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Abstract

It is a challenging task to understand the complex dependency structures in
an ultra-high dimensional network, especially when one concentrates on the tail
dependency. To tackle this problem, we consider a network quantile autoregres-
sion model (NQAR) to characterize the dynamic quantile behavior in a complex
system. In particular, we relate responses to its connected nodes and node spe-
cific characteristics in a quantile autoregression process. A minimum contrast
estimation approach for the NQAR model is introduced, and the asymptotic
properties are studied. Finally, we demonstrate the usage of our model by in-
vestigating the financial contagions in the Chinese stock market accounting for
shared ownership of companies.

KEY WORDS: Social Network; Quantile Regression; Autoregression; Sys-
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1. INTRODUCTION

Quantile regression is an increasingly popular tool for modern statistical analysis. In-

stead of studying the conditional mean function of the response variable, quantile

regression is concerned with estimating the conditional quantile function. It has been

applied to a wide range of applications, such as labor economics (Koenker and Hal-

lock, 2001; Fitzenberger et al., 2013), financial risk management (Gaglianone et al.,

2012; Härdle et al., 2016), and environmental statistics (Sankarasubramanian and Lall,

2003; Wang et al., 2013). Particularly, the linear quantile model has been studied by

a seminal work by Koenker and Bassett (1978), and the asymptotic theory has been

developed by Portnoy (1991, 1997). See Koenker (2005) for a comprehensive summary

of the methods and applications.

Following the well development of quantile method in the existing literature, the quan-

tile regression in time series is of particular interest. An early stream of research such

as Hallin et al. (1999), Hasan and Koenker (1997) deal with linear quantile autoregres-

sion model, which focus on independent identically distributed (iid) innovations in a

relative restrictive location shift model. As another approach, Engle and Manganelli

(2004) propose a set of autoregressive forms (referred to as CaViaR model) for value-

at-risk (VaR), which all require to estimate VaR at first step and plug in a prescribed

time series model. The framework is easy to apply but is quite difficult to directly

infer the underlying process. As an alternative, Koenker and Xiao (2006) develop a

quantile autoregressive method to model the conditional quantile function, which al-

lows to study the asymptotic properties of the underlying process and does not assume

an iid underlying process. However, it can only be employed in the univariate case.

There have been a few efforts to develop multivariate quantile time series model. White

et al. (2010) propose a generalization of the CaViaR method to a vector autoregression
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model for VaR. Recently, Baruńık and Kley (2015) consider the quantile cross-spectral

analysis of quantile vector autoregression processes. However, to our best knowledge,

the existing methods are not flexible to directly extend to high dimensional data, as

the number of parameters becomes large. This makes the estimation not only subop-

timal, but also with high computational complexity. Therefore, a tractable quantile

autoregression model for analyzing high dimensional data needs to be developed.

In the meanwhile, the rapid development of modern computer science and technology

has allowed us to approach large amount of data with network structure. On one

hand, it poses challenges on analyzing the dynamic processes with high dimensions.

On the other hand, this brings us a unique opportunity to develop network models with

network information naturally embedded. To take advantage of this extremely valuable

information (i.e., network structure), we established a network quantile autoregression

model (NQAR), which allows us to both make inference on the underlying processes

and handle high dimensional modeling issues.

In the existing literature, great efforts have been taken to incorporate the network

information into the modeling framework. For instance, Sewell and Chen (2015) take

advantage of the network information to study the dynamic social behavior of students

in a Dutch class by a latent space model. The community detection and extraction

methods are studied by Zhao et al. (2011), Amini et al. (2013), and Sewell et al.

(2016) using the block network structure. Accordingly, the corresponding consistency

properties are established (Bickel and Chen, 2009; Zhao et al., 2012). Recently, the

autoregression models in large-scale social networks receive great attention, where the

estimation and computation issues are intensively discussed (Zhang and Chen, 2013;

Zhou et al., 2015; Huang and Wang, 2016; Zhu et al., 2016). For other related statistical

methods and applications, see Carrington et al. (2005), Newman (2010), and Kolaczyk
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and Csárdi (2014) for a comprehensive summary.

However, to our best knowledge, none of these aforementioned works have taken ac-

count the network information into a quantile regression framework. In this work, we

provide an innovative network quantile autoregression model to better estimate and

predict conditional quantiles in complex network systems (e.g. a network of stocks in

a stock market). The model is based on a univariate quantile autoregression model. It

is assumed the conditional quantile function of the response variable (e.g., volatility of

stock returns) is related to several terms. The included terms are nodal specific vari-

ables (e.g., firm specific variables), the lagged response of the same node (e.g., volatility

of the same stock in the previous time point), and the lagged responses of the other

connected nodes (e.g., volatility of the related stocks in the previous time points). In

our application, the connection between nodes are decided by the network information

from the data, i.e., if two stocks share the same shareholder, then they are defined as

connected.

Our paper contributes to the literature in three aspects. Firstly, we provide a network

quantile model that characterizes the dynamic quantile behavior for high dimensional

processes. Secondly, we propose a model framework to incorporate valuable network

information from the data. Thirdly, the asymptotic theories are derived for both the

underlying processes and estimated parameters.

The rest of the paper is organized as follows. Section 2 introduces the network quantile

autoregression model, where the stationary results are established. Section 3 proposes

a novel impulse analysis framework for the network quantile autoregression model. The

parameter estimation method is given in Section 4, where the asymptotic properties

are given. Extensive numerical studies and a real data analysis for stocks in Chinese

financial markets are conducted in Section 5. Lastly, a brief conclusion is discussed in
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Section 6. All technical details are delegated to the appendix.

2. NETWORK QUANTILE AUTOREGRESSION

2.1. Model and Notations

Let Uit (1 ≤ i ≤ N , 1 ≤ t ≤ T ) be a sequence of iid random variables, which follows the

standard uniform distribution. Assume that a q-dimensional random nodal covariate

vector Zi ∈ Rq is collected for each node. To record the network relationship, we define

A = (aij) ∈ RN×N as the adjacency matrix, where aij = 1 if there is an edge from i

to j, otherwise aij = 0. Following the convention, the nodes are assumed to be not

self-related (i.e., aii = 0). Motivated by the univariate autoregression quantile model

(Koenker and Xiao, 2006), we consider the network quantile autoregression (NQAR)

model as

Yit = β0(Uit)+

q∑
l=1

Zilγl(Uit)+β1(Uit)n
−1
i

N∑
j=1

aijYi(t−1) +β2(Uit)Yi(t−1)
def
= gθ(Uit), (2.1)

where βjs (0 ≤ j ≤ 2) and γls (1 ≤ l ≤ q) are unknown coefficient functions from [0, 1]

to R1, and ni =
∑

j 6=i aij is the out-degree for the ith node.

Denote QY (τ |X) as the conditional quantile function of Y given X. By assuming

the right side of (2.1) is monotonically increasing in Uit, we can write the conditional

quantile function of Yit given (Zi,Yt−1) as:

QYit(τ |Zi,Yt−1) = β0(τ) +

q∑
l=1

Zilγl(τ) + β1(τ)n−1
i

N∑
j=1

aijYj(t−1) + β2(τ)Yi(t−1).

It is worth mentioning that the varying coefficients are functions of τ . Therefore, not

only the location of the conditional density of Yit is determined by τ , but also the
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shape of the conditional density is allowed to be τ -dependent. Specifically, β0(τ) +∑q
l=1 Zilγl(τ) reflects the nodal impact with respect to node i, where β0(τ) is referred

to as the baseline function. The covariates Zil refer to node-specific variables, which are

invariant over t. For example, it can be stock related features (e.g., size, leverage ratio).

It is assumed the nodal covariates Zis are independent of the Uits. Next, the second

term n−1
i

∑N
j=1 aijYj(t−1) characterizes the network impact from the connected nodes

(e.g., stocks with same shareholders). The corresponding coefficient function β1(τ) is

then referred to as the network function. Lastly, Yi(t−1) captures the impact from the

response of the same node in the previous time point. Accordingly, the coefficient

function β2(τ) is then referred to as the momentum function. To obtain more insights

of the NQAR model, we discuss the model under the following three scenarios.

Scenario 1. (Tail Behavior) The NQAR model can capture the asymmetric effect

between the responses at different quantile levels. In particular, it is of great inter-

est to understand the tail dependency of the responses. For instance, to model the

conditional VaR of the stock return, one could define Yit to be the return for the ith

stock and fix τ = 0.05 for analysis. In such a situation, an asymmetric pattern gives

indication on whether the financial institutions tend to have closer connections in the

lower tail (e.g. in the financial crisis) than at the other levels (e.g., median level and

upper tail).

Scenario 2. (Robust Estimation) In many occasions, the estimation can be seriously

distorted by outliers in the dataset (Abello et al., 2013; Li et al., 2015). To obtain

reliable results, robust estimation can be conducted. Compared to vector autoregres-

sion for the mean case (Lütkepohl, 2005), the NQAR is insensitive extreme values. In

particular, robust median estimation can be obtained by setting τ = 0.5.

Scenario 3. (Constant Coefficient Function) Consider the case that the coefficient

6



functions exhibit constant forms, i.e. βj(τ) = βj (j = 1, 2) and γl(τ) = γl (l =

1, · · · , q). In such a situation, the conditional distribution of Yit is τ -invariant. We

further let β0(u) = σΦ−1(u), where Φ(·) is the distribution function of the standard

normal distribution. Then the NQAR model degenerates to the network autoregression

(NAR) model in the mean case, see Zhu et al. (2016).

For convenience, define Yt = (Y1t, · · · , YNt)> ∈ RN , Z = (Z1, · · · , ZN)> ∈ RN×q.

Let B0t =
(
β0(Uit) +

∑
l Zilγl(Uit), 1 ≤ i ≤ N

)>∈ RN , B1t = diag{β1(Uit), 1 ≤ i ≤

N}∈ RN×N , B2t = diag{β2(Uit), 1 ≤ i ≤ N}>∈ RN×N . One easily verifies that Γ =

E(B0t) = c01N ∈ RN , where c0 = b0 + cZ , b0 =
∫ 1

0
β0(u)du and cZ = E(Z1)>r with

r =
( ∫ 1

0
γl(u)du, 1 ≤ l ≤ q

)> ∈ Rq. Without loss of generality, we set E(Z1) = 0. Then

the NQAR model (2.1) can be re-written in vector form as

Yt = Γ +GtYt−1 + Vt, (2.2)

where Gt = B1tW+B2t ∈ RN×N , W = (wij) = (n−1
i aij) ∈ RN×N is the row-normalized

adjacency matrix, and Vt = B0t − Γ ∈ RN is iid with mean 0 and covariance ΣV =

σ2
V IN ∈ RN×N with σ2

V = σ2
b0

+E{γ>(U1t)ΣZγ(U1t)}, σ2
b0

=
∫ 1

0
β2

0(u)du−{
∫ 1

0
β0(u)du}2,

and ΣZ = Cov(Z1) ∈ Rq×q.

2.2. Covariance Stationarity

Given the NQAR model (2.2), it is then of great interest to check stationarity of Yt. A

process {Yt}+∞
−∞ is covariance stationary if (a) E(Yt) = µY for a constant vector µY ∈

RN ; (b) Cov(Yt,Yt−h) = E{(Yt − µy)(Yt−h − µy)>} = Σ(h) with Σ(h) ∈ RN×N only

related to h. For convenience, let b1 = E{β1(Uit)}, b2 = E{β2(Uit)}, b̃1 = {E β2
1(Uit)}1/2,

b̃2 = {E β2
2(Uit)}1/2, G = E(Gt), and G∗ = E(Gt ⊗ Gt). Then we have the following

theorem.
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THEOREM 2.1. Assume b̃1 + b̃2 < 1 and E |Vit| < C for some positive constant C.

(a) There exists a unique covariance stationary solution of the NQAR model (2.2) with

finite first order moment as

Yt =
∞∑
l=0

ΠlΓ +
∞∑
l=0

ΠlVt−l, (2.3)

where Πl =
∏l

k=1Gt−k+1 for l ≥ 1 and Π0 = IN .

(b) Denote ΣY = Σ(0). The stationary mean is µY = c−1
1 c01N and

vec(ΣY ) = (M1 − c−2
1 c2

0)1N2 + c−1
1 c0(I −G∗)−1vec(Σbv) + (I −G∗)−1vec(ΣV ), (2.4)

where c1 = (1 − b1 − b2)−1, M1 = c−1
1 c2

0(1 + b1 + b2)(I − G∗)−1, Σbv = σbvIN , and

σbv = E[{β1(Uit) + β2(Uit)}Vit]. Moreover, we have Σ(h) = GhΣY for any integer

h > 0, and Σ(h) = ΣY (G>)−h for h < 0.

The proof of Theorem 2.1 is given in Appendix A.1. By Theorem 2.1, unique covariance

stationary solution (2.3) of the NQAR model is given. To obtain more insights of

Theorem 2.1, we would like to add two remarks.

Remark 1. It is straightforward to verify b̃1 = (b2
1 +σ2

b1
)1/2, where σ2

b1
= Var{β1(Uit)}.

Similarly one can define σ2
b2

= Var{β2(Uit)}. Therefore the stationarity assumption in

Theorem 2.1 essentially sets constraint on the expectation and variance of the network

and momentum functions (i.e., β1(·) and β2(·)). It is noteworthy that the assumption

does not require |β1(τ)| + |β2(τ)| to be strictly less than one for every τ . Instead, it

imposes an upper bound on average levels, which allows for some “explosive” cases in

a specific quantile (i.e., |β1(τ)| + |β2(τ)| > 1 for some τ). Particularly, if the network

and momentum functions take constant forms, i.e., β1(τ) = b1 and β2(τ) = b2 for some

constants b1 and b2, then the stationary assumption reduces to |b1| + |b2| < 1, which
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corroborates to the stationary condition in the mean case (Zhu et al., 2016).

Remark 2. Let us look at the stationary mean µy and covariance ΣY . First, note that

µY = c−1
1 c01N , is the same for all the nodes, and unrelated to the network structure.

However, the situation for the covariance ΣY is more complicated. The network effect

though tends to be very small (Chen et al., 2013; Zhu et al., 2016). This motivates us to

assume that b̃1 = O(1), and then approximate the ΣY by the leading terms. For con-

venience, define b̃12 = E{β1(Uit)β2(Uit)}, b̃01 = E{β1(Uit)Vit}, and b̃02 = E{β2(Uit)Vit}.

Then we have,

Var(Yit) ≈ cb1c
2
0 + (1− b̃2

2)−1{2(1− b2)−2{(1− b2)σbv + b1b̃02}c0 + σ2
V }, (2.5)

Cov(Yi1t, Yi2t) ≈ cb2c
2
0 + (1− b2

2)−2{2(1− b2)−1b̃02c0 + σ2
V }b1b2(wi1i2 + wi2i1), (2.6)

where cb1 = [(1− b̃2
2)−1{1−b2

2 +2b1 +2(1− b̃2
2)−1(1−b2

2)̃b12}−(1−b2)−1(1−b2 +2b1)](1−

b2)−2 and cb2 = (1− b2)−2(1− b2
2)−2(1− b2

2 + 2b1 + 2b1b2)− (1− b2)−3(1− b2 + 2b1). The

verifications of (2.5) and (2.6) are given in Appendix A.2. It is worth noting that the

variance of Yit is mainly determined by the momentum function β2(·) and the baseline

function β0(·). Particularly, larger b̃2 will result in higher variance of Yit. Next, the

covariance between Yi1t and Yi2t is not only related to β2(·), but is also related to the

network function β1(·). Nodes have a higher correlation with each other if b1 is larger.

Note that wi1i2 +wi2i1 = n−1
i1
ai1i2 +n−1

i2
ai2i1 . Therefore, the correlation between node i1

and i2 is higher if (a) they connect to each other in the network (i.e., ai1i2 = ai2i1 = 1)

and (b) they both have small out-degrees (i.e., small ni1 and ni2).

2.3. Asymptotic Stationary Distribution

Given the established covariance stationarity, it is then natural to derive the asymptotic

stationary distribution. However, it is not straightforward to derive the asymptotic sta-
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tionary distribution of Yt. Instead, we focus on the long run average of Yt. Accordingly,

let YT = T−1
∑T

t=1 Yt be the average of the responses during T periods, we then have

the following theorem.

THEOREM 2.2. Assume cβ < 1 and E(|Vit|4) < M , where cβ = ‖β1‖4 + ‖β2‖4

with ‖βj‖4 = E{βj(Uit)4}1/4 (j = 1, 2), and M is finite positive constant. Then the

covariance stationary solution in (2.3) follows the central limit theorem as

√
T (YT − µY )

L−→ N(0,ΣY ) (2.7)

as T →∞.

The proof of Theorem 2.2 is given in Step 3 Appendix A.1. By (2.7), it can be seen

that the asymptotic covariance of
√
T (YT − µY ) is equivalent to Cov(Yt) = ΣY .

3. IMPULSE ANALYSIS

3.1. Measurements of Impulse Effect

In this section, we aim to investigate how a node in the network will react to an

exogenous shock imposed on the other nodes, which is referred to as an impulse analysis.

Particularly, consider a stimulus ∆ = (δ1, · · · , δN)> ∈ RN imposed on Vt, and shock it

to Vt + ∆. Then, the response for the ith node at time point t (i.e., Yit) will grow to

Yit + δi. Following the NQAR model (2.2), the response at time point (t + l), l ≥ 1

(i.e., Yt+l) is increased by

IEt,t+l =
l−1∏
k=0

Gt+l−k∆, (3.1)

where IEt,t+l is referred to as the impulse effect from time t to t + l. For instance, if

∆ = (1, 0, · · · , 0)>, then the IEt,t+l is the first column of
∏l−1

k=0 Gt+l−k. It can be noted
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that the impulse effect is only related to the network and momentum functions, i.e.,

β1(·) and β2(·).

However, by this definition of (3.1), IEt,t+l is a random vector so that it cannot be

directly calculated. To fix the problem, the following three measurements of impulse

effects are considered.

1. Average Impulse Effect. The average impulse effect (AIE) is defined as the

expectation of IEt,t+l as E(IEt,t+l) = Gl∆ = (b1W + b2IN)l∆. Specifically, the AIE

is only related to the average network and momentum effect b1 and b2. Furthermore,

it is noteworthy that the AIE is no longer related to t but only depends on the time

difference l. It can be further derived|1> E(IEt,t+l)| ≤ N (̃b1 + b̃2)lC∆, where C∆ =

maxi |∆i|. Therefore, it can be concluded that the total network AIE will decrease to

0 as l→∞, if the stationary condition in Theorem 2.1 is satisfied.

2. Interval Impulse Effect. Although the AIE can characterize the impulse effect

on an average level, it is hard to capture the asymmetric effect for different quantiles.

To this end, we define the interval impulse effect (IIE) from t to t+ l within the interval

[τ1, τ2], (0 ≤ τ1 < τ2 ≤ 1) as

IIEl,τ1τ2 = E
{ l−1∏
k=0

Gt+l−k∆
∣∣Uim ∈ [τ1, τ2], 1 ≤ i ≤ N, t+ 1 ≤ m ≤ t+ l

}
= (cβ1,τ1τ2W + cβ2,τ1τ2IN)l∆,

where cβ1,τ1τ2 =
∫ τ2
τ1
β1(u)du and cβ2,τ1τ2 =

∫ τ2
τ1
β2(u)du. As one can see, the amount

of IIE is determined by the integration of β1(u) and β2(u) within the interval [τ1, τ2].

Note that the interval [τ1, τ2] can be any interested regions. For example, to measure

the asymmetric effects of the upper tail, median level, and the lower tail, one can split

(0, 1) equally into three intervals (i.e., [0, 1/3), [1/3, 2/3), [2/3, 1]) and compare the
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IIEs for different intervals respectively.

3. Impulse Effect Intensity. By the IIE, the asymmetric effects can be readily

quantified. However, due to the unknown function form of β1 and β2, the integration

can still be hard to compute. On the other hand, note the fact that the IIE can be

defined in arbitrary intervals in [0, 1]. Motivated by this, we consider a sufficiently

small interval [τ, τ + δ], and define the impulse effect intensity (IEI) at τ as

IEIl,τ = lim
δ→0

δ−lE
{ l−1∏
k=0

Gt+l−k∆
∣∣Uim ∈ [τ, τ + δ], 1 ≤ i ≤ N, t+ 1 ≤ m ≤ t+ l

}
=

{
β1(τ)W + β2(τ)IN

}l
∆,

where β1(u) and β2(u) are assumed to be continuous at τ . By this definition, IEIl,τ

could reflect impulse impact at the τth quantile. Moreover, the quantity IEIl,τ is easy

to compute once the estimates of β1(τ) and β2(τ) are obtained.

Given the three types of impulse effect measurement, the cross-sectional impulse anal-

ysis can be conducted. Assume that one unit stimulus is imposed on the ith node, a

cross-sectional impulse analysis is about analyzing its impact on the other nodes. This

kind of analysis is interesting in a network of banks. It delivers an importance message

on the systemic risk spillover of an institution. Take the IEI as an example and assume

∆ = (δi)
> with only δi = 1 and δi′ = 0 (for all i′ 6= i). The IEI from node i to j can

be defined by the jth element of IEIl,τ , which is then denoted as IEI
(i,j)
l,τ . Equivalently,

IEI
(i,j)
l,τ is equal to the (j, i)th element of the matrix

{
β1(τ)W + β2(τ)IN

}l
. Then, if

IEI
(i,j)
l,τ is sufficiently large and decays slowly as l→∞, then the jth risk factor can be

seriously affected by the fluctuations of the ith risk factor. Lastly, it is worth mention-

ing that the cross-sectional impulse analysis can also be conducted by using the other

two impulse effect measurements, which can be defined in the similar way with details
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ignored here.

3.2. Influential Node Analysis

It is worth noting that the impulse effect can be interpreted as the instantaneous

impact from t to t + l. Moreover, we define the total network average impulse effect

(TNAIE) as the summation of AIE over all nodes and all horizons l as TNAIE(∆) =∑∞
l=0 1

> E(IEt,t+l) =
∑∞

l=0 1
>Gl∆ = 1>(IN − G)−1∆. It should be noted that the

definition of TNAIE can also be extended using the other two impulse effect measures

(IIE and IEI). For the sake of their similarities, we skip the details and use the AIE-

defined TNAIE in this section.

Write TNAIE(∆) as TNAIE(∆) =
∑N

i=1 νiδi, where νi is the ith element of the vector

ν = (I−G>)−11. Consider that one unit stimulus is imposed on the node i, that δi = 1

and δj = 0 for all j 6= i. Then we have TNAIE(∆) = δi as a result. This reflects the

amount that the whole network will react to the unit perturbation of the node i. For

convenience, we refer to νi as the influential power of node i.

As one can see, the definition of νi is straightforward but it can be hard to compute.

This is because the calculation of ν involves the inverse of a high dimensional matrix

(I−G>). Following the idea of Remark 2 of Theorem 2.1, we approximate the νivalues

by first order Taylor expansion: νi ≈ 1/(1−b2)+(1−b2)−2b1

∑
j n
−1
j aji. Assume b1 > 0,

then the influential power of node i is mainly determined by the quantity
∑

j n
−1
j aji,

which is referred to as the weighted degree of the node i. Consequently, nodes with

larger weighted degrees tend to be followed by a large amount of nodes (i.e.,
∑

j aji).

Moreover, at the same time, the followers should have less out-degrees (i.e., small njs).

4. PARAMETER ESTIMATION
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In this section, we provide an estimation method to the NQAR model (2.1). The

asymptotic properties are also established. Write θ(τ) to be a (q + 3)-dimensional

parameter vector as θ(τ) = [β0(τ), γ>(τ), β1(τ), β2(τ)]> ∈ Rp+3. Define gθ,it(τ) =

X>it θ(τ), and Vitτ = Yit − gθ,i(t−1)(τ) where Xit = (1, Z>i , n
−1
i

∑N
j=1 aijYjt, Yit)

> ∈ Rq+3.

Then the parameter vector θ(τ) can be estimated by

θ̂(τ) = arg minθ

N∑
i=1

T∑
t=1

ρτ{yit − gθ,i(t−1)(τ)}, (4.1)

where ρτ (u) = u{τ − 1(u < 0)} is the check function for quantile regression.

Let the conditional density function of Yit given Ft−1 be fi(t−1)(·). To facilitate the study

of the asymptotic properties of our estimation, we define Ω̂0 = (NT )−1
∑N

i=1

∑T
t=1

XitX
>
it and Ω̂1 = (NT )−1

∑N
i=1

∑T
t=1 fit

(
X>it θ(τ)

)
XitX

>
it for any given τ ∈ (0, 1).

Specifically, fit
(
X>it θ(τ)

)
can be estimated by f̂it

(
X>it θ̂(τ)

)
= {X>it (θ̂(τl)−θ̂(τl−1))}−1(τl−

τl−1), where τ ∈ [τl−1, τl] and {τl} is an appropriately chosen sequence. Next, to prove

the asymptotic properties of the estimated parameters, the following assumptions are

required.

(C1) (Moment Assumption) Assume cβ < 1, where cβ is defined in Theorem 2.2.

Further, assume that Zis are independent and identically distributed random

vectors, with mean 0 and covariance Σz ∈ Rp×p. Furthermore, its fourth order

moment is finite. The same assumption is also needed for Vit across both 1 ≤ i ≤

N and 0 ≤ t ≤ T . Moreover, we need {Zi} and {Uit} to be mutually independent.

(C2) (Network Structure)

(C2.1) (Connectivity) Let the set of all the nodes {1, · · · , N} be the state space

of a Markov chain, with the transition probability given by W . It is assumed

the Markov chain is irreducible and aperiodic. In addition, define π =
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(πi)
> ∈ RN to be the stationary distribution vector of the Markov chain

(i.e., πi ≥ 0,
∑

i π = 1, and W>π = π). It is assumed that
∑N

i=1 π
2
i → 0 as

N →∞.

(C2.2) (Sparsity) Assume |λ1(W ∗)| = O(logN), where W ∗ is defined to be a

symmetric matrix as W ∗ = W +W>.

(C3) (Convergence) Assume Ω̂1 →p Ω1 as N → ∞, where Ω1 = (Ω1,ij) ∈ RN×N

is a positive definite matrix. In addition, assume the following limits exist.

They are, respectively, κ1 = limN→∞N
−1tr(ΣY ), κ2 = limN→∞N

−1tr(WΣY ),

κ3 = limN→∞N
−1tr(WΣYW

>), and κ4 = limN→∞N
−1tr{(I − G)−1}, κ5 =

limN→∞N
−1tr{W (I −G)−1}. Here κj (1 ≤ j ≤ 5) are fixed constants.

(C4) (Density) There exists positive constants 0 < c1 < c2 < ∞ such that c1 ≤

fit(x) ≤ c2 for all 1 ≤ i ≤ N, 1 ≤ t ≤ T with x ∈ R.

(C5) (Monotonicity) It is assumed θ(τ)>Xit (1 ≤ i ≤ N, 1 ≤ t ≤ T ) is monotone

increasing functions with respect to τ .

We now comment on the conditions. Condition (C1) are standard conditions on the

noise term Vits, nodal covariates Zis and β(Uit)s for the parameter consistency results.

This condition can be relaxed to allow for the weak dependence or mixing case over

time. Condition (C2) is set for the network structure. Specifically, condition (C2.1)

ensures a structure on the network connectivity, as it will result to all nodes in the

network connecting each other within a finite number of steps, which corresponds to

the empirical phenomenon named as ”six degrees of separation”. (C2.2) assures that

the network structure is sufficiently sparse,i.e. the divergence rate of λ1(W ∗) is slower

than log(N). Condition (C3) is set on the design matrices. These are conditions needed

to apply law of large number to the design matrices, which lead to a proper limit to
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the asymptotic covariance matrix. Importantly, it restricts the dependency between

nodal covariates such that the convergence is ensured. Finally, condition (C4) requires

the density function of the response distribution to be bounded from up and below.

Remark 3. The monotonicity assumption is imposed by condition (C5) to ensure the

validness of the quantile regression. As it is mentioned in Koenker and Xiao (2006),

the monotonicity of X>it θ(τ) is likely to be violated in some regions of the covariate

space. We therefore refer to Koenker and Xiao (2006) and Fan and Fan (2010) as a

discussion and solutions on the relevant issue.

The following theorem provides the consistency of the parameter estimation.

THEOREM 4.1. Under condition (C1)–(C5), the following representation holds uni-

formly over τ ∈ B (i.e., B is a compact set in (0, 1)),

θ̂(τ)− θ(τ) = (NT )−1Σθ(τ)−1

N∑
i=1

T∑
t=1

Xitψτ (Vitτ ) + rNT (τ), (4.2)

where Σθ(τ) = Ω−1
1 Ω0Ω−1

1 , Vitτ = Yit − gθ,i(t−1)(τ), and the remainder term satisfies

supτ∈B|rNT (τ)| = Op
(
(NT )−1/2

)
. This leads to the consistency result that θ̂(τ)

p→ θ(τ)

as min{N, T} → ∞ uniformly for τ ∈ B.

The proof of Theorem 4.1 is given in Appendix B. With the consistency of the param-

eter, we then present the asymptotic distribution of the estimated parameter.

THEOREM 4.2. Under condition (C1)–(C5), we have

√
NTΣ

−1/2
θ (τ)

{
θ̂(τ)− θ(τ)

} L−→ Bq+3(τ)

as min{N, T} → ∞, where Bq+3(τ) is a (q + 3)-dimensional Brownian bridge, Σθ =

16



Ω−1
1 Ω0Ω−1

1 with

Ω0 =



1 0> cb cb

0 Σz κ5Σzγ κ4Σzγ

cb κ5γ
>Σz κ3 + c2

b κ2 + c2
b

cb κ4γ
>Σz κ2 + c2

b κ1 + c2
b


, (4.3)

cb = c−1
1 c0, and Ω1 is defined in condition (C3).

The proof of Theorem 4.2 is given in Appendix B. To better understand the convergence

result given in Theorem 4.2, we consider the case that for any fixed τ , that Bq+3(τ)

reduces to N(0, τ(1− τ)Iq+3). Specifically, we have the following Corollary.

COROLLARY 4.1. Under condition (C1)–(C5), for any fixed τ ∈ B we have the

result
√
NT

{
θ̂(τ)−θ(τ)

} L−→ N(0, τ(1−τ)Σθ(τ)) as min{N, T} → ∞, where B ⊂ (0, 1)

is a compact set.

Corollary 4.1 is a direct implication from Theorem 4.2. By Corollary 4.1, the asymp-

totic normality can be obtained at aribitrary fixed τ . This enables us to conduct

pointwise (for a fixed τ ) inference on the estimated parameters. Specifically, the

numerical details are given in the next section.

5. NUMERICAL STUDIES

5.1. Simulation Models

We consider three simulation settings in this subsection to illustrate the finite sample

performance of the proposed NQAR model. The main difference lies in the gener-

ating mechanism of the network structure (i.e, A). The baseline, network, and the
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momentum function are set to be β0(u) = u, β1(u) = 0.1Φ(u), β2(u) = 0.4{1 +

exp(u)}−1 exp(u). In addition, we fix the dimension of nodal covariates (i.e., Zi) to

be 5. The corresponding nodal functions are then set to be γ1(u) = 0.5Φ(u), γ2(u) =

0.3G(u, 1, 2), γ3(u) = 0.2G(u, 2, 2), γ4(u) = 0.25G(u, 3, 2), and γ5(u) = 0.2G(u, 2, 1),

where G(·, a, b) is the Gamma distribution function with shape parameter a and scale

parameter b.

To generate observations from the NQAR mechanism (2.1), the following procedures

are performed. First, we generate uits (1 ≤ i ≤ N, 1 ≤ t ≤ T ) independently from

a standard normal distribution N(0, 1) and t-distribution with 5 degrees of freedom.

Then, the random coefficients are obtained by substituting uit into βj(·) and γl(·) func-

tions for 0 ≤ j ≤ 2 and 1 ≤ l ≤ 5. Next, the nodal covariates Zi = (Zi1, · · · , Zi5)> ∈ R5

are sampled from a multivariate normal distribution N(0,Σz), where Σz = (σj1j2) and

σj1j2 = 0.5|γ1−γ2|. Lastly, we fix Y0 = (1 − b̂1 − b̂2)−1b̂01, where b̂j is the numerical

mean of the βj(·) function over a set of τs. Then Yts are generated according to (2.1).

We adopt three kinds of the adjacency matrix structures that are well-known in the

literature. The details are given in the following.

Example 1. (Dyad Independence Model) Holland and Leinhardt (1981) introduce a

Dyad Indenpendece Model with Dyad defined as Dij = (aij, aji) for 1 ≤ i < j ≤ N .

It is assumed the different Dijs are independent. Specifically, we set the probability of

mutually connect dyads to be P (Dij = (1, 1)) = 20N−1 to ensure the network sparsity.

Besides, set P (Dij = (1, 0)) = P (Dij = (0, 1)) = 0.5N−0.8, which implies that the

expected degree for each node is O(N0.2). Accordingly, we have P (Dij = (0, 0)) =

1− 20N−1 −N−0.8, which is close to 1 as N →∞.

Example 2. (Stochastic Block Model) We further consider the stochastic model,

which is extensively studied in network analysis (Wang and Wong, 1987; Nowicki and
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Snijders, 2001). In particular, it is important for community detection (Zhao et al.,

2012). To generate the block network structure, we follow Nowicki and Snijders (2001)

to randomly assign for each node a block label which is indexed from 1 to K, where

K ∈ {5, 10, 20}. We then set P (aij = 1) = 0.3N−0.3 if i and j are in the same block,

and P (aij = 1) = 0.3N−1. This indicates that the nodes within the same block have

higher probability to connect than between blocks.

Example 3. (Power-law Distribution Network) According to Barabási and Albert

(1999), it is a common phenomenon that the majority nodes in the network have small

links, but a small amount of nodes have large number of links. The degrees of nodes

could then be characterized by the power-law distribution. To generate the network

structure in the spirit of this phenomenon, we simulate A as follows according to

Clauset et al. (2009). For each node, we generate the in-degree di =
∑

j aji according

to the discrete power-law distribution as P (di = k) = ck−α, where c is a normalizing

constant and the exponent parameter α is set to be α = 2.5 by Clauset et al. (2009).

Lastly, for the ith node, we randomly select di nodes as its followers.

5.2. Performance Measurements and Simulation Results

We consider different network sizes (i.e., N = 100, 500, 1000) and let T = N/10. we

have considered the case of N > T , and the results are not significantly different. More-

over, for each example, the numerical performance is evaluated at τ = 0.1, 0.2, · · · , 0.9.

The experiment is randomly replicated R = 1000 times for a reliable evaluation. Specif-

ically, use θ̂(τ) = {β̂(m)
0 (τ), β̂

(m)
1 (τ), β̂

(m)
2 (τ), γ̂(m)>(τ)}> be the estimator from the mth

replication. To evaluate the finite sample performance, the following measures are con-

sidered. First, for the given parameter βj(τ) (0 ≤ j ≤ 2), the root mean square error

(RMSE) is calculated by RMSEj(τ) = {R−1
∑

r(β̂
(r)
j (τ)− βj(τ))2}1/2. Besides, for the
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nodal effect function γ, the RMSE is given by RMSEγ(τ) = {(5R)−1
∑

r ‖γ̂(r)(τ) −

γ(τ)‖2}1/2. Next, for each βj(τ), a 95% confidence interval is constructed as CI
(r)
j (τ) =

(β̂
(r)
j (τ) − z0.975ŜE

(r)

j (τ), β̂
(r)
j (τ) + z0.975ŜE

(r)

j (τ)), where ŜE
(r)

j (τ) is the jth diagonal

element of (NT )−1τ(1 − τ)Σ̂θ, and zα is the αth quantile of the standard normal

distribution. Then, the coverage probability (CP) can be computed as CPj(τ) =

R−1
∑R

m=1 I{βj(τ) ∈ CI
(r)
j (τ)}, where I(·) is the indicator function. Lastly, the net-

work density (ND) is given by {N(N − 1)}−1
∑

i1,i2
ai1i2 .

The three types of network structures are visualized in Figure 1. Besides, the detailed

results of the three simulation examples are given in Table 1 to 3. It can be found for a

fixed τ , the RMSE is decreased as N and T increased. For example, the RMSE of β̂1(τ)

drops from 11.22× 10−2 to 4.90× 10−2 at τ = 0.1 as N is increased from 100 to 500 in

Example 1 for the t- distribution. It can also be noted that the RMSE for t-distribution

of same network size N is slightly larger than standard normal distribution. At the

same time, the network is becoming sparser as N increases (e.g. ND drops from 2.4%

to 0.2% for the power-law distribution network from N = 100 to 1000). Moreover,

it can be concluded the computed coverage probabilities for βj(τ)s are stable at the

nomial level 95%, which corroborates with the theoretical results. Lastly, we plot the

estimated β̂j(τ) with the 95% confidence interval against τ in Figure 2. A monotonic

increasing pattern can be detected.

5.3. Financial Contagion and Shared Ownership

In this study, we focus on studying the financial risk contagion mechanism accounting

for the common shared ownership information using NQAR model. Specifically, we

apply our NQAR model to the Chinese Stock Market in 2013. The dataset consists

of 2, 442 stocks from the Chinese A share market, which are traded in Shanghai Stock
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Exchange and Shenzhen Stock Exchange. Specifically, the corresponding response Yit

is the weekly absolute return volatility. The time series of averaged stock volatility

is plotted in the left panel of Figure 3, where a relatively higher volatility level can

be captured during May and July. To construct the network structure, the top ten

shareholders’ information for each stock are collected. For the ith and jth stock,

aij = 1 if they share at least one common shareholder, otherwise aij = 0. The network

structures of stocks with top 100 market values are visualized in the right panel of

Figure 3. The resulting network density is 3.9%.

Besides the shared ownership information, the firm specific variables are also taken

into consideration. Motivated by Fama and French (2015), we consider the following

K = 6 covariates to represent stocks’ fundamentals. They are, SIZE (measured by

the logarithm of market value), BM (book to market ratio), PR (increased profit ratio

compared to the last year), AR (increased asset ratio compared to the last year), LEV

(leverage ratio), and Cash (cash flow of the firm). Lastly, all covariates are re-scaled

within the interval [0, 1].

We then launch the network analysis using the NQAR model. Particularly, the esti-

mation results of our NQAR model are given in Table 4 for τ = 0.05, 0.50, and 0.95

respectively. It is noteworthy that the stocks have stronger network effect and momen-

tum effect in the upper tail (i.e., τ = 0.95) than the median and lower tail case (i.e.,

τ = 0.5 and 0.05). This indicates that stocks tend to have higher correlation through

the network when higher volatility level is exposed in the market. Besides, the size

(i.e., CAP), the book to market ratio (BM), and the leverage ratios (LEV) are shown

to have a negative correlation with the conditional quantile level of the volatility at

τ = 0.95 and τ = 0.5. However, this phenomena does not appear in the lower quantile

case. In addition, stocks with higher liquidity (i.e., cash flow), profit ratio (PR), and
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asset increasing ratio (AR) tend to have lower volatility in the median case.

Lastly, we conduct an impulse analysis in Section 3. Particularly, the influential power

can be calculated by ν̂ = {(1−b̂2)IN−b̂1W
>}−11, where b̂1 = 10−1

∑9
m=0 β̂1(0.05 + 0.1m)

and b̂2 = 10−1
∑9

m=0 β̂2(0.05 + 0.1m) are the numerical approximations for b1 and b2.

Specifically, the influential power is found to have a linear pattern with the weighted

degrees in the left panel of Figure 4, and the histogram of the weighted degrees is given

in the right panel of Figure 4. Then, the cross-sectional impulse analysis is conducted.

Particularly, IEIl,τ (τ = 0.05, 0.5, 0.95) is computed within 5 banks at l = 1, · · · , 10,

which is visualized in Figure 5. Note that the impulse direction is from column to row.

The banks include, Bank of China (BOC), China Merchants Bank (CMB), Industrial

and Commercial Bank of China (ICBC), Ping An Bank (PAB), and Shanghai Pudong

Development Bank (SPDB). We observe significant asymmetric effects across different

quantiles. It can be seen the IEI is higher in the upper tail (τ = 0.95). Moreover, the

impulse impacts between the BOC, CMB, and ICBC are much stronger than with the

other two banks.

APPENDIX A

In Appendix A, we are going to prove the stationarity result (Theorem 2.1) in Section

A.1. the proof of Theorem 2.2 are given in Section A.2, and the verification of (2.5)

and (2.6) are given in Section A.3.

Appendix A.1: Proof of Theorem 2.1

First of all, by iteration, we obtain the solution of NQAR model (2.1) as

Yt =
L−1∑
l=0

ΠlΓ + ΠLYt−L +
L−1∑
l

ΠlVt−l =
∞∑
l=0

ΠlΓ +
∞∑
l=0

ΠlVt−l, (A.1)
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where Πl
def
= GtGt−1 · · ·Gt−l+1 for l > 0 and Π0 = 1. We then prove Theorem 2.1 in

two steps. In the first step, we prove the covariance stationarity of the solution (A.1).

Next, we prove the uniqueness of the stationary solution (A.1).

Step 1. (Proof of Covariance Stationarity)

In this step, we show the covariance stationarity by calculating E(Yt) and Cov(Yt,Yt−h)

respectively. Denote λi(M) as the ith eigenvalue of any arbitrary matrix M ∈ RN×N

such that |λ1(M)| > |λ2(M)| > · · · > |λN(M)|. Recall that E(Gt) = G = b1W + b2I.

We firstly verify that E(Yt) = µY for 1 ≤ t ≤ T . To this end, note that |λ1(W )| = 1

by Banerjee et al. (2014), we have

|λ1(G)| ≤ |b1||λ1(W )|+ |b2| < 1 (A.2)

due to the stationarity condition in Theorem 2.1. Then it could be computed that

E(Yt) =
∑∞

l=0G
lΓ = (I −G)−1Γ due to the independence of Gts over t, and E(Vt−l) =

0 for l ≥ 0. Recall that we have Γ = c01N . Then it is straightforward to have

µY = c−1
1 c01N , where c1 = (1− b1 − b2)−1 is defined in Theorem 2.1.

We next calculate the covariance of Yt. Specifically, it can be expressed as

Cov(Yt) =Cov(
∞∑
l=0

ΠlΓ) + Cov(
∞∑
l1=0

Πl1Γ,
∞∑
l2=0

Πl2Vt−l2)

+ Cov(
∞∑
l2=0

Πl2Vt−l2 ,

∞∑
l1=0

Πl1Γ) + Cov(
∞∑
l=0

ΠlVt−l). (A.3)

Recall that G∗ = E(Gt⊗Gt) = E{B1(Ut)⊗B1(Ut)}(W⊗W )+E{B1(Ut)⊗B2(Ut)}(W⊗

I) + E{B2(Ut) ⊗ B1(Ut)}(I ⊗W ) + E{B2(Ut) ⊗ B2(Ut)}(I ⊗ I), b̃1 = {E β2
1(Uit)}1/2,
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and b̃2 = {E β2
2(Uit)}1/2. Then we have

|λ1(G∗)| ≤ b̃2
1|λ1(W )|2 + 2b̃1b̃2|λ1(W )|+ b̃2

2 ≤ (̃b1 + b̃2)2 < 1, (A.4)

by the fact that |λ1(W )| < 1 and the stationarity condition in Theorem 2.1. Note the

matrix G∗ can be represented in Jordan canonical form as PΛP−1, where Λ is a matrix

of the Jordan block diagonal form with diagonal elements being λi(G
∗) (1 ≤ i ≤ N)

and P is an invertible matrix. Then by (A.4), (G∗)l converges to zero at a geometric

rate as l→∞ and therefore we have

∞∑
l=0

(G∗)l = (I −G∗)−1. (A.5)

Similarly, by (A.4) we have
∑∞

l=0G
l = (I − G)−1. We then calculate the terms of

Cov(Yt) in (A.3) one by one.

For the first term it can be calculated Cov(
∑∞

l=0 ΠlΓ) = E{(
∑∞

l1
Πl1Γ)(

∑∞
l2

Γ>Π>l2)} −

µY µ
>
Y =

∑∞
l1,l2=0 E(Πl1ΓΓ>Π>l2) − µY µ

>
Y . Firstly we have vec(Πl1ΓΓ>Π>l2) = (Πl2 ⊗

Πl1)vec(ΓΓ>). Without loss of generality, we assume l1 ≥ l2. Then it can be obtained

E(Πl2 ⊗ Πl1) = (G∗)l2(IN ⊗G)l1−l2 and

E(Πl2 ⊗ Πl1)vec(ΓΓ>) = (G∗)l2(b1 + b2)l1−l2c2
01N2 (A.6)

due to that vec(ΓΓ>) = c2
01N2 , (IN ⊗ G)1 = (b1 + b2)1. Therefore, by (A.4), (A.5),

and (A.6) we have
∑∞

l1,l2=0 E{vec(Πl1ΓΓ>Π>l2)} = {
∑∞

l2=0(G∗)l2
∑

l1>l2
(b1 + b2)l1−l2 +∑∞

l1=0(G∗)l1
∑

l1≤l2(b1 +b2)l2−l1}c2
01 = M11N2 , where M1 = c−1

1 c2
0(1+b1 +b2)(I−G∗)−1.

As a result, we have vec{Cov(
∑∞

l=0 ΠlΓ)} = M11N2 − c−2
1 c2

01N2 .

Next, for the second term, we have Cov(
∑∞

l1=0 Πl1Γ,
∑∞

l2=0 Πl2Vt−l2) =
∑∞

l1,l2=0 E(Πl1ΓV
>
t−l2Π

>
l2

),
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due to that E(
∑∞

l2=0 Πl2Vt−l2) = 0. It is straightforward to verify that for l2 ≤ l1,

we have E(Πl1Vt−l1Γ
>Π>l2) = 0. Therefore, by (A.4) and (A.5), one could verify∑∞

l1,l2=0 E{vec(Πl1Vt−l1Γ
>Π>l2)} =

∑∞
l1=0

∑∞
l2=l1+1(G∗)l1 E{(Gt−l1 ⊗ I)(G⊗ I)l2−l1−1(I ⊗

Vt−l1)}Γ =
∑∞

l1=0

∑∞
l2=l1+1(G∗)l1(b1 + b2)l2−l1−1vec(Σbv) = c−1

1 c0(I − G∗)−1vec(Σbv).

Similarly, one could verify that the third term Cov(
∑∞

l1=0 Πl1Vt−l1 ,
∑∞

l2=0 Πl2Γ) is also

equivalent to c−1
1 c0(I −G∗)−1vec(Σbv).

For the last term, we have Cov(
∑∞

l=0 ΠlVt−l) =
∑∞

l=0 E(ΠlVt−lV
>
t−lΠ

>
l ) due to that

E(Πl1Vt−l1V
>
t−l2Π

>
l2

) = 0 for any l1 6= l2. Then, note that E{vec(ΠlVt−lV
>
t−lΠ

>
l )} =

E{(Πl⊗Πl)vec(Vt−lV
>
t−l)} = (G∗)lvec(ΣV ). Then by (A.5) we have Cov(

∑∞
l=0 ΠlVt−l) =∑∞

l=0(G∗)lvec(ΣV ) =
∑∞

l=0 PΛlP−1vec(ΣV ) = P (I−Λ)−1P−1vec(ΣV ) = (I−G∗)−1vec(ΣV ).

Consequently, by (A.4) one obtains that vec{Cov(
∑∞

l=0 ΠlVt−l)} = (I −G∗)−1vec(ΣV ).

From the above, we have vec(ΣY ) takes the form (I − G∗)−1vec(ΣV ) + 2c−1
1 c0(1 −

G∗)−1vec(Σbv)+(M1−c−2
1 c2

0)1N2 . To prove the covariance stationary, it suffices to prove

that Cov(Yt,Yt−h) only depends on h. As we can see that for h ≥ 1, Cov(Yt,Yt−h) =

E(YtY
>
t−h)− E(Yt)E(Yt−h)

> = E{E(Yt|Ft−h)Yt−h} − µyµ>y . Further one can obtain that

E(Yt|Ft−h) =
∑h−1

l=0 G
lΓ+GhYt−h. So it is straightforward to conclude Cov(Yt,Yt−h) =

GhΣY , which is only related to h. This completes the proof of Step 1.

Step 2. (Uniqueness of the Solution)

Assume that Y∗t is another covariance stationary solution to the NQAR model. Define

|M |a = (|mij|) ∈ Rm×n for any arbitrary matrix M ∈ Rm×n. In addition, for any two

arbitrary matrices M1 = (m1,ij) ∈ Rm×n and M2 = (m2,ij) ∈ Rm×n, define M1 � M2

as m1,ij ≤ m2,ij for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then we know that E |Y∗t |a � C11N for

some constant C1. Similarly we have Y∗t =
∑m−1

l=0 Πl(Γ +Vt−l) + ΠmY∗t−m. To calculate

the difference between Yt and Y∗t , we have E |Yt−Y∗t |a = E |(
∑∞

l=m ΠlΓ+
∑∞

l=m ΠlVt−l)−

ΠmY∗t−m|a � C2(
∑∞

l=m E |Πl|a + E |Πm|a)1N , where C2 = max{C1, c0,E |Vit|}. It can be

25



verified that E |Πl|a1N = E |β1(Uit)W + β2(Uit)IN |la1N � (̃b1 + b̃2)l1N . Therefore we

have (
∑∞

l=m E |Πl|a + E |Πm|a)1N � C3(̃b1 + b̃2)m1N for some positive constant C3. As

this holds for any m, we can then prove that Yt = Y∗t by the stationary condition that

b̃1 + b̃2 < 1 with probability 1. This completes the proof.

Appendix A.2: Proof of Theorem 2.2

In this subsection, we establish the asymptotic normality of Yt. Define Ỹt = Yt−µY =

(Ỹ1t, · · · , ỸNt)> ∈ RN . We then adopt the dependent Lindeberg central limit theorem

(theorem 2) in Bardet et al. (2008) on (NT )−1/2Ỹt. We verify the two conditions in

the following two parts. Step 1 is concerning moments bounds, and Step 2 is regarding

the time dependency.

Step 1. (Bounding Moments) First, it suffices to show that there exists 0 < δ ≤ 1

satisfying

ST = (NT )−(2+δ)/21>N

T∑
t=0

E |Ỹt|2+δ
a → 0 (A.7)

as T →∞, where |Y |2+δ
a denotes (|Y1|2+δ, · · · , |Yp|2+δ)> ∈ Rp for a p-dimensional vec-

tor Y = (Y1, · · · , Yp)> ∈ Rp. Then, one can verify that E |Ỹt|2+δ
a = E |

∑∞
l=0(ΠlΓ +

ΠlVt−l)−µY |2+δ
a . Further by the Jensen’s inequality ST = (NT )−(2+δ)/21>N

∑T
t=0 E |Ỹt|2+δ

a ≤

(NT )−(2+δ)/21>N
∑T

t=0{E |
∑∞

l=0 ΠlVt−l|2+δ
a + E |

∑
l ΠlΓ|2+δ

a + E |µY |2+δ
a }(32+δ/3). It is

not hard to see that (NT )−(2+δ)/21>N
∑T

t=1 |µY |2+δ
a → 0. Let δ = 1 and define STv =

N−3/2T−1/21>N E |
∑∞

l=0 ΠlVt−l|3a. Then it suffices to show STv → 0. It can be derived
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STv· = STv1 + STv2 + STv3 + STv4, where

STv1 = N−3/2T−1/21>N E
{∑

l

|ΠlVt−l|3a
}
,

STv2 = 3N−3/2T−1/2
∑
l1

∑
l2>l1

E
{
|Πl1Vt−l1|2a ◦ |Πl2Vt−l2|a

}
,

STv3 = 3N−3/2T−1/2
∑
l1

∑
l2>l1

E
{
|Πl1Vt−l1|a ◦ |Πl2Vt−l2|2a

}
,

STv4 = 6N−3/2T−1/2
∑
l1

∑
l2>l1

∑
l3>l2>l1

E
{
|Πl1Vt−l1|a ◦ |Πl2Vt−l2|a ◦ |Πl3Vt−l3|a

}
,

and ◦ means point wise product. We then verify the terms STvj → 0 for j = 1, · · · , 4

as follows.

Firstly we have STv1 ≤ N−3/2T−1/2
∑∞

l=0 E |Πl(Vt−1)|3a � N−3/2T−1/2
∑∞

l=0 C3E |(|Πl|a1N)|3a,

where C3 = maxi E |Vit|3 is finite by Theorem 2.2. Further, the above term is element-

wisely bounded by C3N
−3/2T−1/2

∑∞
l=0C

l
b1N , where Cb = E(|β1(Uit)| + |β2(Uit)|)3 < 1

by Theorem 2.2. Consequently we have STv1 → 0. Next we look at the second

term in STv. It can be firstly verified that E(3
∑

l1

∑
l2>l1
|Πl1Vt−l1 |2a ◦ |Πl2Vt−l2 |a) �

3Cv
∑

l1

∑
l2>l1

E(|Πl1Vt−l1|2a ◦ |Πl21N |a) � 3Cv (̃b1 + b̃2)l2−l1
∑

l1

∑
l2>l1

E(|Πl1Vt−l1|2a ◦

|Πl1−11N |a) due to the independence of Πl1−1 and
∏l2−l1

k=1 Gt−l1−k, and the inequality

E(
∏l2−l1

k=1 |Gt−l1−k|a1N) � (̃b1 + b̃2)l2−l11N , where Cv = maxi E(|Vit|). Further it can be

derived that 1>N E(|Πl1Vt−l1|2a ◦ |Πl1−11N |a) =

E(|Πl1Vt−l1 |2>a |Πl1−11N |a) ≤ Cbv E(|Πl11N |2>a |Πl11N |a) ≤ NCbvC
l1
b , (A.8)

where Cbv = (E{V 4
it})1/2[E{(|β1(Uit)|+ |β2(Uit)|)2}]1/2. As a result, we have STv2 → 0.

Then, by iteratively applying (A.8), one could obtain STv3 → 0 and STv4 → 0, where

the details are omitted here. As a result, (A.7) can be obtained.
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Step 2. (Time Dependency) Next, we verify conditions imposed on the dependency

structure of Ỹt. To this end, we show the definition of λ dependency as in Bardet et al.

(2008).

DEFINITION 5.1. (λ dependency) A process Xt in Rd is said to be λ dependent

if there exists a sequence {λr} such that λr → 0 when r →∞ satisfying

∣∣∣Cov{f(Xm1 , Xm2 , · · · , Xmv), g(Xs1 , Xs2 , · · · , Xsu)}
∣∣∣ ≤ (uvLfLg + vLf + uLg)λr,

for all v, u ∈ N∗×N∗ (N∗ denotes the natural number space), Lf and Lg as constants,

where v, u are two integers corresponding to support of f and g respectively.

Next we prove that T−1/2Ỹt is λ dependent with a satisfactory rate. For this propose,

we rewrite the NQAR model to be Ỹt = GtỸt−1 + V ′t , and V ′t = Vt + (Gt − G)µY .

Then we have Ỹt =
∑∞

l ΠlV
′
t−l. For convenience, we define ỸL

t =
∑L

l ΠlV
′
t−l as the

truncated form of Ỹt.

First of all define =v = {Ỹm1, Ỹm2, · · · , Ỹmv} and =u = {Ỹs1 , Ỹs2 , · · · , Ỹsu}. And =Lv =

{ỸL
m1
, ỸL

m2
, · · · , ỸL

mv
} and =Lu = {ỸL

s1
, ỸL

s2
, · · · , ỸL

su}. We than have Cov
(
f(=v), g(=u)

)
=

Cov
(
f(=v) − f(=Lv ), g(=u)

)
+ Cov

(
f(=Lv ), g(=u) − g(=Lu)

)
+ Cov

(
f(=Lv ), g(=Lu)

)
. De-

fine f̃(X) = f(X) − E(f(X)). Without loss of generality, we set L = r − 1. Then

Cov(f(=Lv ), g(=Lu)) = 0, and |Cov(f(=v), g(=u))| can be bounded by ‖g̃‖∞ E |f̃(=v) −

f̃(=Lv )|+‖f̃‖∞ E |g̃(=u)−g̃(=Lu)| ≤ c(vLf+uLg)1
>
N E |Ỹms−ỸL

ms|a, where ms = m1∧m2,

c is a constant and ‖ · ‖∞ is the uniform norm of a function, which takes the supremum

of the absolute value of a function on its support. Then it can be verified that E |Ỹms−

ỸL
ms|a = E |

∑∞
l=L+1 ΠlV

′
t−l|a ≤

∑∞
l=L+1 Cv′ E |Πl1N |a �

∑∞
l=L+1 Cv′ [E{|β1(Uit)|+|β2(Uit)|}]l1N ≤

Cv′ (̃b1 + b̃2)L+1(1− b̃1 − b̃2)−1, where Cv′ = E(|Vit|) + 2(̃b1 + b̃2). As a result, it can be

concluded Cov
(
f(=v), g(=u)

)
→ 0 as r →∞. This completes the proof.
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Appendix A.3: Verification of (2.5) and (2.6)

Assume b̃1 = |
∫ 1

0
β1(u)2du|1/2 = O(1). Recall b̃22 =

∫ 1

0
β2(u)2du, b̃12 =

∫ 1

0
β1(u)β2(u)du.

By the stationary condition we have b̃22 < 1, then by the Cauchy’s inequality we

have |̃b12| ≤ b̃1|̃b22|1/2 = O(1). Recall that vec(ΣY ) = S1 + S2 + S3, where S1 =

M11N2− c−2
1 c2

01N2 (M1 = c−1
1 c2

0(1+ b1 + b2)(I−G∗)−1), S2 = 2c−1
1 c0(1−G∗)−1vec(Σbv),

and S3 = (I − G∗)−1vec(ΣV ). Next, we approximate ΣY by neglecting higher order

terms of b1, b̃12, b̃1. To this end, we first approximate (I −G∗)−1 and c−1
1 as follows

(I −G∗)−1 ≈ (I − B̃22)−1(I +M12), (A.9)

c−1
1 ≈ (1− b2)−1

{
1 + (1− b2)−1b1

}
, (A.10)

c−2
1 ≈ (1− b2)−2

{
1 + 2(1− b2)−1b1

}
, (A.11)

where M12 = (I − B̃22)−1{B̃12(W ⊗ I) + B̃21(I ⊗W )}, B̃22 = E{B2(Ut) ⊗ B2(Ut)},

B̃12 = E{B1(Ut)⊗B2(Ut)}, and B̃21 = E{B2(Ut)⊗B1(Ut)}.

Recall that b̃01 = E{β1(Uit)(β0(Uit) − b0)} and b̃02 = E{β2(Uit)(β0(Uit) − b0)}. Then,

by (A.9)-(A.11) one could verify that S1 ≈ (I − B̃22)−1{(1 + 2b1 − b2
2)I ⊗ I + (1 −

b2
2)(I − B̃22)−1(B̃12 + B̃21)}(1− b2)−2c2

01N2 − {1 + 2(1− b2)−1b1}(1− b2)−2c2
01N2 , S2 ≈

2(1 − b2)−1(I − B̃22)−1{b̃02I + (1 − b2)−1b1b̃02I + b̃02M12 + b̃01I}c0vec(IN), and S3 ≈

(I−B̃22)−1(I+M12)vec(ΣV ). Let Sj = vec(Σj) for j = 1, 2, 3 and Σj = (Σj,kl) ∈ RN×N .

Specifically, one can verify for the diagonal elements that Σ1,ii ≈ [(1− b̃22)−1{1− b2
2 +

2b1+2(1− b̃22)−1(1−b2
2)̃b12}−(1−b2)−1(1−b2+2b1)](1−b2)−2c2

0, Σ2,ii ≈ 2(1− b̃22)−1(1−

b2)−2{σbv(1− b2) + b1b̃02}c0 (σbv = b̃01 + b̃02), Σ3,ii ≈ (1− b̃22)−1σ2
V . Similarly, we have

Σ1,i1i2 ≈ {(1−b2)−2(1−b2
2)−2(1−b2

2 +2b1 +2b1b2)− (1−b2)−3(1−b2 +2b1)}c2
0, Σ2,i1i2 ≈

2(1− b2
2)−2(1− b2)−1c0b1b2b̃02(wi1i2 +wi2i1), Σ3,i1i2 ≈ (1− b2

2)−2b1b2(wi1i2 +wi2i1)σ
2
V for

i1 6= i2, where wi1i2 = n−1
i1
ai1i2 is the (i, j)th element of W . This leads to the desired
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results.

APPENDIX B

In Appendix B, we give the proof of the asymptotic properties in the estimation part.

Specifically, Theorem 4.1 and Theorem 4.2 are going to be proved in Section B.2

respectively.

Appendix B.1: A Useful Lemma

In this section, we give the proof of a useful lemma, which is employed as tools in later

proof of asymptotic properties.

LEMMA 5.1. Assume cβ < 1 and (C1)–(C3), where cβ is defined in (C1). Let U =

(U1, · · · , UN)> ∈ RN and V = (V1, · · · , VN)> ∈ RN , where Ui and Vi are identically

distributed respectively for 1 ≤ i ≤ N , and independent with Πl. Assume E(U4
i )1/4 ≤ νu,

E(V 4
i )1/4 ≤ νv, Cov(Ui, Vi) 6= 0, and Cov(Ui, Uj) = 0 for i 6= j. Define G = ‖β1‖4W +

‖β2‖4I ∈ RN×N . Then the following results hold.

(a) For any integer l1, l2, l3, l4 > 0 we have

E(|Π>l1Πl2Π
>
l3

Πl4|a) 4 |Gl1>Gl2Gl3>Gl4|a. (B.1)

(b) There exists a finite integer K > 0, such that for any l > 0, we have

GlGl> 4 lKc2l
βM, (B.2)

whereM = MM> with M = cm1π
>+
∑K

j=1W
j, cm > 1 is a constant, and π is defined
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in (C2.1). Denote Mij as the (i, j)th element of M. We then have

N−21>M1→ 0, (B.3)

N−2 tr(M2)→ 0, (B.4)

as N →∞.

(c) For any integer l1 ≥ l2, it holds that

Var(U>Π>l1Πl2V ) ≤ 8ν2
uν

2
vc

2(l1+l2)
β l2K1 {1>M1 + tr(M2)}. (B.5)

(d) We have Ω̂0 →p Ω0 as min{N, T} → ∞.

Proof of (a). We first derive an inequality of E |Π>l1Πl2Π
>
l3

Πl4|a as

E |Π>l1Πl2Π
>
l3

Πl4|a 4 E
{( l1−1∏

l=0

|Gt−l|a
)>( l2−1∏

l=0

|Gt−l|a
)( l3−1∏

l=0

|Gt−l|a
)>( l4−1∏

l=0

|Gt−l|a
)}
.

We first prove

E(|Gt|>a |Gt|aM |Gt|>a |Gt|a) 4 G>GE(M)G>G (B.6)

for any elementwisely positive stochastic matrix M , where M = (mij) ∈ RN×N is

assumed to be independent with Gt. Let W11 = W>W , W10 = W>, W01 = W , W00 =

I. Further denote Wq1q2,i· ∈ RN as the ith row vector of Wq1q2 , where q1, q2 = 0, 1.

Then one could verify the (i, j)th element of E(|Gt|>a |Gt|aM |Gt|>a |Gt|a) involves a sum of

terms like E{|βk11 (Ui1t)β
k2
2 (Ui2t)β

k3
1 (Ui3t)β

k4
2 (Ui4t)|(Wq1q2MWq3q4)ij}, where q1, q2 = 0, 1,

k1, k2, k3, k4 are integers, 0 ≤ ki ≤ 4, k1 + k2 + k3 + k4 = 4, 0 ≤ i1, i2, i3, i4 ≤ N .

By Hölder’s inequality, we have for all i1, i2, i3, i4, E |βk11 (Ui1t)β
k2
2 (Ui2t)β

k3
1 (Ui3t)β

k4
2 (Ui4t)| ≤

‖β1‖k1+k3
4 ‖β2‖4−(k1+k3)

4 . By applying the inequality one could obtain (B.6). Subse-
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quently, (B.1) can be derived by recursively applying (B.6).

Proof of (b). Note we have ‖β1‖4+‖β2‖4 < 1. Then (B.2) can be obtained by (5.1) of

Lemma 2 (a) in the supplementary material of Zhu et al. (2016). For the completeness

of the proof, we briefly repeat the step as below. Firstly, for any integer l > 0, we have

Gl = (‖β1‖4W +‖β2‖4I)l =
∑l

j=0C
j
l ‖β1‖j4‖β2‖l−j4 W j, where Cj

l = l!/{j!(l−j)!}. Since

W is an element-wise non-negative matrix, |Gl|a 4
∑l

j=0C
j
l ‖β1‖j4‖β2‖l−j4 W j. Then for

l > K we have |Gl|a 4 (‖β1‖4 + ‖β2‖4)lC1π> +
∑K

j=0 C
j
l ‖β1‖j4‖β2‖l−j4 W j, , where this

fact is due to W l 4 C1π>. Further note that ‖β1‖j4‖β2‖n−j4 < clβ (0 ≤ j ≤ l), and

CK
l ≤ lK . As a result, for l > K we have,

|Gl|a 4 lK(‖β1‖4 + ‖β2‖4)lM, (B.7)

where recall that M = C1π> +
∑K

j=0 W
j. It is easy to verify that (B.7) also holds for

l = 1, · · · , K − 1. Then we have |Gl(G>)l|a 4 l2Kc2l
βMM> for any positive integer n.

As a result, (B.2) can be proved.

Next (B.3) and (B.4) can be obtained by (5.11) and (5.12) of the supplementary ma-

terial by Zhu et al. (2016) respectively.

Proof of (c). We first prove that (B.5) holds for l1 = l2 = l, then extend the results

to l1 > l2. Let l1 = l2 = l, we have

Var(U>Π>l ΠlV ) = Var{E(U>Π>l ΠlV |Πl)}+ E{Var(U>Π>l ΠlV |Πl)}. (B.8)

We then derive the upper bound for E{Var(U>Π>l ΠlV )|Πl} and Var{E(U>Π>l ΠlV )|Πl}

in the following respectively.

Upper Bound for E{Var(U>Π>l ΠlV )|Πl}. One could first verify that U>Π>l ΠlV =
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vec(Πl)
>(I ⊗ Πl)vec(V U>). Denote V = vec(V U>) ∈ RN . As a consequence, we have

Var(U>Π>l ΠlV |Πl) = vec(Πl)
>(I ⊗ Πl)Cov(V)(I ⊗ Π>l )vec(Πl).

Further more, by the Cauchy’s inequality for the N ×N block matrices ΣV,ii and ΣV,ij

the following bound can be attained,

ΣV,ii = Cov(ViU) ≤ 2ν2
uν

2
v11

>, (B.9)

ΣV,ij = Cov(ViU, VjU) ≤ 2ν2
uν

2
v(I + ej1

> + 1e>i ) (B.10)

for i 6= j, where ei ∈ RN is a vector with all elements to be 0 but only the ith element

being 1. Denote Πl,·i as the ith column vector of Πl. Then we have vec(Πl)
>(I ⊗

Πl)Cov(V)(I ⊗ Π>l )vec(Πl) =
∑N

i,j=1 Π>l,·iΠlΣV,ijΠ
>
l Πl,·j =

∑N
i=1 Π>l,·iΠlΣV,iiΠ

>
l Πl,·i +∑

i 6=j Π>l,·iΠlΣV,ijΠ
>
l Πl,·j ≤ 2ν2

uν
2
v{3 tr(|Π>l Πl|a11>|Π>l Πl|a) + tr(|Π>l Πl|a|Π>l Πl|a)} ≤

6ν2
uν

2
v1
>|Π>l |a

|Πl|a|Πl|>a |Πl|a1 + 2ν2
uν

2
v tr(|Π>l |a|Πl|a|Πl|>a |Πl|a). By taking expectation on the right

side we have

E
{
Var(U>|Π>l Πl|aV ||Πl|a)

}
≤ 6ν2

uν
2
vc

4l
β l

2K1>M1 + 2ν2
uν

2
vc

4l
β l

K tr(M2). (B.11)

Upper Bound for Var{E(U>Π>l ΠlV |Πl)}. It can be calculated that E(U>Π>l ΠlV |Πl) ≤

νuνv tr(|Πl|>a |Πl|a). Firstly we have Var{tr(|Πl|>a |Πl|a)} = E[Var{tr(|Πl|>a |Πl|a)|Πl−1}] +

Var[E{tr(|Πl|>a |Πl|a)

|Πl−1}]. We first write tr(|Πl|>a |Πl|a) =
∑

iG
>
t−l+1,·i|Πl−1|>a |Πl−1|aGt−l+1,·i. There-

fore we have Var{tr(|Πl|>a |Πl|a)|Πl−1} =
∑

i Var(G
>
t−l+1,·i|Πl−1|>a |Πl−1|aGt−l+1,·i|Πl−1) ≤
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2
∑

i(G>·i |Πl−1|>a |Πl−1|aG·i)2

≤ 2c2
β

∑
iG>·i |Πl−1|>a |Πl−1|a11>|Πl−1|>a |Πl−1|aG·i = 2c2

β1
>|Πl−1|>a |Πl−1|aGG>|Πl−1|>a |Πl−1|a1.

Moreover, by similar proofs of (B.1), we have E(1>|Πl−1|>a |Πl−1|aGG>|Πl−1|>a |Πl−1|a1) ≤

lKc4l−2
β 1>M1 by (B.1) and (B.3). Lastly, one could verify that E{tr(|Πl|>a |Πl|a)|Πl−1} ≤∑
iG>·i |Πl−1|>a |Πl−1|aG·i = tr(G>|Πl−1|>a |Πl−1|aG). By applying the deduction recur-

sively, one should have Var{E(U>|Πl|>a |Πl|aV |Πl)} ≤ 2ν2
uν

2
vc

4l
β

∑l
k=1 k

K1>M1. By com-

bining the results of (B.11), we have

Var(U>|Πl|>a |Πl|aV ) ≤ 2ν2
uν

2
vc

4l
β

{
3lK1>M1 +

l∑
k=1

kK1>M1 + l2K tr(M2)
}
. (B.12)

Consequently we have (B.5) holds. For l1 > l2, it can be derived that Var(U>Π>l1Πl2V ) =

Var{E(U>Π>l1Πl2V |Πl1)} + E{Var(U>Π>l1Πl2V |Πl1)}. For E{Var(U>Π>l1Πl2V |Πl1)}, one

can achieve a direct bound by (B.1) and (B.2) similar to the case of l1 = l2:

E{Var(U>Π>l1Πl2V |Πl1)} ≤ 2ν2
u E(V >|Πl2|>a |Πl1 |a|Πl1 |>a |Πl2|aV ) ≤ 2ν2

uν
2
vc

2(l1+l2)
β lK1 1>

M1.

For Var{E(U>Π>l1Πl2V |Πl1)}, we would like to bound by a recursive formula so that one

can utilize the conclusion we achieved for the l1 = l2 case. Var{E(U>Π>l1Πl2V |Πl1)} ≤

2ν2
u Var(1

>|Πl1|>a |Πl2 |aV ). So we have

Var(U>|Πl1|>a |Πl2|aV ) ≤ 2ν2
uν

2
vc

2(l1+l2)
β lK1 1>M1 + ν2

u Var(1
>|Πl1|>a |Πl2|aV ). (B.13)

Note 1>|Πl1|>a |Πl2|aV = B>t−l1+1|Πl1−1|a|Πl2|aV . Then by letting U = Bt−l1+1 one could

obtain the result that Var(U>|Πl1|>a |Πl2|aV ) ≤ 2ν2
uν

2
vc

2(l1+l2)
β {lK1 + (l1 − 1)K}1>M1 +

ν2
uc

2
β Var(1

>|Πl1−1|>a |Πl2 |aV ). By applying the same technique recursively, we have

Var(U>|Πl1 |>a |Πl2|aV ) ≤ 2ν2
uν

2
vc

2(l1+l2)
β

l1∑
k=l2+1

kK1>M1+ν2
uc

2(l2−l1−1)
β Var(B>t−l2|Πl2|>a |Πl2 |aV ).
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By combining the results from (B.12), we have Var(U>|Πl1|>a |Πl2|aV ) ≤ 2ν2
uν

2
vc

2(l1+l2)
β {(

∑l1
k=1 k

K

+3lK2 )1>M1+ l2K2 tr(M2)} ≤ 8ν2
uν

2
vc

2(l1+l2)
β l2K1 {1>M1+tr(M2)}, which proves (B.5).

Proof of (d): Write Ω̂0 =

1

NT

T∑
t=1

N∑
i=1

X>itXit =



1 S12 S13 S14

S22 S23 S24

S33 S34

S44


,

where

S12 =
1

N

N∑
i=1

Z>i , S13 =
1

NT

T∑
t=1

N∑
i=1

w>i Yt, S14 =
1

NT

T∑
t=1

N∑
i=1

Yit,

S22 = N−1

N∑
i=1

ZiZ
>
i , S23 =

1

NT

T∑
t=1

N∑
i=1

w>i YtZi, S24 = (NT )−1

T∑
t=1

N∑
i=1

YitZi,

S33 =
1

NT

T∑
t=1

N∑
i=1

(w>i Yt)
2, S34 =

1

NT

T∑
t=1

N∑
i=1

w>i YtYit, S44 =
1

NT

T∑
t=1

N∑
i=1

Y 2
it .

One can directly conclude that S12 →p 0
>
p and S22 → ΣZ by the law of large numbers.

Recall that κ1 = limN→∞N
−1tr(ΣY ), κ2 = limN→∞N

−1tr(WΣY ), κ3 = limN→∞N
−1tr(WΣYW

>),

and κ4 = limN→∞N
−1tr{(I − G)−1}, κ5 = limN→∞N

−1tr{W (I − G)−1}. Σz =

E(ZiZ
>
i ). S12 →p (0, 0, · · · , 0)p×1, S13 →p cb, and S14 = N−1

∑
t 1
>Yt−1 →p cb .

We first list the component wise limit for each element in Ω̂0 in expectation, and we

will verify the variance of these components in the next steps. S22 →p Σz and S23 =

1
NT

∑T
t=1 Z

>WYt−1 →p
1
N
E{Z>W (I−G)−1Zγ} = κ5Σzγ, with Z = (Z1, Z2, · · · , Zn)>

and γ = [
∫
γl(u)du]. S24 = 1

NT

∑T
t=1 1

>Yt−1Zi →p N
−1 E(Z>(I − G)−1Z)γ = κ4Σzγ.
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S33 = 1
NT

∑
t

∑
i(w
>
i Yt−1)> = 1

NT

∑T
t=1 Y>t−1W

>WYt−1 →p N
−1 tr{W>WΣY } + c2

b .

Finally S34 →p N
−1 tr{W>ΣY }+ c2

b , S44 →p N
−1 tr{ΣY }+ c2

b .

Some tedious steps are needed for verifying the variance of the aforementioned compo-

nent. For the interest of space, we will only show one of the hardest part S44 →p κ1 +c2
b

which involves the fourth moment of Yt. The proof contains two steps. In the first

step, we prove that for any fixed t, N−1
∑N

i=1XitX
>
it →p Ω0 as N →∞. Next, we deal

with the dependence cross over time (i.e., 1 ≤ t ≤ T ). Specifically, the near epoch

dependence of Yit and its functional forms are presented and consequently the desired

law of large numbers results are established.

Step 1. Proof of N−1
∑N

i=1 Y
2
it →p κ1 + c2

b .

In this step, we prove N−1
∑N

i=1 Y
2
it →p κ1 + c2

b as N → ∞ for any fixed t under

conditions (C1)–(C3). To this end, it suffices to show N−1 E(Y>t Yt) → κ1 + c2
b and

N−2 Var(
∑

tY>t Yt) → 0 as N → ∞. By condition (C3) we have N−1 E(Y>t Yt) =

N−1{tr(ΣY )+E(Yt)
> E(Yt)} → κ1 +c2

b . We then prove N−2 Var(Y>t Yt)→ 0 as N →∞

in the following.

Recall that Yt has the decomposition in the (A.1). Without loss of generality, assume

Γ = 1N . Then we have Y>t Yt =
∑∞

l1,l2=0(1>Π>l1Πl21+21>Π>l1Πl2Vt−l2+V >t−l1Π
>
l1

Πl2Vt−l2).

By the Cauchy’s inequality, it suffices to show N−2 Var
(∑∞

l1,l2=0 V
>
t−l1Π

>
l1

Πl2Vt−l2
)
→ 0,

N−2 Var
(∑∞

l1,l2=0 1
>Π>l1Πl2Vt−l2

)
→ 0, and N−2 Var

(∑∞
l1,l2=0 1

>Π>l1Πl21
)
→ 0 as N →

∞. Since their proofs are almost the same, we prove N−2 Var
(∑∞

l1,l2=0 1
>Π>l1Πl21

)
→ 0

in the following for simplicity. To this end, first it can be shown Var(
∑∞

l1,l2=0 1
>Π>l1Πl21) =
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∑∞
l1 6=l2 Var

(
1>Π>l1Πl21

)
+
∑∞

l1,l2=0 Cov
(
1>Π>l1Πl11,1

>Π>l2Πl21
)
. Then it suffices to show

N−2

∞∑
l1 6=l2

Var
(
1>Π>l1Πl21

)
→ 0, (B.14)

N−2

∞∑
l1,l2=0

Cov
(
1>Π>l1Πl11,1

>Π>l2Πl21
)
→ 0 (B.15)

N → ∞. We then prove (B.14) and (B.15) separately as follows. Write 1>Π>l1Πl21 =

B>t−l1+1Π>l1−1Πl2−1Bt−l2+1, where Bt−l1+1 = B1(t−l1+1)1N+B2(t−l1+1)1N = (β1(Ui(t−l1+1)))+

(β2(Ui(t−l1+1))). It can be calculated
∑∞

l1 6=l2 Var
(
B>t−l1+1Π>l1−1Πl2−1Bt−l2+1

)
= 2

∑∞
l2=0

∑
l1>l2

Var(
B>t−l1+1Π>l1−1Πl2−1Bt−l2+1

)
. By (B.5) we have Var

(
B>t−l1+1Π>l1−1Πl2−1Bt−l2+1

)
≤ 8c

2(l1+l2−2)
β l2K1 {1>M1 + tr(M2)}. Then we have (B.14) due to that

∑∞
l2=0

∑
l1>l2

c
2(l1+l2−2)
β l2K1 <∞ and N−2{1>M1 + tr(M2)} → 0 by (B.3) and (B.4). For (B.15), it

can be shown by Cauchy’s inequality that Cov(1>Π>l1Πl11,1
>Π>l2Πl21) ≤ Var(1>Π>l1Πl11)1/2

Var(1>Π>l2Πl21)1/2 ≤ 8c
2(l1+l2)
β lK1 l

K
2 {1>M1+tr(M2)} by (B.5). Then (B.15) holds since∑

l1,l2
c

2(l1+l2)
β lK1 l

K
2 < ∞ and N−2{1>M1 + tr(M2)} → 0 as N → ∞. This completes

the proof.

Step 2. L1 Near Epoch Dependence.

In this step, we further prove N−1
∑

i Y
2
it satisfies near epoch dependence cross 1 ≤ t ≤

T . First we give the definition of L1 near epoch dependence as below.

DEFINITION 5.2. (L1 near epoch dependence) A triangular array Uit in R1 is

said to be L1 near epoch dependent (NED) if there exists constants cit and a sequence

{vJ , J ≥ 1} such that vJ → 0 when J →∞ satisfying

E
∣∣(Uit)− E(Uit|Ft−J , · · · ,Ft, · · · ,Ft+J)

∣∣ ≤ citvJ .

Given the definition, we firstly prove that Yits are L1 NED by Andrews (1988). Next,
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according to Chapter 7 Lemma 1 of Gallant (2009), the smooth transformations of Yits

(e.g., N−1
∑

i Y
2
it ) are also NED. Since Yit has finite forth moment, then by Gallant

(2009) we have N−1
∑N

i=1 Y
2
it is a uniformly integrable L1 mixinggale. Consequently,

according to Theorem 1 of Andrews (1988), we could have (NT )−1
∑T

t=1

∑N
i=1 Y

2
it con-

verge in probability as N → ∞ and T → ∞. We then prove Yit is NED in the

following.

Denote F t+Jt−J = {Ft−J , · · · ,Ft, · · · ,Ft+J} and Πt2
t1 =

∏t2
t=t1

Gt. We then have the

following inequality as

E
{
e>i
∣∣Yt − E(Yt|F t+Jt−J )

∣∣
a

}
≤ E

[
e>i
{ ∞∑
l=J+1

ΠlVt−l +
∞∑

l=J+1

ΠJ+1(Π
t−(J+1)
t−l−J −Gl−J−1)Γ

}]
≤

∞∑
l=J+1

(ba1 + ba2)lcv +
∞∑

l=J+1

2(ba1 + ba2)lc0,

where cv = E |Vit|. Let vJ = (ba1 + ba2)J+1 and cit = (1 − ba1 − ba2)−1(2c0 + cv). By

condition (C1) we have ba1 + ba2 < 1, thus Yits are L1 NED according to Definition 5.2.

This completes the proof of Step 2.

Appendix B.2: Proof of Theorem 4.1 and Theorem 4.2

Denote Vitτ = Yit − X>i(t−1)θ(τ) and v̂ =
√
NT

(
θ̂(τ) − θ(τ)

)
. Then we have ρτ

(
Yit −

X>i(t−1)θ̂(τ)
)

= ρτ
(
Vitτ − (NT )−1/2X>i(t−1)v̂

)
, where Vitτ = Yit − X>i(t−1)θ(τ). Then the

minimization of (4.1) is equivalent to minimizing

ZNT (v) =
N∑
i=1

T∑
t=1

{
ρτ
(
Vitτ − (NT )−1/2X>i(t−1)v

)
− ρτ (Vitτ )

}
.

One could verify that v̂ = arg minv ZNT (v). The objective function ZNT (v) is a convex

random function. Define ψτ (u) = τ − I(u < 0) and let νit = (NT )−1/2v>Xit, and one
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could further write ZNT (v) as ZNT (v) =

−
∑
i,t

[
(NT )−1/2v>Xi(t−1)ψτ (Vitτ ) +

∫ νi(t−1)

0

{
1(Vitτ ≤ s)− 1(Vitτ < 0)

}
ds
]

def
= v>ξ1 + ξ2. According to Kato (2009), in order to prove v̂ takes the representation

in (4.2), it suffices to prove (a) ξ2 →p v
>Ω1v with Ω1 defined in (C3) being a positive

definite matrix with uniformly bounded eigenvalues on B, and (b) ξ1 is tight for τ ∈

B ∈ (0, 1), and ξ1 converges in distribution to a Brownian Bridge. We then prove (a),

(b) in the following two steps.

Step a. Proof of (a).

Define ξ2it =
∫ νi(t−1)

0

{
1(Vitτ ≤ s) − 1(Vitτ < 0)

}
ds. To prove ξ2 =

∑N
i=1

∑T
t=1 ξ2it →p

v>Ω1v, we decompose ξ2it as ξ2it = E(ξ2it|Ft−1)+ξ2it, where ξ2it = ξ2it−E(ξ2it|Ft−1). We

then prove
∑N

i=1

∑T
t=1 E(ξ2it|Ft−1)→p 2−1v>Ω1v and

∑N
i=1

∑T
t=1 ξ2it →p 0 respectively

as follows.

We first evaluate
∑N

i=1

∑T
t=1 E(ξ2it|Ft−1). It can be expressed that

∑
i,t E(ξ2it|Ft−1) =∑N

i=1

∑T
t=1 E[

∫ νi(t−1)

0
{1(Vitτ ≤ s)−1(Vitτ < 0)}ds|Ft−1] =

∑N
i=1

∑T
t=1

∫ νi(t−1)

0
{Fi(t−1)(s+

F−1
i(t−1)(τ))− Fit−1(F−1

i(t−1)(τ))}/s · sds. This yields that

∑
i,t

E(ξ2it|Ft−1) =
∑
i,t

∫ νi(t−1)

0

fit−1(F−1
it−1(τ))sds+ Op(1)

=
∑
i,t

(2NT )−1fi(t−1)

(
X>i(t−1)θ(τ)

)
v>Xi(t−1)X

>
i(t−1)v + Op(1)→p 1/2v>Ω1v (B.16)

according to condition (C3).

Next, we prove
∑

i,t ξ2it →p 0. It is not difficult to see that ξ2it is a martingale

difference sequence, which can be written as ξ2it =
∫ νi(t−1)

0
δitτ (s) − δitτ (0)ds, where
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δitτ (s) =
{
1(Vitτ ≤ s) − Fi(t−1)(s + X>i(t−1)θ(τ))

}
. It suffices to show E(|

∑
i,t ξ2it|)2 =∑

i1,i2

∑
t1,t2

E(ξ2i1t1ξ2i2t2) → 0. Importantly, recall that Vitτ = X>i(t−1)(θ(Uit) − θ(τ)),

therefore Vitτ and Vjtτ would be conditionally independent on Ft−1. Thus it can be

shown that E{
∫ νi(t−1)

0
δitτ (s)ds

∫ νj(t−1)

0
δjtτ (s)ds} = E[E{

∫ νi(t−1)

0
δitτ (s)ds

∫ νj(t−1)

0
δjtτ (s)ds

|Ft−1}] = 0 due to the conditional independence of δitτ (s) and δjtτ (s) given Ft−1. Simi-

larly, for t1 > t2 we have E{
∫ νi(t1−1)

0
δit1τ (s)ds

∫ νi(t2−1)

0
δjt2τ (s)ds} = E[E{

∫ νi(t1−1)

0
δit1τ (s)ds∫ νi(t2−1)

0
δjt2τ (s)ds|Ft1−1}] = 0. Therefore, we have E{ξ2i1t1τξ2i2t2τ} = 0 for i1 6= i2

or t1 6= t2. Then
∑

i1,i2

∑
t1,t2

E(ξ2i1t1ξ2i2t2) =
∑

i

∑
t E(ξ

2

2it). Next, write E(ξ
2

2it) =

E(ξ2
2it)− E{E(ξ2it|Ft−1)}2. Further it can be derived that E(ξ2

2it) = E |
∫ νi(t−1)

0
{1(Vitτ ≤

s)− 1(Vitτ ≤ 0)}ds|2 ≤ |νi(t−1)|E
∫ |νi(t−1)|

0
{1(Vitτ ≤ s)− 1(Vitτ ≤ 0)}2ds by the Cheby-

shev’s inequality. Further we have |νi(t−1)|E[
∫ |νi(t−1)|

0
{1(Vitτ ≤ s) − 1(Vitτ ≤ 0)}ds] =

|νi(t−1)|E[
∫ |νi(t−1)|

0
{Fi(t−1)(s+ F−1

i(t−1)(τ))− Fi(t−1)(F
−1
i(t−1)(τ))}/s · sds]. By similar tech-

nique with (B.16), one could obtain
∑

i,t E(ξ
2

2it) ≤ E{
∑

i,t 2−1(NT )−3/2|fi(t−1)(X
>
i(t−1)v)|

|X>i(t−1)v|3/2}+O(1). Since we have fit(·) is bounded and (NT )−3/2
∑

i,t E(v>XitX
>
it v)2 =

O
(
(NT )−1/2

)
→ 0, then it can be obtained that

∑
i,t E(ξ

2

2it)→ 0. Lastly, following sim-

ilar argument of tightness as in Wagener et al. (2012), we can prove that
∑

i,t ξ2it →p 0

uniformly over τ ∈ B. This completes the proof of ξ2 →p v
>Ω1v for any τ ∈ (0, 1).

Step b. (Proof of Theorem 4.2)

In this step, we are going to show ξ1 converges in distribution to a Brownian Bridge

Ω
1/2
0 Bq+3(τ), where Ω0 is defined in (C3), andBq+3(τ) is a (q+3)-dimensional Brownian

bridge. To prove this conclusion, we adopt two steps:

(B.1) For arbitrary k-dimensional vector (τ1, τ2, · · · , τk)> ∈ Rp and η ∈ Rq+3,
(
ξ1(τ1), ξ1(τ2),

· · · , ξ1(τk)
)>
η ∈ Rk converge to a k-dimensional multivariate normal distribution.

(B.2) η>ξ1(τ) for τ ∈ B ∈ (0, 1) is tight, where B is a compact set in (0, 1).
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Step B.1. Denote ψt =
(
ψ(V1tτ ), · · · , ψ(VNtτ )

)> ∈ RN for convenience. We then

have E(X>t−1ψt|Ft−1) = 0. Therefore, X>t−1ψt is a martingale difference sequence for

1 ≤ t ≤ T . To prove (B.1), we define ζt = (NTN)−1/2η>X>t−1ψt and SNt =
∑t

s=1 ζηt.

Then one can see that {ζt,Ft−1,−∞ < t < TN , N ≥ 1} is a martingale array, where

the number of observed time points TN is assumed to depend on N with TN → ∞

as N → ∞. As a result, the double sequence {SNt,Ft,−∞ < t ≤ TN , N ≥ 1} is a

martingale array. As a consequence, the martingale difference central limit theorem can

be applied (Hall and Heyde, 2014). Specifically, it requires two conditions as follows.

First we have

TN∑
t=1

E{ζ2
t 1|ζ2

t | > δ|Ft−1} ≤ δ−2

TN∑
t=1

E(|ζt|4|Ft−1)

≤ δ−2τ 2(1− τ)2(NTN)−2

TN∑
t=1

(η>X>t−1Xt−1η)2 →p 0, (B.17)

where the last inequality is due to Eψ4(Vitτ ) ≤ τ 2(1 − τ)2. Since by the proof of (d)

of Lemma 5.1, we have (NTN)−2
∑TN

t=1 E(η>X>t−1Xt−1η)2 → 0. Therefore (B.17) can be

implied. Secondly, we also have the condition

TN∑
t=1

E{ζ2
t |Ft−1} =

τ(1− τ)

NT

TN∑
t=1

η>X>t−1Xt−1η →p τ(1− τ)η>Ω0η, (B.18)

by (d) of Lemma 5.1 in Appendix B.1. Therefore, by the central limit theorem for

martingale difference sequence in Hall and Heyde (2014), we have that ξ1(τ) converge

in distribution to Gaussian distribution N(0, τ(1−τ)η>Ω0η) for fixed τ . The conclusion

also holds for any finite dimensional vector (τ1, τ2, · · · , τk)>, which proves (B.1).

Step B.2. Then we prove that η>ξ1(τ) for τ ∈ B ∈ (0, 1) is tight. The definition of

tightness is given as follows.
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DEFINITION 5.3. A process WNT (τ) is said to be tight if and only if for any δ > 0

there exists a compact set E such that supτ∈EP(WNT (τ) ∈ E) > 1− δ.

Define ψ1(D) = −(NT )−1/2
∑

i,tXi(t−1){ψτ2(Vitτ2) − ψτ1(Vitτ1)} for any interval D =

(τ1, τ2]. To show the tightness, we adopt Theorem 15.6 in Billingsley (1968) and prove

a sufficient Chentsov-Billingsley type of inequality as follows.

LEMMA 5.2. For any two intervals D1 = (τ1, τ2] and D2 = (τ2, τ3], we have

E
[{
η>ξ1(D1)

}2{
η>ξ1(D2)

}2
]
≤ C(τ3 − τ1), (B.19)

where C is a finite positive constant.

To prove Lemma 5.2, we have E[{η>ξ1(D1)}2{η>ξ1(D2)}2] = (NT )−2 E[{
∑

i,t η
>Xi(t−1)

δit(τ1, τ2)}2{
∑

i,t η
>Xi(t−1)δit(τ2, τ3)}2], where δit(τ, τ

′) = ψτ ′(Vitτ ′)−ψτ (Vitτ ). Next, by

Cauchy’s inequality, we have E[{
∑

i,t η
>Xi(t−1)δit(τ1, τ2)}2{

∑
i,t η

>Xi(t−1)δit(τ2, τ3)}2] ≤

[E{
∑

i,t η
>Xi(t−1)δit(τ1, τ2)}4]1/2[E{

∑
i,t η

>Xi(t−1)δit(τ2, τ3)}4]1/2. Since it can be derived

E{δit(τ, τ ′)|Ft−1} = 0, then E[{η>Xi1(t1−1)δi1t1(τ, τ
′)}{η>Xi2(t2−1)δi2t2(τ, τ

′)}{η>Xi3(t3−1)

δi3t3(τ, τ
′)}{η>Xi4(t4−1)δi4t4(τ, τ

′)}] is non-zero only if (a) i1 = i2, t1 = t2 and i3 = i4 6=

i1, t3 = t4 6= t1 or (b) i1 = i2 = i3 = i4 and t1 = t2 = t3 = t4. It is straightforward to

verify (NT )−2 E{
∑

i,t η
>Xi(t−1)δit(τ1, τ2)}4 =

(NT )−2
[∑

i,t

E
{

(η>Xi(t−1))
2δ2
it(τ1, τ2)

}]2

+ (NT )−2
∑
i,t

E
{

(η>Xi(t−1))
4δ4
it(τ1, τ2)

}
.

By the proof of (d) in Lemma 5.1, we know that E(η>Xit)
2 = O(1) and E(η>Xit)

4 =

O(1). Moreover, it can be verified E{δ2
it(τ1, τ2)} ≤ τ2 − τ1 and E{δ4

it(τ1, τ2)} ≤ τ2 − τ1.
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By combining the results together, we have

E
[{
η>ξ1(D1)

}2{
η>ξ1(D2)

}2
]
≤ C(τ2 − τ1)(τ3 − τ2) ≤ C|τ3 − τ1|,

for some positive constant C. This completes the proof of Lemma 5.2. We then

conclude that the ξ1(τ) converge weakly to a (q + 3)-dimensional Brownian bridge.

Consequently, the Theorem 4.2 can be proved.
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Baruńık, J.; Kley, T. Available at SSRN 2678977 2015,

Sewell, D. K.; Chen, Y. Journal of the American Statistical Association 2015, 110,

1646–1657.

Zhao, Y.; Levina, E.; Zhu, J. Proceedings of the National Academy of Sciences 2011,

108, 7321–7326.

others,, et al. The Annals of Statistics 2013, 41, 2097–2122.

others,, et al. Bayesian Analysis 2016,

Bickel, P. J.; Chen, A. Proceedings of the National Academy of Sciences 2009, 106,

21068–21073.

Zhao, Y.; Levina, E.; Zhu, J. The Annals of Statistics 2012, 2266–2292.

Zhang, J.; Chen, Y. Journal of the American Statistical Association 2013, 108, 1295–

1307.

44



Zhou, J.; Tu, Y.; Chen, Y.; Wang, H. Journal of Business & Economic Statistics 2015,

To appear.

Huang, L. W. Z. H., D.; Wang, H. Working Paper 2016,

Zhu, X.; Pan, R.; Li, G.; Liu, Y.; Wang, H. Annals of statistics 2016,

Carrington, P. J.; Scott, J.; Wasserman, S. Models and methods in social network

analysis; Cambridge university press, 2005; Vol. 28.

Newman, M. Networks: an introduction; Oxford university press, 2010.

Kolaczyk, E. D.; Csárdi, G. Statistical analysis of network data with R; Springer, 2014.

Abello, J.; Pardalos, P. M.; Resende, M. G. Handbook of massive data sets; Springer,

2013; Vol. 4.

Li, G.; Li, Y.; Tsai, C.-L. Journal of the American Statistical Association 2015, 110,

246–261.

Lütkepohl, H. New introduction to multiple time series analysis; Springer Science &

Business Media, 2005.

Chen, X.; Chen, Y.; Xiao, P. Journal of Marketing Research 2013, 50, 95–110.

Fan, J.; Fan, Y. Manuscript 2010,

Holland, P. W.; Leinhardt, S. Journal of the american Statistical association 1981, 76,

33–50.

Wang, Y. J.; Wong, G. Y. Journal of the American Statistical Association 1987, 82,

8–19.

45



Nowicki, K.; Snijders, T. A. B. Journal of the American Statistical Association 2001,

96, 1077–1087.

Barabási, A.-L.; Albert, R. science 1999, 286, 509–512.

Clauset, A.; Shalizi, C. R.; Newman, M. E. SIAM review 2009, 51, 661–703.

Fama, E. F.; French, K. R. Journal of Financial Economics 2015, 116, 1–22.

Banerjee, S.; Carlin, B. P.; Gelfand, A. E. Hierarchical modeling and analysis for spatial

data; Crc Press, 2014.

Bardet, J.-M.; Doukhan, P.; Lang, G.; Ragache, N. ESAIM: Probability and Statistics

2008, 12, 154–172.

Andrews, D. W. Econometric theory 1988, 4, 458–467.

Gallant, A. R. Nonlinear statistical models; John Wiley & Sons, 2009; Vol. 310.

Kato, K. Journal of Multivariate Analysis 2009, 100, 1816–1829.

Wagener, J.; Volgushev, S.; Dette, H. Mathematical Methods of Statistics 2012, 21,

127–141.

Hall, P.; Heyde, C. C. Martingale limit theory and its application; Academic press,

2014.

Billingsley, P. Convergence of Probability Measures; Wiley, New York, 1968.

46



Figure 1: The left panel: dyad independence network; The middle panel: stochastic block
model; the right panel: power-law distribution network.
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Figure 2: The estimated β0 to β2 against τ . The top panel: dyad independence network; The
middle panel: stochastic block model; the bottom panel: power-law distribution network.
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Table 1: Simulation Results for dyad independence network with 1000 Replications.
The RMSE (×10−2) and the Coverage Probability (%) are reported for β0 to β1. The
RMSE is also reported for γ. Lastly, the network density is computed and given. Z
stands for normal distribution and T stands for t- distribution

N Dist. β0 β1 β2 γ ND

τ = 0.1

100 Z 2.60(95.0) 10.10(95.8) 2.47(94.3) 3.09 22.7

T 3.43(96.4) 11.22(95.2) 2.37(95.6) 4.17

500 Z 1.08(96.2) 4.61(95.4) 1.04(96.0) 1.32 4.7

T 1.51(95.4) 4.90(95.9) 1.03(96.1) 1.82

1000 Z 0.77(95.8) 3.29(95.0) 0.80(94.0) 0.93 2.4

T 1.06(95.8) 3.66(95.0) 0.75(95.0) 1.29

τ = 0.5

100 Z 1.90(95.5) 6.62(95.4) 1.65(96.7) 2.11 22.7

T 1.99(95.7) 5.67(94.5) 1.32(93.3) 2.15

500 Z 0.84(94.4) 2.99(95.5) 0.79(94.9) 0.87 4.7

T 0.90(94.9) 2.43(96.2) 0.55(92.3) 0.91

1000 Z 0.59(94.7) 2.17(95.0) 0.53(95.7) 0.63 2.4

T 0.62(94.2) 1.77(95.0) 0.37(93.5) 0.66

τ = 0.9

100 Z 2.57(95.3) 9.96(95.1) 2.49(94.1) 2.92 22.7

T 3.61(95.0) 10.61(95.4) 2.41(94.5) 3.98

500 Z 1.08(96.3) 4.27(95.8) 1.10(94.0) 1.30 4.7

T 1.53(95.6) 4.75(94.8) 1.11(93.9) 1.75

1000 Z 0.78(95.5) 3.14(95.5) 0.76(95.0) 0.90 2.4

T 1.09(95.9) 3.41(96.0) 0.84(93.5) 1.26
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Table 2: Simulation Results for stochastic block network with 1000 Replications. The
RMSE (×10−2) and the Coverage Probability (%) are reported for β0 to β1. The RMSE
is also reported for γ. Lastly, the network density is computed and given.

N Dist. β0 β1 β2 γ ND

τ = 0.1

100 Z 2.61(95.8) 3.29(94.9) 2.45(94.3) 3.03 2.6

T 3.33(96.7) 3.37(96.0) 2.40(94.2) 4.29

500 Z 1.14(94.3) 1.40(94.5) 1.08(94.9) 1.32 0.5

T 1.57(94.0) 1.50(95.1) 1.04(95.6) 1.82

1000 Z 0.79(94.6) 0.89(95.0) 0.74(95.9) 0.94 0.2

T 1.09(95.4) 0.95(94.9) 0.78(94.5) 1.28

τ = 0.5

100 Z 1.88(94.5) 2.15(94.2) 1.74(95.2) 2.07 2.6

T 2.03(94.0) 1.76(95.1) 1.28(93.4) 2.17

500 Z 0.84(94.5) 0.92(94.5) 0.77(94.9) 0.90 0.5

T 0.86(94.7) 0.75(94.5) 0.52(93.2) 0.90

1000 Z 0.59(94.4) 0.59(95.9) 0.53(95.6) 0.63 0.2

T 0.61(95.4) 0.47(95.6) 0.38(93.0) 0.64

τ = 0.9

100 Z 2.56(95.0) 2.91(96.0) 2.46(94.5) 2.94 2.6

T 3.44(95.8) 3.28(94.3) 2.39(94.3) 4.07

500 Z 1.08(95.4) 1.33(94.6) 1.07(95.3) 1.29 0.5

T 1.52(95.9) 1.45(95.8) 1.12(94.0) 1.78

1000 Z 0.80(95.2) 0.89(94.4) 0.75(96.0) 0.91 0.2

T 1.03(96.4) 0.90(95.3) 0.82(93.4) 1.23
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Table 3: Simulation Results for power-law distribution network with 1000 Replications.
The RMSE (×10−2) and the Coverage Probability (%) are reported for β0 to β1. The
RMSE is also reported for γ. Lastly, the network density is computed and given.

N Dist. β0 β1 β2 γ ND

τ = 0.1

100 Z 2.44(95.9) 2.95(95.4) 2.32(96.2) 3.08 2.4

T 3.45(96.3) 3.28(93.9) 2.36(95.1) 4.19

500 Z 1.09(95.5) 1.24(96.3) 1.07(95.4) 1.35 0.5

T 1.53(94.7) 1.42(94.8) 1.04(96.2) 1.79

1000 Z 0.76(95.8) 0.91(95.6) 0.77(94.7) 0.94 0.2

T 1.06(95.0) 0.99(95.5) 0.75(95.3) 1.28

τ = 0.5

100 Z 1.87(95.3) 1.96(95.7) 1.79(94.4) 2.07 2.4

T 1.94(96.4) 1.55(96.2) 1.29(93.1) 2.15

500 Z 0.82(95.7) 0.85(94.6) 0.77(95.8) 0.89 0.5

T 0.90(95.5) 0.71(94.0) 0.54(93.3) 0.92

1000 Z 0.58(95.1) 0.62(94.2) 0.54(96.0) 0.62 0.2

T 0.63(94.4) 0.51(92.2) 0.37(94.6) 0.64

τ = 0.9

100 Z 2.55(95.8) 2.94(93.5) 2.43(94.3) 2.91 2.4

T 3.53(95.3) 3.01(94.7) 2.43(94.1) 4.11

500 Z 1.12(95.1) 1.20(96.3) 1.09(95.1) 1.29 0.5

T 1.51(95.5) 1.33(95.1) 1.10(94.3) 1.80

1000 Z 0.79(95.2) 0.87(95.7) 0.76(95.1) 0.90 0.2

T 1.09(94.7) 0.98(95.3) 0.83(92.1) 1.26
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Table 4: The detailed NQAR analysis results for the Stock dataset (τ =0.05, 0.5, 0.95).
The yearly estimates (×10−2) are reported with the standard error (×10−2) given in
parentheses. The p-values are also reported.

τ = 0.05 τ = 0.5 τ = 0.95

Est. p-value Est. p-value Est. p-value

β̂0 0.05 (0.00) < 0.01 1.00 (0.04) < 0.01 2.96 (0.13) < 0.01

β̂1 0.00 (0.02) 0.99 -0.04 (0.77) 0.95 6.09 (2.16) < 0.01

β̂2 4.16 (0.14) < 0.01 35.70 (0.47) < 0.01 67.84 (1.13) < 0.01

SIZE 0.00 (0.01) 0.98 -1.00 (0.09) < 0.01 -4.10 (0.28) < 0.01

BM 0.00 (0.01) 0.99 -0.29 (0.04) < 0.01 -0.71 (0.25) < 0.01

PR 0.00 (0.00) 1.00 -0.30 (0.12) 0.01 0.39 (0.38) 0.31

AR -0.02 (0.03) 0.53 -0.66 (0.11) < 0.01 -0.47 (0.36) 0.20

CASH -0.01 (0.01) 0.03 -0.14 (0.06) 0.01 -0.05 (0.27) 0.86

LEV 0.00 (0.01) 0.97 -0.79 (0.05) < 0.01 -2.42 (0.44) < 0.01

Figure 3: The left panel: the average stock volatility of Chinese A stock market in 2013; the
right panel: the common shareholder network of top 100 market value stocks in 2013.
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Figure 4: The left panel: the histogram of the weighted degrees; the right panel: the
influential power against weighted degrees.
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Figure 5: Impulse analysis for τ = 0.05, 0.5, 0.95 . The cross-sectional impulse effect intensity
between BOC, CMB, ICBC, PAB, and SPDB are given. The impulse direction is from column
to row.
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