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Specification Testing in Nonparametric
Instrumental Quantile Regression ∗

Christoph Breunig ?

Humboldt-Universität zu Berlin

August 27, 2016

There are many environments in econometrics which require nonseparable
modeling of a structural disturbance. In a nonseparable model, key conditions
are validity of instrumental variables and monotonicity of the model in a scalar
unobservable. Under these conditions the nonseparable model is equivalent to
an instrumental quantile regression model. A failure of the key conditions, how-
ever, makes instrumental quantile regression potentially inconsistent. This pa-
per develops a methodology for testing the hypothesis whether the instrumental
quantile regression model is correctly specified. Our test statistic is asymptoti-
cally normally distributed under correct specification and consistent against any
alternative model. In addition, test statistics to justify model simplification are
established. Finite sample properties are examined in a Monte Carlo study and
an empirical illustration.

Keywords: Nonparametric quantile regression, instrumental variable,
specification test, local alternative, nonlinear inverse problem.

1. Introduction

Regression models that involve instrumental variables are widely used in economics to over-
come endogeneity problems. In these models, assuming additive separable structural distur-
bances can often not be justified by the data. This is why their nonseparable extension has
been studied extensively recently. Under certain key conditions the nonseparable model is
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equivalent to an instrumental quantile regression model. Key conditions are validity of in-
struments and monotonicity of the model in a scalar unobservable. If one of these conditions
is violated, however, the quantile regression representation is misspecified.
In this paper, we propose a specification test of the instrumental quantile regression model

Y = ϕ(Z, q) + U(q) where P(U(q) 6 0|W ) = q (1.1)

for each 0 < q < 1, where Y is a scalar dependent variable, Z a vector of potentially
endogenous regressors, W a vector of instruments, and U(q) an unobservable disturbance.1

This quantile regression model is equivalent to a nonseparable model (cf. Horowitz and Lee
[2007]) given by

Y = ϕ(Z, V ) (1.2)

with

(a.1) the instrumental variable W is independent of V ,

(a.2) the function ϕ is strictly monotonic increasing in the scalar disturbance V , and

(a.3) V ∼ U(0, 1).

Condition (a.3) can be assumed without loss of generality if V is continuously distributed
with positive density on its support which we assume to hold true throughout the paper. The
quantile regression model (1.1) for all 0 < q < 1 is thus misspecified if in its nonseperable
version (1.2) the instrument is not valid, that is, W is not independent of V , or the function
ϕ is not monotonic in V .
Specification testing in instrumental variable models is a subject of considerable litera-
ture. In the context of nonparametric instrumental mean regression Y = g(Z) + U with
E[U |W ] = 0, tests for correct specification have been proposed by Gagliardini and Scaillet
[2007], Horowitz [2012], and Breunig [2015]. These tests are, however, not robust against
potential nonseparability of the structural disturbance. On the other hand, by considering
the nonseparable model (1.2) with conditions (a.1)–(a.3) not only a failure of the exclu-
sion restriction of the instruments might lead to a misspecified model. Indeed, as argued
by Hoderlein and Mammen [2007], in certain applications, such as consumer demand, the
monotonicity restriction (a.2) might be highly unrealistic. As such, providing a specifica-
tion test of model (1.2) together with conditions (a.1)–(a.3) seems paramount but, as far
as we know, has not yet been addressed in the literature.
Research on identification and estimation in nonparametric instrumental quantile regression
has been active in the last decade. Chesher [2003] investigated nonparametric identification
of derivatives of the unknown functions in a triangular array structure. Chernozhukov and
Hansen [2005] and Chernozhukov et al. [2007] give identification conditions and develop a
nonparametric minimum distance estimator. Sufficient conditions for local identification
are given by Chen et al. [2014]. Horowitz and Lee [2007] propose an estimator based on
Tikhonov regularization, Chen and Pouzo [2012] study penalized sieve minimum distance
estimator, and Dunker et al. [2013] consider an iteratively regularized Gauß-Newton method.
Further, Gagliardini and Scaillet [2012] obtain asymptotic distribution results of a Tikhonov

1Since conditional expectations are defined only up to equality a.s., all (in)equalities with conditional
expectations and/or random variables are understood as (in)equalities a.s., even if we do not say so
explicitly.
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regularized estimator. There is also a large literature on testing quantile regression models
with exogenous covariates. In this context particularly relevant is quantile regression testing
using an infinite number of quantiles for parametric functions, see Escanciano and Velasco
[2010] and, in the nonparametric context, Escanciano and Goh [2014].
In instrumental quantile regression (1.1) for a fixed quantile 0 < q < 1, Horowitz and
Lee [2009] established a test of parametric specification of ϕ. Chen and Pouzo [2015]
consider functionals of semi/nonparametric conditional moment restrictions with possibly
nonsmooth generalized residuals. A test of monotonicity in unobservables of ϕ has been
proposed by Hoderlein et al. [2011] but requires conditional exogeneity of Z and hence,
is not related to instrumental variables methodology. Recently and independently of this
paper, Fève et al. [2012] developed a test of whether Z is independent of the nonseparable
disturbance V in the model (1.2).
Our test statistic is based on the L2–norm of the empirical conditional quantile restriction
and involves sieve methodology. The sieve approach makes the statistic easy to implement
and further, is convenient to impose additional constraints on the structural function ϕ.
As an example, we discuss a test of additivity of ϕ with respect to the vector of regressors
Z. In addition, we establish a test statistic for testing exogeneity which is robust against
nonseparability. More precisely, we establish a test of exogeneity of the regressors Z at
some quantile 0 < q < 1, that is, whether P(Y 6 ϕ(Z, q)|Z) = q. This extends the results
on nonparametric test of exogeneity in mean regression suggested by Blundell and Horowitz
[2007] and Breunig [2015] to the quantile regression case.
It should also be noted that the test proposed in this paper is a joint test of monotonicity
and instrument validity. This is the nature of many nonparametric tests, see, for instance,
Chiappori et al. [2015] or Lewbel et al. [2015]. On the other hand, we show in this paper
that if the quantile restriction is strictly negative then validity of the instrumental variables
fails. As such, in many cases it is possible to detect the cause of a rejection of our test.
We establish the asymptotic distribution of our test statistic under the null hypothesis and
its consistency against fixed alternatives. We study the power of our test against a sequence
of local alternatives. By Monte Carlo simulations we demonstrate the power properties of
our test in finite samples. As an empirical illustration, we study a nonseparable model of the
effects of class size on test scores of 4th grade students in Israel. We reject the hypothesis
of exogeneity of class size but fail to reject the instrumental variable model.
The remainder of this work is organized as follows. In Section 2, we propose a test statistic
and obtain its asymptotic distribution. We further establish consistency of our test. The
power of the test is judged by considering a sequence of local alternatives. Section 3 gives
several extensions of the previous results. In Section 4 and 5 we study the finite sample
properties of our test and give an empirical illustration. All proofs can be found in the
appendix.

2. The test statistic and its asymptotic properties

This section begins with the definition of the test statistic and states assumptions required
to obtain its asymptotic distribution under the null hypothesis. Moreover, we study power
and consistency properties of our test.
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2.1. Definition of the test statistic

The quantile regression model (1.1) leads to a nonlinear operator equation, as we see in the
following. Let Φ be a Banach space endowed with the norm ‖φ‖Z,p := (E |φ(Z)|p)1/p for some
integer p > 0 and if p = ∞ then ‖φ‖Z,∞ := supz |φ(z)|. For simplicity let ‖φ‖Z := ‖φ‖Z,2.
Further, let us introduce the Hilbert space L2

W := {ψ : ‖ψ‖2W := E |ψ(W )|2 < ∞}. We
define a nonlinear operator T : Φ→ L2

W with

T φ := E[1 {Y 6 φ(Z)}|W ] (2.1)

for any φ ∈ Φ where 1 denotes the indicator function. Thereby, model (1.1) can be rewritten
as the operator equation T ϕq = q with ϕq(·) := ϕ(·, q) for all 0 < q < 1.
In many economic applications, for instance when estimating a demand function or Engel
curves, the structural function of interest may be assumed to be smooth. This a priori
knowledge is captured by a set B ⊂ Φ which we introduce below. The set B may also contain
constraints on the function ϕq such as monotonicity, concavity/convexity or additivity (see
also Section 3.2). Let us introduce the set B(0,1) = {φ : φ(·, q) ∈ B for all q ∈ (0, 1)}. We
consider the null hypothesis

H0 : there exists a function ϕ ∈ B(0,1) such that T ϕq = q for all q ∈ (0, 1). (2.2)

The alternative is that there exists no function ϕ ∈ B(0,1) solving T ϕq = q for all q ∈ (0, 1).
We construct in the following a test statistic based on the L2 distance. Throughout the
paper, we assume that an independent and identically distributed n-sample of (Y,Z,W )
is available. Let {fj}j>1 be a sequence of approximating functions in L2

W . Then, for any

integer k > 1 we denote fk(·) = (f1(·), . . . , fk(·))t and Wk =
(
fk(W1), . . . , fk(Wn)

)t
which

is a n× k matrix. A series least square estimator of E[1 {Y 6 φ(Z)}− q|W = ·] then writes

fln(·)t(Wt
lnWln)−

n∑
i=1

(1 {Yi 6 φ(Zi)} − q)fln(Wi)

where (·)− denotes a general inverse. Further, we define the sieve least square estimator of
ϕq by

ϕ̂qn = arg min
φ∈Bkn

( n∑
i=1

(1 {Yi 6 φ(Zi)}−q)fln(Wi)
)t

(Wt
lnWln)−

n∑
i=1

(1 {Yi 6 φ(Zi)}−q)fln(Wi)

(2.3)

where Bkn is a kn–dimensional sieve space that becomes dense in B as the sample size n
tends to infinity. If B contains additional constraints then these are imposed in Bkn on the
finite dimensional functions. Here, kn and ln grow with sample size n. Clearly, kn 6 ln for
each n is required and in our simulations we choose ln = Ckn for some constant C > 1 (see
also Chen and Christensen [2015] in case of nonparametric instrumental mean regression).
The estimator ϕ̂qn is a simplified version of the penalized sieve minimum distance estimator
suggested by Chen and Pouzo [2012].
The test statistic is then given by

Sn =

∫ 1

0

( n∑
i=1

(1 {Yi 6 ϕ̂qn(Zi)}−q)fmn(Wi)
)t

(Wt
mn

Wmn)−
n∑
i=1

(1 {Yi 6 ϕ̂qn(Zi)}−q)fmn(Wi)dq
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(2.4)

where mn grows with sample size n. As the test is one sided, we reject the null hypothesis
at level α when the standardized version of Sn is larger than the (1−α)–quantile of N (0, 1).
The asymptotic distribution of Sn is derived below under mild restrictions on the dimension
parameters kn, ln, and mn. We require that the number of unconditional moment restric-
tions determined by mn is asymptotically larger than the dimension of the sieve space Bkn .
This corresponds to the test of overidentifying restrictions in parametric models. In contrast
to the parametric setting, however, also the number of unconditional moment restrictions
used to construct the estimator (determined by ln) must be asymptotically smaller than the
number of moment restrictions used for the test statistic. This ensures that the estimation
error in the test statistic becomes asymptotically negligible as we see below.
Our test statistic builds on the nonparametric specification test in instrumental mean re-
gression suggested by Breunig [2015]. Testing in instrumental quantile regression, on the
other hand, requires a different methodology. First, the test statistic is a discontinuous func-
tion of the unknown structural effect ϕq. Second, instrumental quantile regression leads a
nonlinear inverse problem and hence estimation of ϕq is more challenging. Third, to verify
the conditional moment restrictions for all quantiles we need to integrate over them. In the
appendix, we show that the mapping q 7→ ϕq is continuous under mild assumptions. This
justifies the use of our L2 type testing procedure rather than a sup norm statistic.

2.2. Assumptions and notation.

In order to obtain our asymptotic result we state the following assumptions. Our first
assumption gathers conditions which we require for the basis functions {fj}j>1. In the
following, the supports Z of Z and W of W are assumed to be bounded below. The
probability density function (p.d.f.) of W , denoted by pW , is assumed to be uniformly
bounded from above and away from zero.

Assumption 1. (i) There exists a constant C > 0 and a sequence of positive integers
(mn)n>1 satisfying supw∈W ‖fmn(w)‖2 6 Cmn. (ii) The smallest eigenvalue of the matrix
E[fm(W )fm(W )t] is bounded away from zero uniformly in m.

Assumption 1 (i) holds for sufficiently large C if the basis {fj}j>1 is satisfied by trigono-
metric basis functions, B-splines, or wavelets. In the following, for any φ ∈ B(0,1) we denote
φq(·) := φ(·, q) for all 0 < q < 1. In the following, we denote the Fréchet derivative of T at
ϕq by

Tqφ := E
[
pY |Z,W

(
ϕ(Z, q), Z,W

)
φ(Z)

∣∣W ]
where pY |Z,W denotes the density of Y conditional on (Z,W ). In the following, we denote

9φ9Z,p =
( ∫ 1

0 ‖φ(·, q)‖pZ,pdq
)1/p

and 9ψ9W =
( ∫ 1

0 ‖ψ(·, q)‖2Wdq
)1/2

for functions φ(·, q) ∈
Φ and ψ(·, q) ∈ L2

W for all q ∈ (0, 1).

Assumption 2. (i) If 9T φ − T ϕ92
W = 0 for some function φ ∈ B(0,1) then it holds 9φ −

ϕ92
Z,p = 0. (ii) There exists some constant 0 < η < 1 such that for all 0 < q < 1 and all

functions φ ∈ {φ ∈ B : ‖φ− ϕq‖Z,p 6 ε} for some ε > 0 it holds

‖T φ− T ϕq − Tq(φ− ϕq)‖W 6 η‖Tq(φ− ϕq)‖W . (2.5)

Assumption 2 (i) ensures identification of ϕq for almost all 0 < q < 1 on the set B which
we introduce below. Assumption 2 (ii) specifies an upper bound on the Taylor remainder
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of T in a small neighborhood around ϕq. It is also known as the tangential cone condition
and frequently used in the analysis of nonlinear operator equations (cf. Hanke et al. [1995]
or Dunker et al. [2013] in case of instrumental variable estimation). We provide sufficient
conditions for the tangential cone condition in Example 2.1 below and refer to Chen et al.
[2014] for further discussions.

Assumption 3. There exists a sequence (rn)n>1 with rn = o(1) such that for constants
C > 0 and κ ∈ (0, 1] it holds

max
16j6mn

E
[ ∫ 1

0
sup
φ∈Bn

∣∣1{Y 6 φ(Z, q)} − 1{Y 6 ϕ(Z, q)}
∣∣2dq f2j (W )

]
6 Cr2κn (2.6)

where Bn := {φ ∈ B(0,1) : 9φ− ϕ92
Z,p 6 r

2
n}.

Assumption 3 states that the function ϕq 7→ (1{Y 6 ϕ(Z, q)} − q)fj(W ), 1 6 j 6 mn,
is locally uniformly L2

W continuous for almost all 0 < q < 1. This condition has also
been exploited by Chen et al. [2003] (Theorem 3), Chen [2007] (Lemma 4.2 (i)) or Chen
and Pouzo [2012] (Remark c.1). Example 2.2 below gives primitive conditions under which
Assumption 3 holds true.
Let Z have support Z ⊂ Rdz and for any vector of nonnegative integers k = (k1, . . . , kdz)

define |k| =
∑dz

j=1 kj and Dk = δ|k|/(δzk11 . . . δz
kdz
dz

). For some integer p > 0 we define the
norms

‖φ‖α,p =
( ∑
|k|6α+α0

∫
Z

∣∣Dkφ(z)
∣∣pdz)1/p, ‖φ‖α,∞ = max

|k|6α
sup
z∈Z

∣∣Dkφ(z)
∣∣

where α and α0 are positive integers. We denote the Sobolev spaces associated with the
norm ‖ · ‖α,p by

Wα,p := {φ : Z → R : ‖φ‖α,p <∞}. (2.7)

For some constant ρ > 0, define B as the Sobolev ellipsoid of radius ρ given by

B := {φ ∈Wα,p : ‖φ‖α,p 6 ρ}. (2.8)

As such, the set of structural functions B is compact and thus, penalization is not necessary
for consistent estimation (see also Chen and Pouzo [2012]). Also additional constraints
such as monotonicity can be imposed by B = {φ ∈Wα,p : ‖φ‖α,p 6 ρ, infz∈Z φ

′(z) > 0}
for scalar z. Such a monotonicty constraint does not necessarily lead to faster rates of
convergence, in contrast to an additivity restriction on ϕq. Consequently, we do not treat
shape restrictions like monotonicty explicitly but only discuss a test of additivity in Section
3.2. In this context, we also refer to Chetverikov and Wilhelm [2015] for using shape
restriction for sieve estimation in instrumental mean regression. The following assumption
gathers regularity conditions imposed on the structural functions ϕ and the supports Z of
Z and W of W .

Assumption 4. (i) Let α0 > dz/p and α > dz/κ. (ii) Z is bounded, convex and satisfies a
uniform cone property. (iii) W is bounded. (iv) The marginal density of W, denoted by pW ,
is bounded from above and uniformly bounded away from zero on W. (v) pY |Z,W (·, Z,W ) is
bounded from above.
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Assumption 4 (i) requires α to be large if (2.6) holds only for small κ > 0 or the dimension dz
is large. Assumption 4 (ii) imposes a weak regularity condition on the shape of Z. For the
uniform cone property see, for instance, Paragraph 4.4 in Adams and Fournier [2003]. This
property was also used by Santos [2012]. Assumption 4 (v) ensures that ‖Tqφ‖W 6 C‖φ‖Z
for all φ ∈ L2

Z and some constant C > 0.

Example 2.1. Let Φ coincide with the Hilbert space L2
Z := {φ : ‖φ‖Z <∞}. If for any

0 < q < 1 the operator Tq is compact then there exists an orthonormal basis in L2
Z denoted

by {ej}j>1 satisfying ‖Tqφ‖2W =
∑∞

j=1 s
2
qj E[φ(Z)ej(Z)]2 where (sqj)j>1 are the singular

values of Tq. If

B ⊂ Bsource,q :=

φ ∈ L2
Z :

∞∑
j=1

s−2qj E[(φ(Z)− ϕ(Z, q))ej(Z)]2 < c0


for some constant c0 > 0 then under mild assumptions on the joint distribution of (Y,Z,W )
function ϕq is identified on B (cf. Theorem 6 of Chen et al. [2014]). A similar restriction
was also imposed by Horowitz and Lee [2007]. If B ⊂

⋂
q∈(0,1) Bsource,q then Assumption

2 (i) holds true. Under further assumptions, imposing bounds on the generalized Fourier
coefficients is equivalent to imposing smoothness restrictions. In this sense, Bsource,q links
the smoothness of φ− ϕq to the degree of ill-posedness determined by the degree of decay
of (sqj)j>1, which is also known as a so-called source condition (cf. Chen and Reiß [2011]
or Dunker et al. [2013] for a further discussion).
Under the singular value decomposition of Tq it is also possible to provide primitive condi-
tions for the tangential cone condition (2.5). Assume that the conditional p.d.f. of Y given
(Z,W ), denoted by pY |Z,W , is continuously differentiable with |∂pY |Z,W (·, Z,W )/∂y| 6 c1
and the conditional p.d.f. of Z given W satisfies pZ|W (·,W ) 6 c2pZ(·), for some constants
c1, c2 > 0. Then by Theorem 6 of Chen et al. [2014] it holds

‖T φ− T ϕq − Tq(φ− ϕq)‖W 6 c1 c2 ‖φ− ϕq‖2Z . (2.9)

We further obtain for all φ ∈ Bsource,q by making use of the Cauchy-Schwarz inequality

‖φ−ϕq‖2Z =
∞∑
j=1

sqj
sqj

E[(φ(Z)− ϕ(Z, q))ej(Z)]2

6
( ∞∑
j=1

s−2qj E[(φ(Z)− ϕ(Z, q))ej(Z)]2
)1/2( ∞∑

j=1

s2qj E[(φ(Z)− ϕ(Z, q))ej(Z)]2
)1/2

6 c1/20 ‖Tq(φ− ϕq)‖W .

Consequently, the tangential cone condition (2.5) is satisfied if we assume c
1/2
0 c1 c2 < 1.

We also note that for our test of exogeneity in Section 3.1 only the weaker condition (2.9)
is required. �

Example 2.2. Let FY |ZW denote the cumulative distribution function of Y given (Z,W )
and assume that it is Lipschitz continuous with constant CL > 0, that is, |FY |ZW (y) −
FY |ZW (y′)| 6 CL|y − y′| for all (y, y′). Due to Assumption 4 the Sobolev space Wα,p

can be embedded in Wα,∞ (cf. Theorem 6 of Adams and Fournier [2003]). In particular,
the supremum norm is bounded on B and moreover, Assumption 3 holds true. Indeed,
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∫ 1
0 ‖φq − ϕq‖2∞dq 6 r2n implies ‖φq − ϕq‖∞ 6 c rn for almost all 0 < q < 1 and some

constant c > 0. Hence, ϕ(Z, q) − c rn 6 φ(Z, q) 6 ϕ(Z, q) + c rn for almost all 0 < q < 1
and following Chen et al. [2003] (page 1599 – 1600) we observe

E
[ ∫ 1

0
max
φ∈Bn

(
1{Y 6 φ(Z, q)} − 1{Y 6 ϕ(Z, q)}

)2
dq
∣∣∣W]

6
∫ 1

0
E
[
1

{
Y 6 ϕ(Z, q) + c rn

}
− 1

{
Y 6 ϕ(Z, q)− c rn

}∣∣∣W]dq
=

∫ 1

0
E
[
FY |ZW

(
ϕ(Z, q) + c rn

)
− FY |ZW

(
ϕ(Z, q)− c rn

)∣∣∣W]dq
6CL c rn

which implies Assumption 3 with κ = 1/2. �

Notation For any φ ∈ B we introduce a finite dimensional function Πknφ ∈ Bkn satisfying
‖Πknφ− φ‖Z,p = o(1). Further, we define

ωn = max
(
n−1ln, max

φ∈Bkn

∑
j>ln

E[(T φ(W )− q)fj(W )]2,9T·(Πknϕ− ϕ) 92
W

)
.

Following Chen and Pouzo [2012] we introduce the sieve measure of local ill-posedness by

τkn := max
φ∈Akn

( 9φ− ϕ92
Z,p

9T·(φ− ϕ)92
W

)
where Akn =

{
φ ∈ B(0,1)kn

: 9T·(φ− ϕ)92
W > 0

}
. We write an ∼ bn when there exist con-

stants c, c′ > 0 such that cbn 6 an 6 c′bn for sufficiently large n.

2.3. Asymptotic distribution under the null hypothesis

The following theorem establishes asymptotic normality of the test statistic Sn after stan-
dardization under the null hypothesis H0.

Theorem 2.1. Let Assumptions 1–4 be satisfied. Assume that

m−1n = o(1), mn = o(n1/2) (2.10)

and in addition

nωn = o(
√
mn) and 9Πknϕ− ϕ 92

Z,p +τknωn = o
(
m−(1+ε)/κn

)
(2.11)

for some ε > 0. Then we have under H0

3
√

5/mn

(
Sn −mn/6

) d→ N (0, 1).

To motivate the constants in the asymptotic mean and variance, respectively, we observe∫ 1

0
E[(1{Y 6 ϕ(Z, q)} − q)2|W ]dq =

∫ 1

0
q(1− q)dq = 1/6

8



and ∫ 1

0
E[(1 {Y 6 ϕ(Z, q)} − q)(1

{
Y 6 ϕ(Z, q′)

}
− q′)|W ]d(q, q′)

= 2

∫ 1

0
(min(q, q′) − qq′)2d(q, q′) = 1/(3

√
5),

see also the proof of Lemma A.3. The required rate imposed in (2.10) on mn is milder
than the rate requirement mn = o(n1/3) imposed by Breunig [2015] in case nonparametric
instrumental mean regression. This is due to the fact that in the latter case we do not
have a lower bound for the asymptotic variance in general, while in case of quantile re-
gression the asymptotic variance formula is

√
mn within a positive constant. This can be

exploited to weaken rate restrictions on mn. Further, note that restriction (2.11) implies
kn = o(

√
mn) (by using that ln 6 kn). This requirement essentially determines the degree

of overidentification required for inference.
In the following, we want to illustrate that condition (2.11) is satisfied under common
smoothness restrictions on ϕ and mapping requirements of the Fréchet derivative Tq.

Remark 2.1. Consider the Hilbert space case Φ = L2
Z and let {ej}j>1 be an orthonormal

basis in L2
Z . In this case, Πknφ =

∑kn
j=1 E[φ(Z)ej(Z)]ej . Let us assume the following two

conditions.

(i) Sieve Approximation Error: ‖Πknφ− φ‖Z = O(k
−α/dz
n ) for all φ ∈ B.

(ii) Link condition:
∫ 1
0 ‖Tq(Πknφ − φ)‖2Wdq 6

∑
j>1 υj E[(Πknφ − φ)(Z)ej(Z)]2 for all

φ ∈ B and some positive nonincreasing sequence (υj)j>1.

If the p.d.f. pZ of Z ∈ [0, 1]dz is bounded then it is well known that the sieve approximation
error condition holds for splines, wavelets, and Fourier series bases. Due to Assumption
4 (v) the link condition is always satisfied with υj = 1 for all j > 1. The link condition
implies an upper bound for the sieve measure of ill-posedness; that is, τkn 6 Cυkn for some
constant C > 0 and all n > 1 (cf. Lemma B.2 of Chen and Pouzo [2012]). Consequently,
the first part of condition (2.11) simplifies to

max
(
ln, n l

−2β/dw
n , nυknk

−2α/dz
n

)
= o(
√
mn)

if {T φ : φ ∈ Bkn} belongs to a Hölder space with Hölder parameter β. In addition, in the
setting of Example 2.2, the second part of condition (2.11) simplifies to

m1+ε
n max

(
n−1ln, l

−2β/dw
n , k−2α/dzn

)
= o(1)

for some ε > 0. �

In the following example, we illustrate different mapping properties of the operator Tq which
are usually studied in the literature.

Example 2.3. Consider the Hilbert space setting of Remark 2.1 with conditions (i) and (ii).
In addition assume that the reverse link condition

∫ 1
0 ‖Tqφ‖

2
Wdq > c

∑
j>1 υj E[φ(Z)ej(Z)]2

for φ ∈ B and some constant c > 0 is satisfied. In the setting of Example 2.1, we have∫ 1
0 s

2
qjdq > υj for all j > 1 implying that Tq is nonsingular for almost all 0 < q < 1 (since

any countable union of null sets is null). For simplicity, let Z and W be scalars. Further,

let max
(
n−1ln, l

−2β
n

)
∼ n−1kn and kn ∼ nχ for some constant χ > 0 which is specified in

the following two cases.
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(i) Mildly ill-posed case: If υkn ∼ k
−2ζ
n for some ζ > 0 then in order for (2.11) to hold we

require mn ∼ nι with 0 < ι < 1/3 and

(1− ι/2)/(2α+ 2ζ) < χ < ι/2.

Further,
∫ 1
0 ‖Πknϕq − ϕq‖2Zdq + τknωn = O(k−2αn + k2ζ+1

n n−1) which is o(m
−2/κ
n ) if

ι/(ακ) < χ < (1− 2ι/κ)/(2ζ + 1). Thus, condition (2.11) is satisfied if

max
(

(1− ι/2)/(2α+ 2ζ), ι/(ακ)
)
< χ < min

(
ι/2, (1− 2ι/κ)/(2ζ + 1)

)
.

(ii) Severely ill-posed case: If υkn ∼ exp
(
− k2ζn

)
for some ζ > 0 then

∫ 1
0 ‖Πknϕq −

ϕq‖2Zdq+ τknωn = O(k−2αn + exp(k2ζn )knn
−1). Thereby, condition (2.11) is satisfied if,

for example, mn = o
(
(log n)ακ/ζ

)
and kn ∼ (log n)1/ζ .

In both situations we conclude that the dimension parameter mn is required to be larger
than the dimension kn of the sieve space for n sufficiently large. Roughly speaking we
require more moment restrictions implied by the instrument than parameters we want to
estimate. This corresponds to the test of overidentification in the parametric framework. �

In contrast to a test integrated over all quantiles, one might be interested to check model
(1.1) for one specific quantile. In this case, we consider the test statistic

Sn(q) =
( n∑
i=1

(1 {Yi 6 ϕ̂qn(Zi)}−q)fmn(Wi)
)t

(Wt
mn

Wmn)−
n∑
i=1

(1 {Yi 6 ϕ̂qn(Zi)}−q)fmn(Wi)

(2.12)

If Sn(q) becomes too large then we reject, in particular, the null hypothesis H0. The
derivation of the asymptotic behavior of Sn(q) is similar as in Theorem 2.1. Indeed, only
the Lebesgue measure over (0, 1) has to be replaced by the Dirac measure which has its
mass at the quantile of interest.

Corollary 2.2. Let Assumptions 1 and 4 be satisfied. Further, let Assumption 2, 3, and
condition (2.10) and (2.11) hold true for a fixed quantile q ∈ (0, 1). If there exists a function
ϕq ∈ B with T ϕq = q then

(2mn)−1/2
( 1

q(1− q)
Sn(q)−mn

)
d→ N (0, 1).

In addition, one might be interested in certain regions of quantile functions. Let µ denote
any measure on (0, 1). Again, the next result is a direct implication of Theorem 2.1 and
hence we omit its proof.

Corollary 2.3. Let Assumptions 1 and 4 be satisfied. Further, let Assumption 2, 3, and
condition (2.10) and (2.11) hold true. If there exists a function ϕ ∈ B with

∫
|T ϕq −

q|dµ(q) = 0 then(
2mn

∫ 1

0
(min(q, q′)−qq′)2dµ(q)dµ(q′)

)−1/2(∫ 1

0
Sn(q)dµ(q)−mn

∫ 1

0
q(1−q)dµ(q)

)
d→ N (0, 1).

As mentioned in the introduction, our test is joint test of instrument validity and mono-
tonicity of ϕ in its second entry. The following remark illustrates how the test statistic Sn(q)
integrated over a subset of (0, 1) can be useful to detect which kind of deviation exists.
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Remark 2.2 (Detecting the Kind of Deviation). Suppose that the structural function is
strictly monotonically increasing in its second entry for values q ∈ (0, q′) given some q′ ∈
(0, 1) (can be checked using Corollary 2.3). Further, let q 7→ ϕ(·, q) be either nonincreasing
or decreasing on (q′, q′′). This can be assured by letting q′′ close to q′ and assuming that
ϕ does not oscillate for q > q′. If W is a valid instrument, employing model equation (1.2)
and V ∼ U(0, 1) yields

P(Y 6 ϕ(Z, q)|W ) = P(ϕ(Z, V ) 6 ϕ(Z, q)|W )

6 P(V 6 q|W )

= q

for all q 6 q′′ and q′′ sufficiently close to q′. The last inequality holds regardless whether
the function q 7→ ϕ(·, q) is strictly monotone or not. Consequently, if infw∈W P(Y 6
ϕ(Z, q)|W = w) > q for some q ∈ (q′, q′′) we may conclude that W is not a valid in-
strument. The analysis of a one sided test based on this inequality lies beyond the scope of
this paper. On the other hand, we can check the kind of deviation by using the estimator
infw∈W fmn(w)t

[
n−1

∑n
i=1(1 {Yi 6 ϕ̂qn(Zi)} − q)fmn(Wi)

]
. Further, confidence statements

can be achieved by using resampling methods. �

2.4. Consistency against a fixed alternative

Let us first establish consistency when H0 does not hold, that is, there exists no function
ϕ belonging to B(0,1) which solves T ϕq = q for all 0 < q < 1. The following proposition
shows that our test has the ability to reject a false null hypothesis with probability 1 as the
sample size grows to infinity. In the following analysis of the asymptotic power of our testing
procedure we let ϕq = arg minφ∈B ‖T φ− q‖W . So if H0 is false then

∫ 1
0 ‖T ϕq − q‖

2
Wdq > 0

since pW is uniformly bounded from below.

Proposition 2.4. Assume that H0 does not hold. Let Assumptions 1–4 be satisfied. Con-
sider a sequence (γn)n>1 satisfying γn = o(n/

√
mn). If conditions (2.10) and (2.11) hold

we have

P
(

3
√

5/mn

(
Sn −mn/6

)
> γn

)
= 1 + o(1).

2.5. Limiting behavior under local alternatives

In the following, we study the power of the test, that is, the probability to reject a false
hypothesis against a sequence of linear local alternatives that tends to zero as the sample
size tends to infinity. We proceed similarly as Ait-Sahalia et al. [2001] (Section 3.3). More
precisely, let (ϕqn)n>1 be a sequence of (nonstochastic) functions satisfying n

∫ 1
0 ‖T ϕqn −

T ϕq‖2Wdq = o(
√
mn) where ϕq = arg minφ∈B ‖T φ − q‖W . Then we consider alternative

models defined by ϕqn with∫ 1

0

∥∥T ϕqn − q − δnξq∥∥2Wdq = o(δ2n) where δ2n =
√
mn/(3

√
5n). (2.13)

Here, ξq ∈ L2
W is a function satisfying

∫ 1
0 ‖ξq‖

2
Wdq > 0. The next result establishes asymp-

totic normality for the standardized test statistic Sn.
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Proposition 2.5. Let Assumptions 1–4 be satisfied. Assume that (ϕqn)n>1 satisfies (2.13)

and n
∫ 1
0 ‖T ϕqn − T ϕq‖

2
Wdq = o(

√
mn). If conditions (2.10) and (2.11) hold true we have

3
√

5/mn

(
Sn −mn/6

) d→ N
( ∞∑
j=1

∫ 1

0
E[ξq(W )fj(W )]2dq, 1

)
.

From Proposition 2.5 we see that our test can detect local linear alternatives at the rate

δn. If {fj}j>1 forms an orthonormal basis in L2
W then δn coincides with m

1/4
n n−1/2 within

a constant. Hence, our test has the same power against local linear alternatives as the test
of Hong and White [1995] who consider parametric specification testing.

3. Extensions

As we see in this section, our testing procedure can potentially be applied to a much
wider range of situations. We now discuss corollaries that generalize the previous results in
different ways. For the following analysis we focus on a fixed quantile q ∈ (0, 1).

3.1. Testing exogeneity

Falsely assuming exogeneity of the regressors leads to inconsistent estimators while on the
other hand treating exogenous regressors as if they were endogenous can lower rate of
convergence dramatically. In this subsection, we develop a nonparametric test of exogeneity
that is robust against possible nonseparability of unobservables. The test statistic is similar
to the statistic Sn(q) given in (2.12) but where ϕ̂qn is replaced by an estimator of the
quantile function conditional on regressors Z.
In contrast to the previous section, we assume that a function ϕq exists such that T ϕq = q.
We propose a test whether the vector of regressors Z is exogenous at a quantile q ∈ (0, 1),
that is,

He
0 : P(Y 6 ϕ(Z, q)|Z) = q.

Let us introduce the conditional quantile function ϕe
q defined by P(Y 6 ϕe

q(Z)|Z) = q. The
null hypothesis He

0 holds true if and only if ϕq = ϕe
q. Further, due to nonsingularity of the

operator T , hypothesis He
0 is equivalent to

T ϕe
q = q. (3.1)

Our test of exogeneity, which we propose below, is based on this equation or equivalently on
P(Y 6 ϕe

q(Z)|W ) = q. More precisely, to test exogeneity we replace in the statistic Sn(q)
given in (2.12) the estimator of ϕq by an estimator of ϕe

q.
Let us now propose an estimator for the conditional quantile function ϕe

q. For each k > 1
let ek(·) be a k–dimensional vector with entries ej(·) for 1 6 j 6 k. Let {ej}j>1 be B-spline
basis functions. Then an estimator of ϕe

q is given by

ϕ̂e
qn = arg min

φ∈Bkn

n∑
i=1

%q
(
Yi − ekn(Zi)

tβ
)

(3.2)

where %q(u) = |u| − (2q − 1)u is the check function and here, Bkn =
{
φ ∈ B : φ(·) =∑kn

j=1 βjej(·)
}

. This estimator was studied by He and Shi [1994]. In the following, let pZ
and pZ|W denote the marginal density of Z and the conditional density of Z given W ,
respectively.
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Assumption 5. (i) There exists a function ϕq ∈ B such that T ϕq = q. (ii) Z is scalar
and continuously distributed with Z ⊂ [0, 1] and Φ = L2

Z . (iii) pZ is bounded from
above and uniformly bounded away from zero on Z. (iv) Y − ϕ(Z, q) has a density func-
tion which is strictly positive at zero. (v) pY |Z,W (·, Z,W ) is continuously differentiable,
|∂pY |Z,W (·, Z,W )/∂y| 6 C and pZ|W (·,W ) 6 CpZ(·) for some constant C > 0.

Section 2 provides a test for Assumption 5 (i). For a relaxation of Assumption 5 (ii) see
Remark 3.1 below. Assumption 5 (iii) and (iv) are rather technical. Due to Assumption
5 (v) we do not require Assumption 2 (ii) but can rather rely on an upper bound of the
Taylor reminder of T obtained by Chen et al. [2014]. In this sense, the test of exogeneity
presented below requires weaker restrictions on the local curvature of T than specification
testing.
For a test of the null hypothesis He

0 we replace in the definition of Sn(q) given in (2.12) the
estimator ϕ̂qn by ϕ̂e

qn. That is,

Se
n(q) =

( n∑
i=1

(1{Yi 6 ϕ̂e
qn(Zi)}−q)fmn(Wi)

)t
(Wt

mn
Wmn)−

n∑
i=1

(1{Yi 6 ϕ̂e
qn(Zi)}−q)fmn(Wi)

We reject the hypothesis He
0 if Se

n(q) becomes too large. The next result establishes asymp-
totic normality of our test statistic Se

n(q) under the null hypothesis.

Corollary 3.1. Let Assumptions 1, 2 (i), and 3–5 hold true. Let mn satisfy condition
(2.10). Consider the estimator ϕ̂e

qn given in (3.2) where kn satisfies

kn = o(
√
mn), n = o

(
k2rn
√
mn

)
, m2/κ

n kn = o(n) and mn = o
(
krκn
)

(3.3)

where r = α− 1/2. Then we have under He
0(√

2mn

)−1( 1

q(1− q)
Se
n(q)−mn

)
d→ N (0, 1).

Example 3.1. Let us illustrate when condition (3.3) holds true. Let mn ∼ nι with 0 < ι <
1/3. Then for (3.3) to hold let kn ∼ nχ where χ > 0 satisfies

max
(1− ι/2

2r
,
ι

rκ

)
< χ < min

( ι
2
, 1− 2ι

κ

)
.

Hence, we require r > 2/κ which is a slightly stronger restriction than Assumption 4 (i). �

Remark 3.1 (Multivariate Extension). Horowitz and Lee [2005] estimate the conditional
quantile function in the case of multivariate Z by assuming an additive quantile regression
model. The rate of convergence in probability of the components is n−r/(2r+1) (cf. Theorem
1 in Horowitz and Lee [2005]) which holds independently of the dimension dz and which is
the same rate obtain for ϕ̂e

qn obtained by He and Shi [1994] in the scalar case. Consequently,
under a modification of assumptions our test of exogeneity can be extended to multivariate
additive quantile regression. �

3.2. Testing additivity

The test statistic given in (2.4) is also convenient to check additional restrictions on the
structural effect ϕq for 0 < q < 1. These additional restrictions can be easily imposed
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by constraints on the functions of the sieve space Bkn . For instance, one may impose an
additive structure of the quantile structural effects.
By assuming an additive structure of ϕq one might reduce the effect of dimensionality of
the regressors on the convergence rate of an estimator (cf. Chen and Pouzo [2012] in case of
instrumental quantile regression). Applying this structure leads, however, to inconsistent
estimators in general if the function ϕq does not obey an additive form. Our aim in the
following is to test whether

Hadd
0 : there exist functions ϕ1

q , ϕ
2
q ∈ B such that P(Y 6 ϕ1

q(Z
′) + ϕ2

q(Z
′′)|W ) = q.

Similarly as above we obtain the test statistic

Saddn (q) =
( n∑
i=1

(1{Yi 6 ϕ̂add
qn (Zi)}−q)fmn(Wi)

)t
(Wt

mn
Wmn)−

n∑
i=1

(1{Yi 6 ϕ̂add
qn (Zi)}−q)fmn(Wi)

Here the estimator ϕ̂add
qn = (ϕ̂1

qn, ϕ̂
2
qn) of ϕq = (ϕ1

q , ϕ
2
q) is given by (2.3) where the sieve basis

is a tensor product of basis functions that depend either on Z ′ or Z ′′. For a more detailed
discussion we refer to Section 6 of Chen and Pouzo [2012]. The next asymptotic normality
result is a direct consequence of Corollary 2.2 and hence its proof is omitted.

Corollary 3.2. Given the conditions of Corollary 2.2 we have under Hadd
0(√

2mn

)−1( 1

q(1− q)
Saddn (q)−mn

)
d→ N (0, 1).

4. Monte Carlo simulation

In this section, we study the finite-sample performance of our test by presenting the results
of a Monte Carlo investigation. The sample size is 1000 and there are 1000 Monte Carlo
replications in each experiment. Results are presented for the nominal levels 0.05. Let
Φ denote the cumulative standard normal. Throughout this simulation study, realizations
(Z,W ) were generated by Z = Φ

(
ζω +

√
1− ζ2 ε

)
and W = Φ(ω) where ω is independent

of ε and ω, ε ∼ N (0, 1). Here, the constant ζ > 0 determines the degree of correlation
between Z and W and is varied in the experiments.

4.1. Testing a Nonparametric Specification

We begin with the finite-sample analysis of our test statistics in case of nonparametric
specification testing. To analyze the finite sample power we distinguish in the following
between a failure of the null hypothesis caused either by a lack of instrument validity or by
non-monotonicity of the structural function in unobservables.

Failure of instrument validity. Under the null hypothesis H0: there exists a differentiable
function ϕ1 such that P(Y 6 ϕ1(Z)|W ) = q for all q ∈ (0, 1) we generate realizations of Y
from the additive model

Y = ϕ1(Z) + cV V (4.1)

where V = ϑ ε +
√

1− ϑ2 ε with ε independent of ε and ε ∼ N (0, 1). Let us choose
cV = 0.2 and ϑ = 0.7. We further consider the function ϕ1(z) =

∑∞
j=1 j

−4 cos(jπz).
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Figure 1: Graphs of ϕ1 and ϕ2

For computational reasons we truncate the infinite sum at 100. The resulting function is
displayed in Figure 1.
If H0 is false, then P(Y 6 ϕ1(Z)|W ) = q + ξ(W ) for some function ξ. In our experiments,
we let ξ(W ) = −P(ϕ1(Z) < Y 6 ϕ1(Z) + ρ(Z)|W ) for some function ρ which we specify
below. The definition of ξ implies P(Y 6 ϕ1(Z) + ρ(Z)|W ) = q. Consequently, when H0 is

Model Empirical Rejection probability with

mn = 25 mn = 30 mn = 35

H0 true kn = 4 0.034 0.024 0.025

ρ1 0.509 0.431 0.379

ρ2 0.776 0.705 0.637

ρ3 0.971 0.961 0.945

ρ3 0.998 0.998 0.997

H0 true kn = 5 0.089 0.083 0.073

ρ1 0.542 0.473 0.405

ρ2 0.601 0.532 0.470

ρ3 0.461 0.422 0.395

ρ3 0.673 0.640 0.607

Table 1: Empirical Rejection probabilities for the standardized test statistic 3
√

5/mn

(
Sn−

mn/6
)

with varying dimension parameters kn and mn with ln = 2kn.

false we generate realizations of Y from

Y = ϕ1(Z) + ρj(Z) + cV V (4.2)

where ρj(z) = 10 j (z 1{z 6 0.25} + (z − 1)1{z > 0.25}) for j = 1, 2 and ρj(z) =
(x/2cj)1{0.5 − cj 6 z < 0.5 + cj} for j = 3, 4, with c3 = 0.1 and c4 = 0.05. Here, the
disturbance V is generated as in (4.1) and again cV = 0.2. In this sense, we follow Horowitz
[2011] by modeling invalidity of instruments by highly irregular structural functions.
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For each quantile 0 < q < 1, we estimate the structural function using estimator ϕ̂qn given
in (2.3) with B-splines as approximation basis functions. More precisely, for the sieve space
Bkn we use B-splines of order 2 with 1 knot or 2 knots (hence kn = 4 or kn = 5) and for
the criterion function we use B-splines of order 2 with 5 knots or 7 knots (hence ln = 2kn),
respectively. We thus follow Chen and Christensen [2015] and choose ln to be a constant
multiple of kn. Also for the vector of basis functions fmn , used to construct the test statistic,
we use B-spline basis of order 2 with knots varying between 22, 27 or 32 (hence mn = 25,
mn = 30 or mn = 35). We vary among different dimension parameters kn and mn such

that the rate requirement from our theory, that is, kn 6 ln = o(m
1/2
n ) and mn = o(n1/2),

are approximately satisfied.
The empirical rejection probabilities of our standardized test statistic 3

√
5/mn

(
Sn−mn/6

)
at nominal level 0.05 are shown in Table 1. As we see from Table 1, our test is less sensitive
with respect to the choice of mn than to the choice of kn, which is not surprising and well
known from nonparametric instrumental variable estimation problems, see also Chen and
Pouzo [2015]. If (4.1) is the true model, a choice of small dimension kn leads to smaller
empirical rejection probabilities. The situation is reversed if (4.2) is the true model. This
is not surprising, as the discontinuouities in the alternative model require a larger number
of knots for our approximating basis functions.
As we fixed the dimension parameter ln = 2kn, two dimension parameters remain to be
chosen by the econometrician, namely, kn and mn. Intuitively, we want to choose kn such
that we have a good model fit, i.e., a small value of test statistic, and mn to have a good
power properties, i.e., a large value of the test statistics. This leads a parameter choice for
the test statistics via the minimum-maximum principle. That is, if {s(kn,mn)} denotes the
standardized value of our test Sn with dimension parameters kn and mn then choose these
parameters such that

min
kn<n1/4/2

max
k2n<mn<n1/2

{s(kn,mn)}.

Such a rule, however, does not prevent to choose kn to large in the severely ill-posed case.
To avoid this, we could calculate the sieve measure of ill-posedness as in Chen and Pouzo
[2012].

Failure of monotonicity in unobservables. In the following, we generate Y directly from
a nonseparable model of the form Y = ϕ(Z, V ). We study the finite sample power of our
test when ϕ is not strictly monotonic in the structural disturbance V . Realizations of Y
were generated from

Y = Φ(Z + V )V 2 (4.3)

where V = Φ
(
0.2(ϑ ε+

√
1− ϑ2 ε)

)
with ε ∼ N (0, 1) and where ϑ = 0.8. When H0 is false

we generate

Y = Φ(Z + V )(V − 0.5)2j (4.4)

or

Y = Φ(Z + V )Φ−2j(V ) (4.5)

for j = 1, 2. In the alternative models, the structural disturbance enters the model in a
nonmonotonic way. Under the maintained hypothesis, the instrument W was generated as
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Model Empirical Rejection probabilities

mn = 25 mn = 30 mn = 35

(4.3) kn = 4 0.055 0.046 0.046

(4.4) with j=1 0.375 0.334 0.289

(4.4) with j=2 0.991 0.982 0.976

(4.5) with j=1 0.568 0.497 0.439

(4.5) with j=2 0.999 0.998 0.997

(4.3) kn = 5 0.043 0.041 0.040

(4.4) with j=1 0.189 0.163 0.146

(4.4) with j=2 0.835 0.792 0.748

(4.5) with j=1 0.334 0.283 0.240

(4.5) with j=2 0.936 0.910 0.878

Table 2: Empirical Rejection probabilities for the standardized test statistic 3
√

5/mn

(
Sn−

mn/6
)

with varying dimension parameters kn and mn with ln = 2kn.

in the previous paragraph and hence, satisfies independence to the structural disturbance
V . We construct the statistic Sn as described in the previous paragraph.
Table 2 illustrates the power of our test against these alternative models (4.4) and (4.5).
Again we observe that our test is not very sensitive to the choice of the dimension param-
eter mn. Our test becomes somewhat less powerful for large kn. But in contrast to the
alternatives involving discontinuous functions, the choice of kn is not as sensitive.
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4.2. Testing exogeneity

The realizations Y were generated as in model (4.1) with cV = 0.5 and structural effect
ϕ2(z) =

∑∞
j=1(−1)j+1 j−2 sin(jπz). Again, for computational reasons we truncate the infi-

nite sum at 100. The resulting function is displayed in Figure 1. Note that ϑ determines
the degree of endogeneity of Z and is varied among the experiments. The null hypothesis
H0 : P(Y 6 ϕ2(Z)|Z) = q holds true if ϑ = 0 and is false otherwise. In the following, we per-
form a test at the median q = 0.5. As our test relies on the equation P(Y 6 ϕ2(Z)|W ) = q
we expect our test to have low power if W strongly related to Z.
The test statistic is implemented as described in Section 3.2. To estimate the structural
effect we make use of the estimator ϕ̂e

qn of He and Shi [1994] given in (3.2). Here, we
use B-splines of order 2 with 5 knots (hence kn = 8) or 7 knots (hence kn = 10). We
emphasize that the dimension parameter kn can be chosen larger as it is not affected by
the ill-posedness of the underlying inverse problem. As above, the vector of basis functions
fmn is also constructed with B-spline basis of order 2 with knots varying between 22, 27 or
32 (hence mn = 25, mn = 30 or mn = 35).
Table 3 depicts the empirical rejection probabilities with varying number of basis functions.
As we see from Table 3, our test becomes more powerful for larger ζ; that is, for instruments
with a stronger correlation to the covariates Z. From Table 3 we see that the test of
exogeneity becomes somewhat less powerful for larger values of mn. On the other hand, the
test seems not to be too sensitive with respect to the choice of the dimension parameters
kn and mn.
Similarly as above, a guideline for smoothing parameter choice in practice is given by the
following minimum-maximum principle. That is, if

{
seq(kn,mn)

}
denotes the standardized

value of our test Se
n(q) with dimension parameters kn and mn then choose these parameters

such that

min
kn<n1/4

max
k2n<mn<n1/2

{
seq(kn,mn)

}
.

Again this criterion takes the rate condition for the asymptotic theory into account. In
particular, we may minimize the dimension parameter kn over a larger set of integers.

5. An empirical illustration

To illustrate our testing procedure, we present an empirical application concerning estima-
tion of the effects of class size on students’ performances on standardized tests. Angrist and
Lavy [1999] studied the effects of class size on test scores of 4th and 5th grade students in
Israel. In this empirical illustration, we focus on 4th grade reading comprehension which
was also considered by Horowitz [2011].
In this empirical example we study the model

Ysc = ϕ(Zsc, Vsc) +Dsc β(Vsc) (5.1)

where Ysc is the average reading comprehension test score of 4th grade students in class
c of school s, Zsc is the number of students in class c of school s, Dsc is the fraction
of disadvantaged students in class c of school s with unknown scalar function β, Vsc =
Us + εsc where Us is an unobserved school-specific random effect, and εsc is an unobserved,
independently over classes and schools distributed random variable.
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ζ ϑ Empirical Rejection probability with

mn = 25 mn = 30 mn = 35

0.4 0.0 kn = 8 0.050 0.048 0.045

0.3 0.239 0.217 0.195

0.35 0.351 0.322 0.282

0.4 0.527 0.465 0.418

0.45 0.696 0.640 0.589

0.7 0.0 0.045 0.043 0.041

0.3 0.463 0.411 0.364

0.35 0.709 0.626 0.573

0.4 0.893 0.847 0.788

0.45 0.979 0.963 0.942

0.4 0.0 kn = 10 0.043 0.046 0.051

0.3 0.241 0.217 0.189

0.35 0.365 0.321 0.297

0.4 0.517 0.454 0.422

0.45 0.711 0.640 0.582

0.7 0.0 0.043 0.042 0.041

0.3 0.455 0.405 0.357

0.35 0.711 0.627 0.577

0.4 0.884 0.846 0.791

0.45 0.977 0.965 0.943

Table 3: Empirical Rejection probabilities for the standardized test statistic(√
2mn

)−1(
4Se

n(0.5)−mn

)
with varying dimension parameters kn and mn.

The class size Zsc may be endogenous, for instance, due to the socioeconomic background of
the students. To identify the causal effect of class size on scholar achievement Angrist and
Lavy [1999] use Maimonides’ rule as instruments. According to this administrative rule,
maximum class size is given by 40 pupils and will be split if the number of enrolled students
exceeds this number. More precisely, assuming that cohorts are divided into classes of equal
size, Maimonides rule is described by

Wsc = Es/d1 + (Es − 1)/40e

where Es denotes enrollment in school s and dxe denotes the largest integer less or equal
to x. Note that Horowitz [2011] could show that a linear relation between class size and
scholar achievement as used by Angrist and Lavy [1999] is misspecified. To apply our tests,
we consider a subsample where only one representative class per school is considered. By
doing so, we avoid that rejection of a hypothesis may be caused by within class correlation.
Moreover, only schools with at least two classes are considered which leads to a sample size
of 707.
In the following, we want to test nonparametrically whether class size is endogenous at
the 0.5–quantile. The null hypothesis is that P(Ysc 6 ϕ(Zsc, q) + Dsc β(q)|Zsc) = q where
q = 0.5. The value of our test statistic Se

n(0.5) = (2mn)−1/2
(
4Se

n(0.5) − mn

)
is given
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by 2.115. For the choice of smoothing parameters kn and mn we applied the minimum-
maximum principle as described in Section 4.2. We thus, reject the hypothesis of exogeneity
at the 0.05 nominal level. In particular, in model (5.1) under conditions (a.1)–(a.3) we
conclude that Zsc is not independent of Vsc.
We now perform test whether the model (5.1) with conditions (a.1)–(a.3) is correctly spec-
ified. We construct our test statistic using B-splines as described in Section 4.1. For the
choice of smoothing parameters kn and mn we applied the minimum-maximum principle
as described in Section 4.2. As in the Monte Carlo section we choose ln = 2kn. Our test
statistic attains the value 1.4152 and thus fails to reject the nonseparable model (5.1) with
conditions (a.1)–(a.3) at the 0.05 nominal level. For the fixed quantile q = 0.5, we also
performed a test of P(Ysc 6 ϕ(Zsc, q) + Dsc β(q)|Wsc) = q. In this case, our test statistic
attains the value 0.981 and again fails to reject the hypothesis.2
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Figure 2: Estimated structural effects (thick line) for q ∈ {0.25, 0.5, 0.75} and 90% confi-
dence intervals (blue lines)

For the full sample, Figure 2 depicts estimators of the structural effect ϕq for the quantiles
q ∈ {0.25, 0.5, 0.75} where the number of disadvantaged students is smaller than 15% (in
this case n = 688). The solid black line are the estimators and the blue lines are the 90%
pointwise bootstrap confidence bands (we account within in school correlation by using

2This is not the case if kn is chosen too small or too large. For instance if kn = 4 or kn = 9, respectively,
then the value of the test statistic is 2.064 or 3.420 (as aboved maximized of mn and ln = 2kn).
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schools as the bootstrap sampling units, see also Horowitz [2011]). We can see that the
confidence bands are tight enough to reject the hypothesis that the quantile structural
effects are overall upward sloping. In particular, we see that the effect of class size variation
on test scores is more severe for lower performing classes.

6. Conclusion

In this paper, we developed a nonparametric specification test for the quantile regression
model (1.1). The test statistic is easy to implement and a natural extension of specification
testing in parametric framework. We established the asymptotic distribution of our test
under the null hypothesis. Our test is consistent against a fixed alternative and we study its
power properties by considering a sequence of local alternatives. We also provided extensions
of our test theory concerning model simplification. We demonstrated via a Monte Carlo
simulation study that our testing procedure performs well in finite samples. The usefulness
of our testing procedure is illustrated by an empirical example.

A. Appendix

A.1. Proofs of Section 3.

In the appendix, fmn denotes a mn dimensional vector with entries fj for 1 6 j 6 mn.
Moreover, ‖ · ‖ is the usual Euclidean norm. For ease of notation, let Xi = (Yi, Zi,Wi) for
1 6 i 6 n with realizations x = (y, z, w) ∈ Y × Z × W. Let H be a class of measurable
functions with a measurable envelope function H. Then N(ε,H, L2

X) and N[ ](ε,H, L2
X),

respectively, denote the covering and bracketing numbers for the set H. In addition, let
J[ ](1,H, L2

X) denote a bracketing integral of H, that is,

J[ ](1,H, L2
X) =

∫ 1

0

√
1 + logN[ ](ε ‖H‖X ,H, L2

X)dε.

Throughout the proofs, we will use C > 0 to denote a generic finite constant that may be
different in different uses. Further, for ease of notation we write

∫
for
∫ 1
0 ,
∑

i for
∑n

i=1, and∑
i′<i for

∑n
i=1

∑i−1
i′=1. For any φ, ψ ∈ L2

W , the inner product in L2
W is denoted by

〈
φ, ψ

〉
W

=

E[φ(W )ψ(W )] and further, let Fmnφ =
∑mn

j=1

〈
φ, fj

〉
W
fj . In the following, we denote

Q̂n = n−1
∑

i fmn(Wi)fmn(Wi)
t. By Assumption 1, the eigenvalues of E[fmn(W )fmn(W )t]

are bounded away from zero and hence, it may be assumed that E[fmn(W )fmn(W )t] = Imn

where Imn denotes the mn dimensional identity matrix (cf. Newey [1997], p. 161).
In the following result, we establish continuity of the mapping q 7→ ϕ(·, q) under the tan-
gential cone condition and a mild assumption on the sieve approximation error for ϕq.

Lemma A.1. Let Assumption 2 be satisfied. Assume for almost all q ∈ (0, 1) there exists
a function ϕq with T ϕq = q and ‖ϕq − Πkϕq‖Z = o(1) as k → ∞. Then the mapping
q 7→ ϕ(·, q) is continuous.

Proof. Let {sqj , ej , fj}j>1 be a singular value decomposition of the linear operator Tq for
some q ∈ (0, 1). For any ε > 0 and k sufficiently large, let us define δ = (1− η) ε sqk/3. We
consider q′ ∈ (0, 1) such that |q− q′| < δ. Since q, q′ satisfy the quantile restriction we have
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‖T ϕq − T ϕq′‖W < δ. Let us further denote rk(q) = ‖Πkϕq − ϕq‖W . We have rk(q) 6 ε/6
by assumption for all q. By Assumption 2 (ii) and the triangular inequality it holds

‖T ϕq−T ϕq′‖W > (1− η)‖Tq(ϕq − ϕq′)‖W
= (1− η)‖TqΠk(ϕq − ϕq′)− Tq(Πkϕq − ϕq) + Tq(Πkϕq′ − ϕq′)‖W

> (1− η)
(
‖TqΠk(ϕq − ϕq′)‖W − ‖Tq(Πkϕq − ϕq)‖W − ‖Tq(Πkϕq′ − ϕq′)‖W

)
> (1− η) sqk

(
‖Πk(ϕq − ϕq′)‖Z − rk(q)− rk(q′)

)
> (1− η) sqk

(
‖ϕq − ϕq′‖Z − 2rk(q)− 2rk(q

′)
)
,

using that (sqj)j>1 is a zero sequence. This implies

‖ϕq − ϕq′‖Z 6 (1− η)−1 s−1qk δ + 2rk(q) + 2rk(q
′)

6 (1− η)−1 s−1qk δ + 2 ε/3

6 ε,

which proves the result.

Proof of Theorem 2.1. Since we have ‖Q̂n− Imn‖2 = op(m
2
n/n) it is sufficient to prove

that 3
√

5/mn

(∑mn
j=1 |n−1/2

∑
i(1 {Yi 6 ϕ̂qn(Zi)} − q)fj(Xi)|2 − mn/6

) d→ N (0, 1). The
proof is based on the decomposition

mn∑
j=1

∫ ∣∣n−1∑
i

(1 {Yi 6 ϕ̂qn(Zi)} − q)fj(Wi)
∣∣2dq

=

mn∑
j=1

∫ ∣∣n−1∑
i

(1 {Yi 6 ϕ(Zi, q)} − q)fj(Wi)
∣∣2dq

− 2

n2

mn∑
j=1

∫ (∑
i

(1 {Yi 6 ϕ(Zi, q)} − q)fj(Wi)
)

×
(∑

i

(
1{Yi 6 ϕ̂qn(Zi)} − 1{Yi 6 ϕ(Zi, q)}

)
fj(Wi)

)
dq

+

mn∑
j=1

∫ ∣∣n−1∑
i

(
1{Yi 6 ϕ̂qn(Zi)}−1{Yi 6 ϕ(Zi, q)}

)
fj(Wi)

∣∣2dq = In−2IIn+IIIn.

(A.1)

Consider In. We calculate further

m−1/2n

(
nIn −mn/6

)
=

1
√
mnn

∑
i

mn∑
j=1

(∫
|(1 {Yi 6 ϕ(Zi, q)} − q)fj(Wi)|2dq − 1/6

)
+

1
√
mnn

∑
i 6=i′

mn∑
j=1

∫ (
1 {Yi 6 ϕ(Zi, q)}− q

)(
1 {Yi′ 6 ϕ(Zi′ , q)}− q

)
fj(Wi)fj(Wi′)dq

where the first summand tends in probability to zero as n→∞. Indeed,we have

E
∫
|(1{Y 6 ϕ(Z, q)} − q)fj(W )|2dq = E[f2j (W )]

∫
q(1− q)dq = 1/6
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for all j > 1 and hence,

E
∣∣∣ 1
√
mnn

∑
i

mn∑
j=1

(∫
|(1 {Yi 6 ϕ(Zi, q)} − q)fj(Wi)|2dq − 1/6

)∣∣∣2
6

1

mnn

∫
E
∣∣∣ mn∑
j=1

|(1 {Y 6 ϕ(Z, q)}−q)fj(W )|2−E |(1{Y 6 ϕ(Z, q)}−q)fj(W )|2
∣∣∣2dq

6
1

mnn
sup
w∈W

‖fmn(w)‖4
∫

E |1 {Y 6 ϕ(Z, q)} − q|4dq

6 O(mn/n) = o(1)

by using supw∈W ‖fmn(w)‖2 6 Cmn. Therefore, to establish 3
√

5/mn(nIn − mn/6)
d→

N (0, 1) it is sufficient to show

3
√

5
√
mnn

∑
i 6=i′

mn∑
j=1

∫ (
1 {Yi 6 ϕ(Zi, q)}−q

)(
1 {Yi′ 6 ϕ(Zi′ , q)}−q

)
fj(Wi)fj(Wi′)dq

d→ N (0, 1).

This follows from Lemma A.3. Consider IIIn. Let us denote Bn := {φ ∈ B(0,1) : 9φ −
ϕ92

Z,p 6 m
−(1+c)/κ
n } for some constant c > 0 and Bqn := {φq : φ ∈ Bn} ⊂ B. Further, we

denote for 1 6 j 6 mn and 1 6 i 6 n

hqj(Xi, φq) =
(
1{Yi 6 φ(Zi, q)} − 1 {Yi 6 ϕ(Zi, q)}

)
fj(Wi)

and the classes Hqjn = {hqj(·, φq) : φq ∈ Bqn} and Hqj = {hqj(·, φq) : φq ∈ B}. We observe

IIIn =

mn∑
j=1

∫ ∣∣n−1∑
i

hqj(Xi, ϕ̂qn)
∣∣2dq

6 2ηp 9 T ϕ̂·n − T ϕ 92
W +2

mn∑
j=1

∫ ∣∣n−1∑
i

hqj(Xi, ϕ̂qn)−
〈
T ϕ̂qn − T ϕq, fj

〉
W

∣∣2dq.
From (A.4) in Lemma A.2 together with condition nτn = o(

√
mn) we deduce n 9 T ϕ̂·n −

T ϕ92
W = op(

√
mn). Further, we observe for every φq ∈ Bqn that∣∣hqj(Xi, φq)
∣∣2 6 max

φq∈Bqn

∣∣(1{Yi 6 φ(Zi, q)} − 1 {Yi 6 ϕ(Zi, q)}
)
fj(Wi)

∣∣2 =: H2
qj(Xi)

and hence, Hqj is an envelope function of the class Hqjn and due to Assumption 3 we have

E[
∫
H2
qj(X)dq] 6 Cm−(1+c)n . Moreover, (A.5) in Lemma A.2 together with condition (2.11)
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implies 9ϕ̂·n − ϕ92
Z,p = op

(
m
−(1+c)/κ
n

)
and thereby

P
( mn∑
j=1

∫ ∣∣n−1∑
i

hqj(Xi, ϕ̂qn)−
〈
T ϕ̂qn − T ϕq, fj

〉
W

∣∣2dq > ε
)

6
mn∑
j=1

ε−1 E sup
φ∈Bn

∫ ∣∣∣n−1/2∑
i

hqj(Xi, φq)− Ehqj(X, φq)
∣∣∣2dq + o(1)

6
mn∑
j=1

ε−1
∫

E max
φq∈Bqn

∣∣∣n−1/2∑
i

hqj(Xi, φq)− Ehqj(X, φq)
∣∣∣2dq + o(1)

6
mn∑
j=1

ε−1
∫ (

E max
φq∈Bqn

∣∣∣n−1/2∑
i

hqj(Xi, φq)−Ehqj(X, φq)
∣∣∣+(E |Hqj(X)|2

)1/2)2
dq+o(1)

where the last inequality is due to Theorem 2.14.5 of van der Vaart and Wellner [2000].
We further conclude by applying the last display of Theorem 2.14.2 of van der Vaart and
Wellner [2000]

E max
φq∈Bqn

∣∣∣n−1/2∑
i

hqj(Xi, φq)− Ehqj(X, φq)
∣∣∣ 6 CJ[ ](1,Hqjn, L2

X)
(
E |Hqj(X)|2

)1/2
for all 0 < q < 1. Now since max16j6mn E

∫
|Hqj(X)|2dq 6 Cm−(1+c)n for n sufficiently large

it is sufficient to show that max16j6mn J[ ](1,Hqjn, L2
X) < C for all 0 < q < 1. From Lemma

4.2 (i) of Chen [2007] we deduce

N[ ](ε
(
E |Hqj(X)|2

)1/2
,Hqjn, L2

X) 6 N[ ]

(
ε,
(
E |Hqj(X)|2

)−1/2Hqjn, L2
X

)
6 N[ ]

(
ε,Hqj , L2

X

)
6 N

(( ε

2C

)2/κ
,B, ‖ · ‖Z,p

)
6 N

(( ε

2C

)2/κ
,B, ‖ · ‖∞

)
.

Employing condition α0 > dz/p and Theorem 6.2 Part II of Adams and Fournier [2003]
yields that Wα,p is compactly embedded in Wα,∞. Thereby, B ⊂ Wα,p is totally bounded
in Wα,∞ which implies ‖φ‖α,∞ 6 C for all φ ∈ B. Let Wα,∞

C := {Wα,∞ : ‖φq‖α,∞ 6 C}.
Now Theorem 2.7.1 of van der Vaart and Wellner [2000] gives

logN
(
ε2/κ,B, ‖ · ‖∞

)
6 logN

(
ε2/κ,Wα,∞

C , ‖ · ‖∞
)
6 Cε−2dz/(ακ)

where C depends on the diameter of Z. Now due to Assumption 4 (i) it is straightforward
to see that max16j6mn J[ ](1,Hqjn, L2

X) < C and hence, nIIIn = op(
√
mn).
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Consider IIn. We observe

nIIn =

mn∑
j=1

∫ (∑
i

(1 {Yi 6 ϕ(Zi, q)} − q)fj(Wi)
)(
n−1

∑
i

hqj(Xi, ϕ̂qn)
)
dq

=

mn∑
j=1

∫ (∑
i

(1 {Yi 6 ϕ(Zi, q)}−q)fj(Wi)
)(
n−1

∑
i

hqj(Xi, ϕ̂qn)−
〈
T ϕ̂qn−T ϕq, fj

〉
W

)
dq

+

mn∑
j=1

∫ (∑
i

(1 {Yi 6 ϕ(Zi, q)} − q)fj(Wi)
)〈
T ϕ̂qn − T ϕq, fj

〉
W
dq

= Cn1 + Cn2.

The Cauchy Schwarz inequality implies for all ε > 0

P(|Cn1| > ε
√
mn) 6 (ε

√
mn)−1

(∫
q(1− q)dq

)1/2
×

mn∑
j=1

(∫
E max
φq∈Bqn

∣∣n−1/2∑
i

hqj(Xi, φq)− Ehqj(X, φq)
∣∣2dq)1/2 + o(1)

= o(1)

where the last equality follows similarly to the proof of nIIIn = op(
√
mn). Consider Cn2.

Let us introduce the function for 1 6 j 6 mn and 1 6 i 6 n

tqn(Xi, φq) :=
(
1 {Yi 6 ϕ(Zi, q)} − q

)(
FmnT φq − FmnT ϕq

)
(Wi)

and the sets Dn :=
{
φ ∈ B(0,1) : n 9 T φ− T ϕ92

W 6
√
mn

}
, Dqn := {φq : φ ∈ Dn} ⊂ B,

Gq := {tqn : φ ∈ B}, and Gqn := {tqn : φ ∈ Dqn}. We calculate

P
(
|Cn2| > ε

√
mn

)
6
√
n(ε
√
mn)−1 E

∫
max
φq∈Dqn

∣∣∣ 1√
n

∑
i

tqn(Xi, φq)
∣∣∣dq + o(1).

Since pW is uniformly bounded away from zero, n9T φ−T ϕ92
W 6

√
mn, and ‖Fmn(T φq−

T ϕq)‖W 6 C‖T φq − T ϕq‖W for all φ ∈ Dn we have |Fmn(T φq − T ϕq)(w)| 6 Cm
1/4
n n−1/2

for almost all 0 < q < 1 and pW –almost all w. Consequently, tqn(x, φq) 6 Cm
1/4
n n−1/2

pW –almost surely. We conclude by again applying the last display of Theorem 2.14.2 of
van der Vaart and Wellner [2000]

E max
φq∈Dqn

∣∣∣ 1√
n

∑
i

tqn(Xi, φq)
∣∣∣ 6 CJ[ ](1,Gqn, L2

X)m1/4
n n−1/2.

As above it can be seen that J[ ](1,Gqn, L2
X) < C for all 0 < q < 1. Indeed, from Assumption

2 (ii) we conclude ‖T φ − T ϕq‖W 6 (1 + η)‖Tq(φ − ϕq)‖W and further, Assumption 4 (v)
yields ‖Fmn(T φ − T ϕq)‖W 6 C(1 + η)ηp‖φ − ϕq‖Z . Hence, the mapping φ 7→ FmnT φ is
Lipschitz continuous at ϕq and we may apply Theorem 2.7.11 of van der Vaart and Wellner
[2000] which yields

N[ ](ε
(
n−1
√
mn

)1/2
,Gn, L2

X) 6 N[ ](ε,Gq, L2
X)

6 N[ ]

(
ε, {FmnT φ− FmnT ϕq : φ ∈ B}, L2

W

)
6 N

( ε

2C
,B, ‖ · ‖∞

)
.

Thereby, Cn2 = op(
√
mn), which completes the proof.
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In the following we make use of the notation gqj(Xi, φ) := (1{Yi 6 φ(Zi)} − q)fj(Wi),
1 6 j 6 mn, 1 6 i 6 n, for any φ ∈ B.

Proof of Proposition 2.4. For the proof it is sufficient to show n−1Sn >
∫
‖T ϕq −

q‖2Wdq/2+op(1). Since
∫
‖n−1

∑
i(1 {Yi 6 ϕ̂qn(Zi)}−1 {Yi 6 ϕq(Zi)})fmn(Wi)‖2dq = op(1)

(cf. proof of Theorem 2.1 together with Lemma A.2) we obtain∫ ∥∥n−1∑
i

(1 {Yi 6 ϕq(Zi)} − q)fmn(Wi)
∥∥2dq

=

∫ ∥∥E[((T ϕq)(W )− q)fmn(W )]
∥∥2dq + op(1)

>
∫
‖T ϕq − q‖2Wdq/2 + op(1),

which proves the result.

Proof of Proposition 2.5. Since ϕq = arg minφ∈B ‖T φ−q‖W we obtain as in the proof
of Theorem 2.1 by employing the results of Lemma A.2 that

Sn =

mn∑
j=1

∫ ∣∣∣n−1/2∑
i

gqj(Xi, ϕq)
∣∣∣2dq + op(

√
mn).

Further, we calculate

mn∑
j=1

∫ ∣∣∣n−1/2∑
i

gqj(Xi, ϕq)
∣∣∣2dq =

mn∑
j=1

∫ ∣∣∣n−1/2∑
i

(
gqj(Xi, ϕq)− E gqj(Xi, φ)

)∣∣∣2dq
+ 2

mn∑
j=1

∫ (
n−1/2

∑
i

(
gqj(Xi, ϕq)− E gqj(X, ϕq)

))√
nE gqj(X, ϕq)dq

+ n

mn∑
j=1

∫ ∣∣∣E gqj(X, ϕq)∣∣∣2dq
= In + IIn + IIIn.

We have 3
√

5/mn

(
In −mn/6

) d→ N (0, 1). Further, since E[(1{Y 6 ϕ(Z, q)} − q)2|W ] 6 1
we obtain

E |IIn|2 6 nE
∫ ∣∣(1{Y 6 ϕ(Z, q)} − q)

mn∑
j=1

E gqj(X, ϕq)
∣∣2dq

6 n
∫ ∣∣∣ mn∑

j=1

E gqj(X, ϕq)
∣∣∣2dq 6 n ∫ ‖T ϕq − q‖2Wdq (A.2)

and hence IIn = Op((n
∫
‖T ϕq − q‖2Wdq)1/2). Moreover, since n

∫
‖T ϕqn − T ϕq‖2Wdq =

o(
√
mn) and by employing relation (2.13) it is easily seen that

3
√

5n
√
mn

IIIn =
3
√

5n
√
mn

∫
‖T ϕqn − q − δnξq‖2Wdq +

∞∑
j=1

∫
E[ξq(W )fj(W )]2dq + o(1),

which proves the result.
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Proof of Corollary 3.1. In light of the proof of Theorem 2.1 is sufficient to prove
n‖T ϕ̂e

qn − T ϕq‖2W = op(
√
mn). Due to Assumption 5 (v) we obtain as in the proof of

Theorem 6 of Chen et al. [2014] that

‖T ϕ̂e
qn − T ϕq − Tq(ϕ̂e

qn − ϕq)‖W 6 C‖ϕ̂e
qn − ϕq‖2Z

and consequently,

‖T ϕ̂e
qn − T ϕq‖W 6 C

(
‖Tq(ϕ̂e

qn − ϕq)‖W + ‖ϕ̂e
qn − ϕq‖2Z

)
.

Moreover, by applying supy pY |Z,W (y, Z,W ) 6 C and Jensen’s inequality we have

‖Tq(ϕ̂e
qn − ϕq)‖2W =

∫
W
|
∫
Z
pY |Z,W (ϕ(z, q), z, w)(ϕ̂e

qn − ϕq)(z)pZ|W (z, w)dz|2pW (w)dw

6 C‖ϕ̂e
qn − ϕq‖2Z .

Under the conditions of Assumption 5, He and Shi [1994] (proof of Theorem 2.1 equation
(3.11) and (3.12)) establish that ‖ϕ̂e

qn−ϕq‖2Z = Op(n
−1kn+k−2rn ). Consequently, n‖T (ϕ̂e

qn−
ϕq)‖2W = Op(kn + nk−2rn ) = op(

√
mn), which proves the assertion.

A.2. Technical assertions.

We can not apply the consistency and rate of convergence results of Chen and Pouzo
[2012] when the null hypothesis H0 fails. The following Lemma extends their results to
possibly misspecified instrumental quantile regression. Recall that under misspecification
ϕq = arg minφ∈B ‖T φ− q‖W does not satisfy T ϕq = q.

Lemma A.2. Let Assumptions 1–4 hold true. Then

9ϕ̂·n − ϕ92
Z,p = op(1), (A.3)

9T ϕ̂·n − T ϕ92
W = Op

(
ωn +

∫
‖T ϕq − q‖2Wdq

)
, (A.4)

9ϕ̂·n − ϕ92
Z,p = Op

(
9Πknϕ− ϕ 92

Z,p +τkn
(
ωn +

∫
‖T ϕq − q‖2Wdq

))
. (A.5)

Proof. Proof of (A.3). We defineRn := max
(
n−1ln,maxφ∈Bkn

∑
j>ln

E[(T φ(W )−q)fj(W )]2
)
.

From the proof of Proposition 2.4 we have that

ln∑
j=1

E max
φ∈Bkn

∣∣∣n−1∑
i

1{Yi 6 φ(Zi)}fj(Wi)−E[1{Y 6 φ(Z)}fj(W )]
∣∣∣2 = O(n−1ln). (A.6)

Consequently, we observe∫ ∥∥n−1∑
i

(1{Yi 6 Πknϕq(Zi)} − q)fln(Wi)
∥∥2dq 6 2

∫
‖T Πknϕq − q‖2Wdq +Op(Rn).

Further, using the elementary inequality (a − b)2 > a2/2 − b2 and again applying relation
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(A.6) gives∫ ∥∥n−1∑
i

(1{Yi 6 φq(Zi)} − q)fln(Wi)
∥∥2dq > ∫ ‖Fln(T φq − q)‖2Wdq/2

−
ln∑
j=1

max
φ∈Bkn

∣∣∣n−1∑
i

1{Yi 6 φ(Zi)}fj(Wi)− E1{Y 6 φ(Z)}fj(W )
∣∣∣2

> C

∫
‖T φq − q‖2Wdq − Op(Rn).

Let us denote Akn = {φ ∈ B(0,1)kn
: 9φ− ϕ92

Z,p > ε} for some ε > 0. Since T is continuous

and ϕq = arg minφ∈B ‖T φ−q‖W is unique we have that minφ∈Akn

∫
‖T φq−q‖2Wdq is strictly

positive for all n > 1. Therefore, we obtain

P
(

9 ϕ̂·n − ϕ92
Z,p > ε

)
6 P

(
min
φ∈Akn

∫ ∥∥∑
i

(1{Yi 6 φ(Zi, q)} − q)fln(Wi)
∥∥2dq

6
∫ ∥∥∑

i

(1{Yi 6 Πknϕ(Zi, q)} − q)fln(Wi)
∥∥2dq)

6 P
(

min
φ∈Akn

∫
‖T φq − q‖2Wdq 6

∫
‖T Πknϕq − q‖2Wdq +Op(Rn)

)
= o(1)

since
∫
‖T Πknϕq − q‖2Wdq =

∫
‖T ϕq − q‖2Wdq + o(1), Rn = o(1), and making use of

minφ∈Akn

∫
‖T φq − q‖2Wdq >

∫
‖T ϕq − q‖2Wdq + o(1). Proof of (A.4). For some ε > 0 let

us denote Dkn = {φ ∈ B(0,1)kn
: 9T φ− T ϕ92

W > εωn}. Therefore, we obtain as above

P
(

9 T ϕ̂·n − T ϕ92
W > εωn

)
6 P

(
min
φ∈Dkn

∫
‖T φq − q‖2Wdq 6

∫
‖T Πknϕq − q‖2Wdq +Op(Rn)

)
.

Further, it holds
∫
‖T Πknϕq− q‖2Wdq 6 29T Πknϕ−T ϕ9W +2

∫
‖T ϕq− q‖2Wdq. We thus

obtain

P
(

9 T ϕ̂·n − T ϕ92
W > ε ωn

)
6 P

(
min
φ∈Dkn

∫
‖T φq−q‖2Wdq 6 29T Πknϕ−T ϕ92

W +2

∫
‖T ϕq−q‖2Wdq+Op(Rn)

)
.

For all φ ∈ Dkn and 0 < q < 1 we have

‖T φq − q‖2W > ‖T ϕq − q‖2W > ‖T φq − T ϕq‖2W /2− ‖T φq − q‖2W
and hence, ‖T φq − q‖2W > ‖T φq − T ϕq‖2W /4. Thereby, we obtain

P
(

9 T ϕ̂·n − T ϕ92
W > ε ωn

)
6 P

(1

4
min
φ∈Dkn

9T φ−T ϕ92
W 6 2 9 T Πknϕ−T ϕ92

W +2

∫
‖T ϕq − q‖2Wdq+Op(Rn)

)
6 P

(ε
4
ωn 6 2η

∫
‖Tq(Πknϕq − ϕq)‖2Wdq + 2

∫
‖T ϕq − q‖2Wdq +Op(Rn)

)
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which goes to zero for all n > 1 as ε → ∞. Proof of (A.5). Note that ‖Tq(φ − ϕq)‖W 6
(1− η)−1‖T φ− T ϕq‖W for all φ in a sufficiently small neighborhood around ϕq. Thereby,
due to (A.3) we obtain

9ϕ̂·n − ϕ92
Z,p = Op

(
9Πknϕ− ϕ 92

Z,p +τkn 9 T ϕ̂·n − T ϕ 92
W

)
.

Hence, the result follows by applying (A.4).

The following lemma is similar to Lemma A.2 of Breunig [2015]. In the following, however,
we provide the proof for the sake of completeness. For all φ ∈ B recall the definition
gj(Xi, φ) = (1{Yi 6 φ(Zi)} − q)fj(Wi) for all 1 6 j 6 mn and 1 6 i 6 n. Let us introduce
Xii′ := 3

√
5/(
√
mnn)

∑mn
j=1

∫
gj(Xi, ϕq)gj(Xi′ , ϕq)dq and

Qni :=

{ ∑i−1
l=1 Xli, for i = 2, . . . , n,

0, for i = 1 and i > n.
(A.7)

Then clearly

3
√

5/(
√
mnn)

∑
i 6=i′

mn∑
j=1

∫
gj(Xi, ϕq)gj(Xi′ , ϕq)dq

= 6
√

5/(
√
mnn)

∑
i<i′

mn∑
j=1

∫
gj(Xi, ϕq)gj(Xi′ , ϕq)dq =

∑
i<i′

Xii′ =
n∑
i=1

Qni.

Let Bni := B((Z1, Y1,W1), . . . , (Zi, Yi,Wi)), 1 6 i 6 n, n > 1, be the σ-algebra generated
by (Z1, Y1,W1), . . . , (Zi, Yi,Wi). Since gj(Xi, ϕq), 1 6 i 6 n, are centered random vari-
ables it follows that {(

∑i
i′=1Qni′ ,Bni), i > 1} is a Martingale for each n > 1 and hence

{(Qni,Bni), i > 1} is a Martingale difference array for each n > 1.

Lemma A.3. Let Qni be defined as in (A.7). Let Assumption 1 and condition (2.10) be

satisfied. Then, we have
∑∞

i=1Qni
d→ N (0, 1).

Proof. For the proof we have to show that the Martingale difference array {(Qni,Bni), i >
1}, n > 1, satisfies the conditions

∞∑
i=1

E |Qni|2 6 1 for all n > 1, (A.8)

∞∑
i=1

Q2
ni = 1 + op(1), (A.9)

sup
i>1
|Qni| = op(1). (A.10)

Then the result follows by Awad [1981]. Proof of (A.8). Since E[(1 {Y 6 ϕ(Z, q)} −
q)(1 {Y 6 ϕ(Z, q′)} − q′)|W ] = min(q, q′)− qq′ we have∫ (

E
[
gj(X, ϕq)gj′(X, ϕq′)

])2
d(q, q′) =

∫
(min(q, q′)−qq′)2d(q, q′)1{j=j′} = 1{j=j′} /90.
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since E[fj(W )fj′(W )]2 = 1{j=j′} and∫
(min(q, q′)− qq′)2d(q, q′) =

∫ (∫ q

0
(q′ − qq′)2dq′ +

∫ 1

q
(q − qq′)2dq′

)
dq

=
2

3

∫
q3(1− q)2dq

= 1/90.

Observe that E[X1iX1i′ ] = 0 for i 6= i′ and thus, for i = 2, . . . , n we have

E |Qni|2 = E |X1i + · · ·+ Xi−1,i|2 = (i− 1)E |X12|2

=
6
√

5(i− 1)

n2mn
E
∣∣ mn∑
j=1

∫
gj(X1, ϕq)gj(X2, ϕq)dq

∣∣2
=

6
√

5(i− 1)

n2mn

mn∑
j,j′=1

∫ (
E[gj(X, ϕq)gj′(X, ϕq′)]

)2
d(q, q′) =

2(i− 1)

n2
.

Thereby, we conclude

n∑
i=1

E |Qni|2 =
2

n2

n−1∑
i=1

i =
n(n− 1)

n2
= 1− 1

n
(A.11)

which proves (A.8).
Proof of (A.9). Using relation (A.11) we observe

E
∣∣ n∑
i=1

Q2
ni − 1

∣∣2 =
n∑
i=1

EQ4
ni + 2

∑
i<i′

EQ2
niQ

2
ni′ − 1 + o(1) =: In + IIn − 1 + o(1).

Consider In. Observe that

E |Qni|4 = E
∣∣ i−1∑
i′=1

Xi′i
∣∣4 6 ∫ E

∣∣∣ 6
√

5

n
√
mn

mn∑
j=1

gj(Xi, ϕq)

i−1∑
i′=1

gj(Xi′ , ϕq)
∣∣∣4dq

6
C

n4m2
n

sup
w∈W

‖fmn(w)‖4
(

(i− 1)E ‖fmn(W )‖4 + 3(i− 1)(i− 2)(E ‖fmn(W )‖2)2
)

where we used that E[gj(X, ϕq)] = 0 for 0 < q < 1. Since
∑n

i=1 3(i−1)(i−2) = n(n−1)(n−2)
we conclude

In 6 C
(n(n− 1)

2n4
E ‖fmn(W )‖4 +

n(n− 1)(n− 2)

n4
(E ‖fmn(W )‖2)2

)
= o(1)

since (E ‖fmn(W )‖2)2 6 E ‖fmn(W )‖4 6 Cm2
n. We calculate for i < i′

Q2
niQ

2
ni′ =

( i−1∑
k=1

X 2
ki

)( i′−1∑
k=1

X 2
ki′

)
+
( i−1∑
k=1

X 2
ki

)( i′−1∑
k 6=k′
Xki′Xk′i′

)

+
( i−1∑
k 6=k′
XkiXk′i

)( i′−1∑
k=1

X 2
ki′

)
+
( i−1∑
k 6=k′
XkiXk′i

)( i′−1∑
k 6=k′
Xki′Xk′i′

)
=: Aii′ + Bii′ + Cii′ + Dii′ .
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Consider Aii′ . Exploiting relation (A.11) and using
∑

i<i′(i− 1) =
∑n

i′=1(i
′− 1)(i′− 2)/2 =

n(n − 1)(n − 2)/6 and further
∑

i<i′(i − 1)(i′ − 3) =
∑n

i′=1(i
′ − 3)(i′ − 2)(i′ − 1)/2 =

n(n− 1)(n− 2)(n− 3)/8 we obtain

2
∑
i<i′

EAii′ = 4EX 2
12X 2

23

∑
i<i′

(i− 1) + 2(EX 2
12)

2
∑
i<i′

(i− 1)(i′ − 3) + o(1)

6 C
n(n− 1)(n− 2)

n4m2
n

mn∑
j,l=1

∫
E
[
g2j (X, ϕq)g

2
l (X, ϕq′)

]
d(q, q′)

+
n(n− 1)(n− 2)(n− 3)

n4
+ o(1)

since
∫
E[gj(X, ϕq)gj′(X, ϕq′)]d(q, q′) = 1{j = j′}/90. Moreover, applying Cauchy Schwarz’s

inequality twice gives

mn∑
j,l=1

∫
E
[
g2j (X, ϕq)g

2
l (X, ϕq′)

]
d(q, q′) 6 sup

w∈W
‖fmn(w)‖4 6 Cm2

n.

Thereby, it holds 2
∑

i<i′ EAii′ = 1 + o(1). Now consider Bii′ . Since {fl}l>1 forms an
orthonormal basis on the support of W we obtain

E
( i−1∑
k=1

X 2
ki

)( i′−1∑
k 6=k′
Xki′Xk′i′

)
= 2

i−1∑
k=1

EX 2
kiXki′X̧ii′

6
C(i− 1)

n4m2
n

mn∑
j,j′=1

∫
E
∣∣∣gj(X1, ϕq)gj′(X1, ϕq)gj(X2, ϕq)gj′(X2, ϕq′)

× q(1− q)
mn∑
l=1

g2l (X1, ϕq)
∣∣∣d(q, q′, q′′)

6
C(i− 1)

n4mn

( mn∑
j,j′=1

∫
E |gj(X, ϕq)gj′(X, ϕq)|2d(q, q′)

)
6
C(i− 1)mn

n4
.

This, together with relation (A.11), yields
∑

i<i′ EBii′ = o(1). Further, it is easily seen that
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∑
i<i′ ECii′ = o(1). Consider Dii′ . Using twice the law of iterated expectation gives

EDii′ = E
( i−1∑
k 6=k′
XkiXk′i

)( i′−1∑
k 6=k′
Xki′Xk′i′

)
= 4

i−1∑
k<k′

EXkiXk′iXki′Xk′i′

= 4
i−1∑
k<k′

E
[
XkiXk′i E[Xki′Xk′i′ |(Yk, Zk,Wk), (Yk′ , Zk′ ,Wk′), (Yi, Zi,Wi)]

]
6

C

n2mn

i−1∑
k<k′

E
[
E[XkiXk′i|(Yk, Zk,Wk), (Yk′ , Zk′ ,Wk′)]

×
mn∑
j,j′=1

∫
E[gj(X, ϕq)gj′(X, ϕq′)]gj(Xk, ϕq)gj′(Xk′ , ϕq′)d(q, q′)

]
6

C

n4m2
n

∫
E
∣∣∣ mn∑
j,j′=1

E[gj(X, ϕq)gj′(X, ϕq′)]gj(X1, ϕq)gj′(X2, ϕq′)
∣∣∣2d(q, q′)(i−1)(i−2)

6
C

n4mn
(i − 1)(i − 2).

again using that E[gj(X, ϕq)gj′(X, ϕq′)] is only different from zero whenever j = j′. Conse-
quently, we obtain∑

i<i′

EDii′ 6
C

n4mn

∑
i<i′

(i− 1)(i− 2) =
C n(n− 1)(n− 2)(n− 3)

mnn4
= o(1)

and hence 2
∑

i<i′ EQ2
niQ

2
ni′ = 1 + o(1).

Proof of (A.10). Note that P
(

supi>1 |Qni| > ε
)
6
∑n

i=1 P
(
Q2
ni > ε2

)
and, hence the

assertion follows from the Markov inequality.
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