (3)

Rearranging the above equations, we obtain the relationship of the B-spline coeffi-

cients in the framework of VFAR:

dat,h = pah +
∑∞

i=1

{∑∞
j=1

(
wj+m−wj+1

wj+m−wj −
wj+m+1−wj+2

wj+m+1−wj+1

)
caaj − caah

}
wi+m−wi

m
dat−1,i

+
∑∞

i=1

{∑∞
j=1

(
wj+m−wj+1

wj+m−wj −
wj+m+1−wj+2

wj+m+1−wj+1

)
cabj − cabh

}
wi+m−wi

m
dbt−1,i + dah(ε

(a)
t )

dbt,h = pbh +
∑∞

i=1

{∑∞
j=1

(
wj+m−wj+1

wj+m−wj −
wj+m+1−wj+2

wj+m+1−wj+1

)
cbbj − cbbh

}
wi+m−wi

m
dbt−1,i

+
∑∞

i=1

{∑∞
j=1

(
wj+m−wj+1

wj+m−wj −
wj+m+1−wj+2

wj+m+1−wj+1

)
cbaj − cbah

}
wi+m−wi

m
dat−1,i + dbh(ε

(b)
t ) (4)

The original problem of estimating the functional parameters is converted to the
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estimation of the B-spline coefficients. It is however impossible to estimate infinite

coefficients given finite sample.

3.1 Sieve estimator

We introduce a sequence of subsets - a sieve for a parameter space Θ, is denoted by

{ΘJn} where ΘJn ⊆ ΘJn+1 and the union of subsets
⋃

ΘJn is dense in the parameter

space. While allowing the dimension of the subset to increase when sample size gets

larger, we will estimate the unknown parameters on the finite subset of the parameter

space. The sieve is defined as follows:

ΘJn =
{
κxy ∈ L2 | κxy(τ) =

Jn∑
l=1

cxyl Bl,m(τ), τ ∈ [0, 1],
Jn∑
l=1

l2(cxyl )2 ≤ vJn

}
(5)

where Jn → +∞ as n → +∞ and v is some known positive constant such that

without any sacrifice of the growth rate of Jn, the constraint for cxyl can be satisfied

generally, see e.g. Grenander (1981) on the theory of sieves.

Under the sieve with Jn, Equation (4) can be represented in matrix form, which

yields a form of Vector AutoRegressive (VAR) of order 1:

dat,1
...

dat,Jn
dbt,1
...

dbt,Jn


=



pa1
...

paJn
pb1
...

pbJn


+



raa1,1 · · · raa1,Jn
rab1,1 · · · rab1,Jn

...
. . .

...
...

. . .
...

raaJn,1 · · · raaJn,Jn rabJn,1 · · · rabJn,Jn
rba1,1 · · · rba1,Jn rbb1,1 · · · rbb1,Jn

...
. . .

...
...

. . .
...

rbaJn,1 · · · rbaJn,Jn rbbJn,1 · · · rbbJn,Jn





dat−1,1
...

dat−1,Jn

dbt−1,1
...

dbt−1,Jn


+



da1(ε
(a)
t )

...

daJn(ε
(a)
t )

db1(ε
(b)
t )

...

dbJn(ε
(b)
t )


(6)

where rxyh,i denotes

{∑Jn
j=1

(
wj+m−wj+1

wj+m−wj −
wj+m+1−wj+2

wj+m+1−wj+1

)
cxyj − c

xy
h

}
wi+m−wi

m
, for xy = aa,

ab, ba, and bb. Equation (6) can be also represented as:

yt = v + Cyt−1 + ut (7)

where yt =

(
dat,1, · · · , dat,Jn , d

b
t,1, · · · , dbt,Jn

)>
, v =

(
pa1, · · · , paJn , p

b
1, · · · , pbJn

)>
, ut =(

da1(ε
(a)
t ), · · · , daJn(ε

(a)
t ), db1(ε

(b)
t ), · · · , dbJn(ε

(b)
t )

)>
, and C be the matrix with elements

11



rxyh,i in (6).

Assuming the presample value y0 is available, define:

Y = (y1, · · · , yn),

B = (v, C),

Zt =

[
1

yt

]
,

Z = (Z0, · · · , Zn−1),

U = (u1, · · · , un),

y = vec(Y ),

β = vec(B),

u = vec(U),

K = 2Jn.

where vec is the column stacking operator. Using the notations, for t = 1, · · · , n, we

can write (7) compactly as the following:

Y = BZ + U (8)

By applying vec operator to (8) yields

vec(Y ) = vec(BZ) + vec(U)

= (Z> ⊗ IK)vec(B) + vec(U)

or equivalently,

y = (Z> ⊗ IK)β + u,

where ⊗ is the Kronecker product.

We impose an assumption that the B-spline coefficients daj (ε
(a)
t ) are independently

and identically Gaussian distributed with mean zero and constant variance σ2
j,a. The

same applies for dbj(ε
(b)
t ) with σ2

j,b. Following Geman and Hwang (1982), we define

the likelihood function for VFAR over the approximating subspace (5) of the original

parameter space. Assuming

u = vec(U) =

u1

...

un

 ∼ N (0, In ⊗ Σu),

12



the probabilistic density of u is

fu(u) =
1

(2π)Kn/2

∣∣∣In ⊗ Σu

∣∣∣− 1
2

exp

{
− 1

2
u>(In ⊗ Σ−1

u )u

}
.

In addition,

u =


IK 0
−C . . .

. . . . . .

0 −C IK

 (y − v) +


−C
0
...

0

 y0,

where v = (v, · · · , v)> is a (Kn× 1) vector. Consequently, ∂u
∂y>

is a lower triangular

matrix with unit diagonal which has unit determinant. Therefore using u = y −
(Z> ⊗ IK)β, the transition density is as follows:

g
(
X

(a)
t , X

(b)
t , X

(a)
t−1, X

(b)
t−1, ρ

aa, ρab, ρba, ρbb
)

= fy(y) =
∣∣∣ ∂u

∂y>

∣∣∣fu(u)

=
1

(2π)Kn/2

∣∣∣In ⊗ Σu

∣∣∣− 1
2

exp

{
− 1

2

(
y − (Z> ⊗ IK)β

)>
(In ⊗ Σ−1

u )
(
y − (Z> ⊗ IK)β

)}
.

The (approximated) log-likelihood function is:

`
(
X

(a)
1 , · · · , X(a)

n , X
(b)
1 , · · · , X(b)

n ; ρaa, ρab, ρba, ρbb
)

= `(β,Σu)

= −Kn
2

log 2π − n

2
log
∣∣Σu

∣∣− 1

2

(
y − (Z> ⊗ IK)β

)>
(In ⊗ Σ−1

u )
(
y − (Z> ⊗ IK)β

)
= −Kn

2
log 2π − n

2
log
∣∣Σu

∣∣− 1

2

n∑
t=1

(
yt − v − Cyt−1

)>
Σ−1
u

(
yt − v − Cyt−1

)
= −Kn

2
log 2π − n

2
log
∣∣Σu

∣∣− 1

2

n∑
t=1

(
yt − Cyt−1

)>
Σ−1
u

(
yt − Cyt−1

)
+ v>Σ−1

u

n∑
t=1

(
yt − Cyt−1

)
− n

2
v>Σ−1

u v

= −Kn
2

log 2π − n

2
log
∣∣Σu

∣∣− 1

2
tr
(

(Y −BZ)>Σ−1
u (Y −BZ)

)
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and the first order partial differentiations are as follows:

∂`

∂β
= (Z ⊗ IK)(In ⊗ Σ−1

u )
(
y − (Z> ⊗ IK)β

)
= (Z ⊗ Σ−1

u )y − (ZZ> ⊗ Σ−1
u )β

∂`

∂Σu

= −n
2

Σ−1
u +

1

2
Σ−1
u (Y −BZ)(Y −BZ)>Σ−1

u

(9)

By equating the first order partial derivatives in (9) to zero, we obtain the maximum

likelihood estimators:

β̂ =
{

(ZZ>)−1Z ⊗ IK
}

y, or equivalently,

B̂ = (v̂, Ĉ) = Y Z>(ZZ>)−1

Σ̂u =
1

n
(Y −BZ)(Y −BZ)>

(10)

The first column of Y Z>(ZZ>)−1 in (10) is the estimator for v =

(
pa1, · · · , paJn , p

b
1,

· · · , pbJn

)>
. To show the estimator for cxyj for xy = aa, ab, ba, bb as in (2), we further

define the following notations:

W = diag
( m

w1+m − w1

, · · · , m

wJn+m − wJn
,

m

w1+m − w1

, · · · , m

wJn+m − wJn

)
,

qj =
wj+m − wj+1

wj+m − wj
− wj+m+1 − wj+2

wj+m+1 − wj+1

,

θ1 = (caa1 , · · · , caaJn , c
ba
1 , · · · , cbaJn)>,

θ2 = (cab1 , · · · , cabJn , c
bb
1 , · · · , cbbJn)>,

θ = (θ1, · · · , θ1, θ2, · · · , θ2),

Q =



q1 − 1 q2 · · · qJn 0
q1 q2 − 1 · · · qJn
...

...
. . .

...

q1 q2 · · · qJn − 1

q1 − 1 q2 · · · qJn
q1 q2 − 1 · · · qJn
...

...
. . .

...

0 q1 q2 · · · qJn − 1


,

where θ contains Jn columns of θ1 and Jn columns of θ2. Therefore we have the
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estimator for cxyj for xy = aa, ab, ba, bb as follows:

θ̂ = Q−1Y Z>(ZZ>)−1(02Jn×1, I2Jn×2Jn)>W

3.2 Asymptotic property

We now derive the consistency results of the sieve estimators. Let H(ρ,ψ) denote

the conditional entropy between a set of operators ρ = (ρaa, ρab, ρba, ρbb) and a given

set of operators ψ:

H(ρ,ψ) = Eρ
[

log g(X
(a)
t , X

(b)
t , X

(a)
t−1, X

(b)
t−1,ψ)

]
.

The growth of Jn is determined by the following two conditions:

C1: If there exists a sequence {ρJn} such that ρJn ∈ ΘJn∀n and H(ρ0|ΘJn ,ρJn) →
H(ρ0|ΘJn ,ρ0|ΘJn ), then

∥∥∥ρJn−ρ0|ΘJn

∥∥∥
HS
→ 0; meaning each

∥∥∥ρxyJn−ρxy0|ΘJn

∥∥∥
HS
→

0, for xy = aa, ab, ba, bb. Here ρ0|ΘJn denotes the projection of the set of true

operators ρ0 on the sieve ΘJn .

C2: There exists a sequence {ρJn} described in C1 such that H(ρ0|ΘJn ,ρJn) →
H(ρ0|ΘJn ,ρ0|ΘJn ).

The norm ‖·‖S is a Hilbert-Schmidt norm for the convolution kernel operator. Recall

that a linear operator ρ on a Hilbert space H with norm ‖·‖ and inner product 〈·, ·〉 is

Hilbert-Schmidt if ρ(·) =
∑

j λj〈·, ej〉fj, where {ej} and {fj} are orthonormal bases of

H and {λj} is a real sequence such that
∑

j λ
2
j <∞. The convolution kernel operator

satisfies the definition and its Hilbert-Schmidt norm is ‖ρ‖S = (
∑

j λ
2
j)

1/2. The

Hilbert-Schmidt norm is chosen for our study because of the fact that the convolution

kernel operator defined in our paper forms a class of operators embedded in the whole

space of Hilbert-Schmidt operators and for any convolution kernel operator ρ, we have

the Hilbert-Schmidt norm of ρ equal to the L2 norm of its kernel function, that is

‖ρ‖HS = ‖κ‖2.

Theorem 3.1 Assume {ΘJn} is chosen such that conditions C1 and C2 are in force.

Suppose that for each δ > 0, we can find subsets Γ1,Γ2, · · · ,ΓlJn of ΘJn, Jn = 1, 2, · · ·
such that

(i) DJn ⊆
⋃lJn
k=1 Γk, where DJn = {ρ ∈ ΘJn|H(ρ0|ΘJn ,ρ) ≤ H(ρ0|ΘJn , ρJn)− δ} for

every δ > 0 and every Jn.
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(ii)
∑+∞

n=1 lJn(ϕJn)n < +∞, where given l sets Γ1, · · · ,Γl in ΘJn , where ϕJn =

supk inft≥0 Eρ0|ΘJn
exp

{
t log

g(X
(a)
t ,X

(b)
t ,X

(a)
t−1,X

(b)
t−1,Γk)

g(X
(a)
t ,X

(b)
t ,X

(a)
t−1,X

(b)
t−1,ρJn )

}
.

Then we have supρ̂n∈Mn
Jn
‖ρ̂n − ρ0|ΘJn‖HS → 0 a.s.

Note that in Theorem 3.1, g(X
(a)
t , X

(b)
t , X

(a)
t−1, X

(b)
t−1,Γk) = supψ∈Γk

g(X
(a)
t , X

(b)
t ,

X
(a)
t−1, X

(b)
t−1,ψ). We define the set of all ML estimators on ΘJn given the sample size n

as Mn
Jn

= {ρ ∈ ΘJn|`(X
(a)
1 , · · · , X(a)

n , X
(b)
1 , · · · , X(b)

n ;ρ) = supψ∈ΘJn
`(X

(a)
1 , · · · , X(a)

n ,

X
(b)
1 , · · · , X(b)

n ;ψ)}. The proof of Theorem 3.1 shows the convergence of the ML esti-

mator to ρ0|ΘJn , the projections of the true operators on sieve, see Appendix. Together

with the convergence of ρ0|ΘJn to the true set of operators ρ0 as the sieve dimension

grows, we prove that the ML estimator converges to the true set of operators ρ0.

Theorem 3.2 If Jn = O(n1/3−η) for η > 0, then ‖κ̂Jn − κ0|ΘJn‖2 → 0 a.s. when

n→ +∞ and ‖ · ‖2 is the L2 norm in C[0,1].

κ̂Jn = (κ̂aa,Jn , κ̂ab,Jn , κ̂ba,Jn , κ̂bb,Jn) is the set of sieve estimators on ΘJn and κ0|ΘJn =

(κaa,0|ΘJn , κab,0|ΘJn , κba,0|ΘJn , κbb,0|ΘJn ) is the projection of the set of true kernel func-

tions κ0 on ΘJn. ‖κ̂Jn −κ0|ΘJn‖2 → 0 a.s. means that each ‖κ̂xy,Jn − κxy,0|ΘJn‖2 → 0

a.s. for xy = aa, ab, ba, bb.

By checking the conditions of Theorem 3.1, we can achieve the proof of Theorem

3.2. The proof is detailed in the Appendix. As n, Jn → ∞, we have κ0|ΘJ → κ0 as

κxy,0|ΘJ in κ0|ΘJ is just the B-spline truncation of the corresponding true kernel κxy,0

in κ0 on ΘJn . Finally we have the sieve estimator κ̂Jn converges to the true set of

kernel functions κ0.

4 Empirical applications of the VFAR model

In this section, we apply the VFAR model to estimate the joint dynamics of the

liquidity demand and supply curves and investigate its in-sample and out-of-sample

predictability.

4.1 In-sample estimation

We conduct in-sample estimation based on the liquidity demand and supply curves

over 44 trading days from date 2 Jan 2015 to 6 Mar 2015. We employs B-spline
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expansions with equally-spaced price percentile as nodes and Jn = 20 in the sieve.

There are in total 20 coefficients for the bid and another 20 for the ask liquidity

curves. Moreover, we perform estimation with the Random Walk (RW) model of no

drift, where the liquidity curves are directly estimated by their most recent curves

at the previous time point. Though simple, random walk provides a general good

predictability and hard to beat under market efficiency.

We use three measures as indicators of predict performance, the root mean squared

estimation error (RMSE) and the mean absolute percentage error (MAPE) for accu-

racy, and R2 for the explanatory power:

RMSE =

√√√√∑xy=a,b

∑n
t=1

∑
τ

{
X

(xy)
t (τ)− X̂(xy)

t (τ)
}2

N

MAPE =

∑
xy=a,b

∑n
t=1

∑
τ

∣∣∣X(xy)
t (τ)−X̂(xy)

t (τ)

∣∣∣
X

(xy)
t (τ)

N

R2 = 1−

∑
xy=a,b

∑n
t=1

∑
τ

{
X

(xy)
t (τ)− X̂(xy)

t (τ)
}2

∑
xy=a,b

∑n
t=1

∑
τ

{
X

(xy)
t (τ)− X̄

}2 (11)

We calculate these measures for the estimated liquidity curves in the VFAR models

and the alternative RW model.

Table 2 reports the R2, RMSE and MAPE of the estimated liquidity curves in the

VFAR model. It shows that VFAR provides high explanatory power for all the stocks,

with R2 ranging from 92 percent (AAPL) to 98 percent (AEZS), RMSE smaller than

0.34 (AAPL) and MAPE lower than 3.61 percent. On the right panel, the alternative

RW model is compared with the VFAR model by calculating the ratio of each measure.

In each column, the number in bold-face indicates the best relative performance of

VFAR for each stock and performance measure.

Table 2 shows that, without exception, the VFAR model is always better than

the RW model. In terms of R2, VFAR outperforms by up to 3 percent (AAPL and

CMCSA). As for estimation accuracy, the relative performance reaches to 13 percent

in MAPE (CSCO) and at least 9 percent (SIRI, the most active stock) and up to 45

percent (AEZS that has the smallest bid-ask spread on average).

To visualize the in-sample fit, Figure 3 depicts the estimated bid and ask supply

curves vs. the observed ones at an arbitrarily selected date, 24 February 2015 at
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Ticker Symbol
VFAR RW vs VFAR

R2 RMSE MAPE R2 RMSE MAPE
AAPL 92.03% 0.34 3.61% 0.97 1.18 1.05
MSFT 95.19% 0.18 0.95% 0.98 1.16 1.07
INTC 94.79% 0.19 0.92% 0.98 1.15 1.07
CSCO 96.16% 0.19 0.86% 0.99 1.13 1.06
SIRI 98.29% 0.09 0.29% 1.00 1.09 1.00
AMAT 95.83% 0.18 0.89% 0.99 1.15 1.09
CMCSA 93.39% 0.19 1.20% 0.97 1.18 1.13
AEZS 98.48% 0.42 2.18% 0.98 1.45 1.05
EBAY 94.88% 0.23 1.55% 0.98 1.15 1.06
MU 95.14% 0.26 1.17% 0.98 1.16 1.08
WFM 95.52% 0.20 1.57% 0.98 1.16 1.01
SBUX 94.77% 0.22 2.51% 0.98 1.17 1.05

Table 2: R2, RMSE, and MAPE for in-sample estimation of the 12 stocks

3p.m. for four stocks, AAPL, AMAT, AEZS and SIRI, representing heterogeneous

stocks in terms of market capitalization and liquidity. The estimated curves display

V-shape, and reasonably trace both the actual queuing orders displayed as discrete

dots as well as the smoothed liquidity curves in grey colour. Moreover, the accuracy

is stable in the middle around the best quotes and also the tails.

4.2 Forecast

We make an out-of-sample forecast for the liquidity curves starting from the 31st

trading day onwards and predict 1−, 5− and 10−step ahead forecasts that correspond

to 5−, 25− and 50−minute ahead liquidity curves respectively. The first pair of

forecasted curves is for time t = 2251, based on the past 30 trading days of 30× 75 =

2250 functional objects. Each time, we move forward one period, i.e. 5 minutes at a

time and perform re-estimation and forecast until reaching the end of the sample at

t = 3300.

Figure 4 gives graphical illustrations of the forecasted liquidity curves for AAPL

with the VFAR model. The forecasts closely trace the realized liquidity curves. What

is dramatic is its capacity to catch the dynamic movements of the liquidity curves

over the period from 17 February to 06 March 2015 for different forecast horizon from

5− to 50−minute.

Table 3 reports the forecast RMSE, MAPE and predict power for liquidity curves

of the 12 stocks. Even if in the worst case, the VFAR approach in forecasting is
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Figure 3: Estimated bid (and ask) supply curves vs. the actually observed

VFARrandVfarPlot
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able to achieve high R2 ranging from 91.13 percent (1-step AAPL) to 83.74 percent

(10-step AAPL), low RMSE of 0.48 (1-step AEZS) to 0.58 (10-step AEZS), and low

MAPE of 3.61 percent (1-step AAPL) to 4.49 percent (10-step AAPL). In addition

to the forecasts from the VFAR model, we also compute forecasts from the random

walk model, see Table 4. Again, the VFAR model dominates the RW model across

forecast horizons and forecast measures. Though the improvement in R2 is weak,

the advantage is tremendous in terms of the reduction in the RMSE of the VFAR

model reaches about 4 percent (1-step SIRI) in the worst case and 36 percent (1-step

AEZS) and 40 percent (5-step AEZS) in the best case. Compared with the random

walk model, the VFAR model does not always have an absolute advantage for the

MAPE comparison. As for MAPE, only in 5 out of 36 instances, we have the RW

performing better than VFAR. In the other 31 cases, VFAR outperforms the RW by

up to 20 percent. The relative superior performance grows as the forecast horizon

increases, indicating that the utilization of cross-dependence in liquidity curves helps

to improve out-of-sample prediction.

To summarize, the proposed VFAR model is able to successfully predict the liq-

uidity curves over various forecasting periods. These results can be applied to various

financial and economics applications, for example, deriving an optimal trading strat-

egy and forecasting of the demand and supply elasticities.

5 Conclusion

Predictions of future liquidity supply and demand in the limit order book (LOB) helps

in analyzing optimal splitting strategies for large orders to reduce cost, see Härdle

et al. (2012). To capture not only the volume around the best bid and ask price in

the LOB, but also the pending volumes more deeply in the book, it becomes a high-

dimensional problem. In addition, we see significant cross-dependency of the bid and

ask side of the market in Section 3. We proposed a Vector Functional AutoRegressive

(VFAR) model to model and forecast LOB liquidity supply-demand curves, taking

into consideration of the bid-ask cross dependency.

The model is applied to 12 stocks in the National Association of Securities Dealers

Automated Quotations (NASDAQ) stock market. It is shown that our model gives

R2 values as high as 98.5 percent for in-sample estimation. In out-of-sample forecast

experiments, it produces accurate 5−, 25− and 50−minutes forecasts, with mean

absolute percentage error as low as 0.3 to 4.5 percent. Most important, the VFAR
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Figure 4: Dynamics of multi-step ahead forecast for AAPL. Top: 5−minute ahead
forecast; Middle: 25−minute ahead forecast; Bottom: 50−minute ahead forecast.
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model is general and can be used for other multiple functional time series modeling

and forecasting.
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A Appendix

A.1 Derivation of the B-spline coefficient relationship as shown

in Section 3

First we show how the expansion was obtained in (3). We only show for the first

integral in (3) as the expansion other integrals can be obtained similarly.

∫ 1

0

{ ∞∑
j=1

∞∑
i=1

caaj d
a
t−1,iBj,m(τ − s)Bi,m(s)

}
ds

=
∞∑
j=1

caaj

∫ 1

0

Bj,m(τ − s)
{ ∞∑

i=1

dat−1,iBi,m(s)

}
ds

=
∞∑
j=1

caaj

{
1

m

∞∑
i=1

dat−1,i(wi+m − wi)Bj,m(τ − s)

}∣∣∣∣s=1

s=0

+
∞∑
j=1

caaj

∫ 1

0

{
1

m

∞∑
i=1

dat−1,i(wi+m − wi)
{ m

wj+m − wj
Bj,m−1(τ − s)

− m

wj+m+1 − wj+1

Bj+1,m−1(τ − s)
}}

ds

= −
∞∑
j=1

∞∑
i=1

dat−1,i(wi+m − wi)
m

caaj Bj,m(τ)

+
∞∑
j=1

∞∑
i=1

dat−1,i(wi+m − wi)
m

caaj

∫ τ

τ−1

{
m

wj+m − wj
Bj,m−1(z)

− m

wj+m+1 − wj+1

Bj+1,m−1(z)

}
dz

= −
∞∑
h=1

∞∑
i=1

dat−1,i(wi+m − wi)
m

caah Bh,m(τ)

+
∞∑
h=1

∞∑
i=1

∞∑
j=1

(wj+m − wj+1

wj+m − wj
− wj+m+1 − wj+2

wj+m+1 − wj+1

)
caaj

wi+m − wi
m

dat−1,iBh,m(τ)

=
∞∑
h=1

∞∑
i=1

[ ∞∑
j=1

{wj+m − wj+1

wj+m − wj
− wj+m+1 − wj+2

wj+m+1 − wj+1

}
caaj − caah

]
wi+m − wi

m
dat−1,iBh,m(τ)

The second equality made use of integration by parts, with d
ds
Bj,m(τ−s) = −

(
m

wj+m−wj

Bj,m−1(τ − s) − m
wj+m+1−wj+1

Bj+1,m−1(τ − s)
)

and
∫ ∑∞

i=1 d
a
t−1,iBi,m(s)ds = 1

m

∑∞
i=1
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dat−1,i(wi+m − wi). In the third equality, we made the substitution of z = τ − s. For

the fourth equality, we made use of the formula:
∫ τ
−∞Bj,m(z)dz =

wj+m+1−wj+1

m+1

∑∞
h=1

Bh,m+1(τ), and truncating the sum up till the J-th term. We also swapped the

notation j for the first summation with h in the fourth equality.

A.2 Proof of Theorem 3.1

Fix δ > 0. We only need to show that

P (DJn ∩Mn
Jn 6= ∅) = 0, (12)

because if (12) holds, then with probability 1

inf
ϕ∈Mn

Jn

H(ρ0|ΘJn ,ρ) ≥ H(ρ0|ΘJn ,ρJn)− δ,

for all n sufficiently large. Since δ is arbitrary, and

H(ρ0|ΘJn ,ρJn)→ H(ρ0|ΘJn ,ρ0|ΘJn ),

by condition C2 we deduce

lim inf inf
ρ∈Mn

Jn

H(ρ0|ΘJn ,ρ) ≥ H(ρ0|ΘJn ,ρ0|ΘJn ) a.s.

Combining with

H(ρ0|ΘJn ,ρ) ≤ H(ρ0|ΘJn ,ρ0|ΘJn ),

we have,

lim
n→+∞

sup
ρ∈Mn

Jn

|H(ρ0|ΘJn ,ρ)−H(ρ0|ΘJn ,ρ0|ΘJn )| = 0 a.s. (13)

Fix ε > 0, and for each n choose ψn ∈Mn
Jn

such that

d(ρ0|ΘJn ,ψn)

1 + d(ρ0|ΘJn ,ψn)
> sup
ρ∈Mn

Jn

d(ρ0|ΘJn ,ρ))

1 + d(ρ0|ΘJn ,ρ))
− ε.
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Condition C1 combined with (13) imply that

d(ρ0|ΘJn ,ψn)→ 0 a.s.

Hence,

lim sup sup
ρ∈Mn

Jn

d(ρ0|ΘJn ,ρ))

1 + d(ρ0|ΘJn ,ρ))
≤ ε.

Since ε is arbitrary, we deduce that Mn
Jn
→ ρ0|ΘJn , which is the desired result.

Therefore, it suffices to prove (12).

For now, n and Jn are fixed. Then

(DJn ∩Mn
Jn 6= ∅)

⊆
{

sup
ρ∈DJn

`(X
(a)
1 , · · · , X(a)

n , X
(b)
1 , · · · , X(b)

n ;ρ) ≥ `(X
(a)
1 , · · · , X(a)

n , X
(b)
1 , · · · , X(b)

n ;ρJn)
}

⊆
lJn⋃
k=1

{
sup
ρ∈Γk

n∏
i=1

g
(
X

(a)
i , X

(b)
i , X

(a)
i−1, X

(b)
i−1,ρ

)
≤

n∏
i=1

g
(
X

(a)
i , X

(b)
i , X

(a)
i−1, X

(b)
i−1,ρJn

)}

⊆
lJn⋃
k=1

{ n∏
i=1

g
(
X

(a)
i , X

(b)
i , X

(a)
i−1, X

(b)
i−1,Γk

)
≤

n∏
i=1

g
(
X

(a)
i , X

(b)
i , X

(a)
i−1, X

(b)
i−1,ρJn

)}
.

Next we bound the probability of this latter set and called it π.

π ≤
lJn∑
k=1

P

[ n∏
i=1

g
(
X

(a)
i , X

(b)
i , X

(a)
i−1, X

(b)
i−1,Γk

)
≤

n∏
i=1

g
(
X

(a)
i , X

(b)
i , X

(a)
i−1, X

(b)
i−1,ρJn

)]

=

lJn∑
k=1

P

[
exp

n∑
i=1

{
tk log

g(X
(a)
i , X

(b)
i , X

(a)
i−1, X

(b)
i−1,Γk)

g(X
(a)
i , X

(b)
i , X

(a)
i−1, X

(b)
i−1,ρJn)

}
≥ 1

]

≤
lJn∑
k=1

Eρ0|ΘJn

[
exp

{
tk log

g(X
(a)
t , X

(b)
t , X

(a)
t−1, X

(b)
t−1,Γk)

g(X
(a)
t , X

(b)
t , X

(a)
t−1, X

(b)
t−1,ρJn)

}]n

for any nonnegative arbitrary t1, · · · , tk and conditionally to X
(a)
i−1 and X

(b)
i−1, the

laws of the real r.v. g(X
(a)
i , X

(b)
i , X

(a)
i−1, X

(b)
i−1,Γk) and g(X

(a)
i , X

(b)
i , X

(a)
i−1, X

(b)
i−1,ρJn) are

images of g by the translations of the laws εi which are i.i.d. Hence, we get

π ≤ lJn(ϕJn)n.
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Finally, result (12) is deduced by condition (ii) of Theorem 3.1 and by the Borel-

Cantelli lemma.

A.3 Proof of consistency result in Theorem 3.2

Without loss of generality, we assume that paj and pbj are all zeros. For non-zero

cases, the same consistency results can be obtained. We check the condition C1. We

replace Jn by J in the remaining of this section for notational simplicity, and let all

summation be from 1 to J . Using the definition of the entropy, we have

H(ρ0|ΘJ ,ρ0|ΘJ )−H(ρ0|ΘJ ,ρΘJ
) = H(κ0|ΘJ ,κ0|ΘJ )−H(κ0|ΘJ ,κΘJ )

= −1

2
log |Σu|+

1

2
log |Σu,J |+ E

(
− 1

2
x>Σ−1

u x+
1

2
x
>
JΣ−1

u,JxJ

)
,

where

x =



dat,1 −
∑

i(
∑

j qjc
aa
j − caa1 )wi+m−wi

m
dat−1,i −

∑
i(
∑

j qjc
ab
j − cab1 )wi+m−wi

m
dbt−1,i

...

dat,J −
∑

i(
∑

j qjc
aa
j − caaJ )wi+m−wi

m
dat−1,i −

∑
i(
∑

j qjc
ab
j − cabJ )wi+m−wi

m
dbt−1,i

dbt,1 −
∑

i(
∑

j qjc
ba
j − cba1 )wi+m−wi

m
dat−1,i −

∑
i(
∑

j qjc
bb
j − cbb1 )wi+m−wi

m
dbt−1,i

...

dbt,J −
∑

i(
∑

j qjc
ba
j − cbaJ )wi+m−wi

m
dat−1,i −

∑
i(
∑

j qjc
bb
j − cbbJ )wi+m−wi

m
dbt−1,i


,

xJ =



dat,1 −
∑

i(
∑

j qjc
aa
j,J − caa1,J)wi+m−wi

m
dat−1,i −

∑
i(
∑

j qjc
ab
j,J − cab1,J)wi+m−wi

m
dbt−1,i

...

dat,J −
∑

i(
∑

j qjc
aa
j,J − caaJ,J)wi+m−wi

m
dat−1,i −

∑
i(
∑

j qjc
ab
j,J − cabJ,J)wi+m−wi

m
dbt−1,i

dbt,1 −
∑

i(
∑

j qjc
ba
j,J − cba1,J)wi+m−wi

m
dat−1,i −

∑
i(
∑

j qjc
bb
j,J − cbb1,J)wi+m−wi

m
dbt−1,i

...

dbt,J −
∑

i(
∑

j qjc
ba
j,J − cbaJ,J)wi+m−wi

m
dat−1,i −

∑
i(
∑

j qjc
bb
j,J − cbbJ,J)wi+m−wi

m
dbt−1,i


.

Here Σu, c
aa
j , c

ab
j , c

ba
j , and cbbj denote the covariance matrix and B-spline coefficients

for the kernel κ0|ΘJ ; and Σu,J , caaj,J , c
ab
j,J , c

ba
j,J , and cbbj,J denote the covariance matrix and

B-spline coefficients for the kernel κJ . κJ is the set of kernel functions for ρJ with

ρJ ∈ ΘJ ; and κ0|ΘJ is the projection of the set of true kernel functions κ0 on ΘJ .
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Assuming Σu = Σu,J , we have

H(ρ0|ΘJ ,ρ0|ΘJ )−H(ρ0|ΘJ ,ρΘJ
) = E

(
− 1

2
x>Σ−1

u x+
1

2
x
>
JΣ−1

u xJ

)
=

1

2

∑
r,s

(Σ−1
u )r,sE

{
(xJ)r(xJ)s − (x)r(x)s

}
,

where (Σ−1
u )r,s is the r-th row, s-th column of Σ−1

u , (xJ)r is the r-th element of xJ ,

and (x)r is the r-th element of x.

Since the only difference between (xJ)r(xJ)s and (x)r(x)s are the different B-

spline coefficients, we can group the individual terms of the expansion of (xJ)r(xJ)s

and the expansion (x)r(x)s together. After cancelling out the common terms not

containing the B-spline coefficients, each of the grouped terms will contain a product

of some common terms and the subtraction between the B-spline coefficients (of the

same index) of the two kernels or the subtraction between the product of B-spline

coefficients of one kernel and that of the other kernel (of the same combination of

indices). Hence, if H(κ0|ΘJ ,κΘJ )→ H(κ0|ΘJ ,κ0|ΘJ ) as n, J →∞, we have caaj,J → caaj ,

cabj,J → cabj , cbaj,J → cbaj , cbbj,J → cbbj and consequently ρJ → ρ0|ΘJ .

For the condition C2 and (i) of Theorem 3.1, we follow similar arguments as in

Mourid and Bensmain (2006). To verify Theorem 3.1 (ii), we define

ϕ(t) = Eκ0|ΘJ

{
exp

(
t log

g(X
(a)
t , X

(b)
t , X

(a)
t−1, X

(b)
t−1,Γk)

g(X
(a)
t , X

(b)
t , X

(a)
t−1, X

(b)
t−1,κJ)

)}
,

where g(X
(a)
t , X

(b)
t , X

(a)
t−1, X

(b)
t−1,Γk) = supψ∈Γk

g(X
(a)
t , X

(b)
t , X

(a)
t−1, X

(b)
t−1,ψ). Further-

more, we have ϕ(0) = 1 and ϕ′ = Eκ0|ΘJ
log

g(X
(a)
t ,X

(b)
t ,X

(a)
t−1,X

(b)
t−1,Γk)

g(X
(a)
t ,X

(b)
t ,X

(a)
t−1,X

(b)
t−1,κJ )

.

For a fixed κ ∈ Γk, we have

A = Eκ0|ΘJ
log g(X

(a)
t , X

(b)
t , X

(a)
t−1, X

(b)
t−1,Γk)− E log g(X

(a)
t , X

(b)
t , X

(a)
t−1, X

(b)
t−1,κ)

= Eκ0|ΘJ
sup
ψ∈Γk

{
log g(X

(a)
t , X

(b)
t , X

(a)
t−1, X

(b)
t−1,ψ)− log g(X

(a)
t , X

(b)
t , X

(a)
t−1, X

(b)
t−1,κ)

}
= Eκ0|ΘJ

sup
ψ∈Γk

{
− 1

2
log |Σu,ψ|+

1

2
log |Σu,κ| −

1

2
x
>
ψΣ−1

u,ψxψ +
1

2
x>κΣ−1

u,κxκ

}
,

where xψ and xκ have the same form as xJ , with J replaced by ψ and κ respectively.

Σu,ψ, caaj,ψ, c
ab
j,ψ, c

ba
j,ψ, and cbbj,ψ denote the covariance matrix and B-spline coefficients

for the kernel ψ, while Σu,κ, caaj,κ, c
ab
j,κ, c

ba
j,κ, and cbbj,κ denote that for the kernel κ.
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Assuming Σu,ψ = Σu,κ = Σu, we have

A = Eκ0|ΘJ
sup
ψ∈Γk

{
1

2

∑
r,s

(Σ−1
u )r,s

(
(xψ)r(xψ)s − (xκ)r(xκ)s

)}
,

where (Σ−1
u )r,s is the r-th row, s-th column of Σ−1

u , (xψ)r is the r-th element of xψ,

and (xκ)r is the r-th element of xκ.

We follow the similar conditions and arguments in Mourid and Bensmain (2006)

and obtain A ≤ C1

Jη/2
, where C1 is a constant. In addition, for δ > 0,

ϕ′(0) = H(κ0|ΘJ ,κ)−H(κ0|ΘJ ,κJ) + A ≤ C2J
−η/2 − δ.

Using Taylor expansion and the results from Hwang (1980) such that ϕ′′(t) ≤
C3J

2, we have ϕ( 1
J2 ) ≤ 1 − δ

C4J2 , where C2, C3, and C4 are constants. Since ϕJ =

supk inft≥0 ϕ(t), we can deduce that for sufficiently large J , we have

lJ(ϕJ)n ≤ CJCJ
1+η(

1− δ

CJ2

)n
,

which is summable if J = O(n1/3−δ) for δ > 0 (see Hwang, 1980). Note that C is

a constant. Finally, we can apply Theorem 3.1 to obtain the result that the ML

estimator κ̂ obtained on ΘJn converges to the projected true set of kernel functions

κ0|ΘJ . As n, Jn →∞, κ0|ΘJ → κ0 because each κxy,0|ΘJ in κ0|ΘJ is just the B-spline

truncation of the corresponding true kernel κxy,0 in κ0 on ΘJn .
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