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Dynamic credit default swaps curves in a network

topology ∗

Xiu Xu† Cathy Yi-Hsuan Chen‡Wolfgang Karl Härdle§

Abstract

Systemically important banks are connected and have dynamic dependencies of their

default probabilities. An extraction of default factors from cross-sectional credit default

swaps (CDS) curves allows to analyze the shape and the dynamics of the default probabili-

ties. Extending the Dynamic Nelson Siegel (DNS) model, we propose a network DNS model

to analyze the interconnectedness of default factors in a dynamic fashion, and forecast the

CDS curves. The extracted level factors representing long-term default risk demonstrate

85.5% total connectedness, while the slope and the curvature factors document 79.72% and

62.94% total connectedness for the short-term and middle-term default risk, respectively.

The issues of default spillover and systemic risk should be weighted for the market partic-

ipants with longer credit exposures, and for regulators with a mission to stabilize financial

markets. The US banks contribute more to the long-run default spillover before 2012,

whereas the European banks are major default transmitters during and after the European

debt crisis either in the long-run or short-run. The outperformance of the network DNS

model indicates that the prediction on CDS curve requires network information.
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1 Introduction

Probability of default (PD) is the likelihood of a default with respect to obligations over a

particular time horizon. A PD ’curve’ used to map PDs with horizons typically shows an

upward slope, although occasionally it may display a downward slope to signal a severe

credit deterioration in the short-run relative to long-run. The PD curve varies in time and

as in the analysis of term structure for CDS spreads, carries information on comovements

and common factors. An extraction of common factors from cross-sectional credit default

swaps (CDS) spreads allows to analyze the shape and the dynamics of the PD. To be

more specific, the shape of PD curve can be parsimoniously inferred by projecting the

cross-sectional CDS spreads with different maturities to a few numbers of factors. The

dynamics of curves and their interplay which is casted into network topology reflecting

the interdependency in a controllable dimensionality.

This study strives to analyze the term structure of CDS spreads (or CDS curves) in

several aspects (1) extract the short-Term(ST), middle-Term(MT) and long-Term(LT)

default factor from CDS curves; (2) quantify their comovements and identify the firms

being downgraded simultaneously; (3) model the default spillover in the ST, MT and LT

perspective, respectively; (4) predict the CDS curves based on the calibrated dynamics.

The initial question tagging on the above attempts is why one needs to look at the

CDS spreads and its information content. Han and Zhou (2015) pointed out the various

advantages of CDS over bond spreads: CDS spreads are not subject to the specification

of benchmark risk-free yield curve (Longstaff et al., 2005), less contaminated by non-

default risk components (Ericsson et al., 2009) and have better price discovery in credit

condition (Blanco et al., 2005). Most notably, the default intensity and recovery rate

of a bond can be derived, based on a number of CDS spreads pricing models, from the

market prices of CDS spreads. The CDS curve yields information on the risk-neutral

default probability over different time horizons. Market participants rely on this curve to

interpret the market ’expectation’ of default risk in different time frames (ST, MT, LT),

to manage credit risk and to design credit derivative contracts. Moreover, analogous

with interest rate expectations hypothesis, the difference between current LT and ST

CDS spreads can be used to predict future changes in ST CDS spreads.
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The proposal made here is to employ a factor model with shapes as in the Dynamic

Nelson-Siegel (DNS). The derived latent factors are time series with the dynamics por-

trayed, and can be estimated by a two-stages least square procedure or by a state space

approach. The economic underpinning of the DNS model is that the three latent factors

distilled from cross-sectional CDS spreads over maturities ideally represent the ST, the

MT and the LT factor in terms of default. Having these extracted common factors, one

can dive directly into the credit horizons of interest.

Nowadays the fear of default risk is transferring from an individual case into a systemic

impact which is more likely to break down the architecture of financial interdependence.

For example, a default event of a bank can be regarded as systemic if its failure or extreme

turbulence results in a directly widespread distress or indirectly triggers a contagion. This

issue is of importance for financial industry due to their correlated exposure holdings or

direct interbank obligations, this is the very reason in this research we focus our sample

on the global systemically important banks (G-SIBs). To stabilize financial markets,

Financial Stability Board (FSB) strives to identify the systemic important ones and rank

the financial institutions in terms of their systemic relevance. To address this issue,

we develop and apply a unified framework, namely "the network topology of variance

decompositions", for quantifying default spillover, contagion or interconnectedness. Given

the ST, MT and LT credit factor extracted from the DNS model, it is of interest to

what extent the credit condition of bank i is subject to its past credit but also the credit

conditions of other banks due to interbank relationship. Will credit spillover or contagion

evenly be observed in the ST or LT credit horizon or both? Can we use this information

to foresee crisis and evaluate the tension embedded in the credit assets with different

maturities?

It’s worthwhile to relate the aforementioned issues to CDS pricing and forecast. Pricing

CDS contracts is suggested to take credit spillover into account, especially for the reference

entities whose default intensity is vulnerable to others. Likewise, one may produce better

out-of-sample forecast performance in CDS curve with this consideration. Note that the

forecast here is for an entire curve instead of a point prediction. The forecast is valuable

for the counterparties in the both sides of CDS contract. For buyers, the forecast is very

decisive for the timing of gauging a CDS contract to hedge credit risk at the earlier stage

3



of default likelihood. They can benefit through a relatively lower insurance payment.

For sellers, with default network information, they avoid underestimating CDS spreads.

We will demonstrate the forecast implementation in the later section. This study also

contributes to the bondholders with different time horizons of credit exposures; to policy

makers with policy goals setting for the ST and the LT perspective; to the portfolio

managers for diversifying their bond portfolios; and to credit agencies for rating firms’

credits in different time frames.

Our primary findings are:(1) G-SIBs banks have comoving credit curves with high con-

nectedness, especially in the long-term. The US banks contribute more to the long-term

default spillover before 2012, whereas the European banks are major default transmitters

during and after the European debt crisis either in the long-term or short-term. (2) the

time-varying total default connectedness serves as an indicator for systemic risk, espe-

cially for identifying a clustering default subsystem. The TED spread, credit spread and

VIX are main determinants of default connectedness. (3) The network-based DNS model,

relative to the DNS model, yields better out-of-sample prediction for CDS curves.

The remainder of the paper is organized as follows: the network-based DNS model is

introduced in Section 2, model estimation is detailed in Section 3. Section 4 describes

the data and offers preliminary analysis. We summarize the empirical results and detail

the analysis of static and dynamic connectedness measures in Section 5. Finally, Section

6 concludes.

2 Modeling framework

The beginning of this section details the procedures of modeling the CDS curves with

Dynamic Nelson Siegel (DNS) framework, in which the three Nelson Siegel parameters,

i.e., level, slope and curvature, can be viewed as the long, medium and short term factor

of the CDS curves. Further, to tackle systemic default, credit contagion or spillover, and

network connectedness of default, we utilize the Diebold-Yilmaz connectedness measures,

which rely on the variance decompositions in a vector autoregressive (VAR) model. In ad-

dition, the out-of-sample forecasting framework with or without other bank’s information
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are also introduced.

2.1 Fitting the CDS curve via the Dynamic Nelson Siegel model

2.1.1 A factor model representation

Nelson and Siegel (1987) propose a PCA based parsimonious three factor model for

modelling the cross-sectional yields at any point. Diebold and Li (2006) extend this into

the DNS framework and find excellent forecasting properties for interest rates. Diebold

et al. (2006) model the yield curve via a state space factorization and find strong influences

from macro variables.

Likewise, the CDS curves have a similar term structure framework so that a natural

progression is an application of the CDS curves (Shaw et al., 2014; Krishnan et al., 2010).

Define yit(τ) as the nominal CDS spreads of financial institution i on a vector comprised of

τ− period maturities. τ = (τ1, τ2, · · · , τk) = (6M, 1Y, 2Y, 3Y, 4Y, 5Y, 7Y, 10Y, 20Y, 30Y ),

k = 10. The DNS factorization for a single financial institute i at time point t is,

yit(τ) = lit + sit

{
1− exp(−δi τ)

δi τ

}
+ cit

{
1− exp(−δi τ)

δi τ
− exp(−δi τ)

}
+ υit(τ) (1)

lit

sit

cit

 =


αli 0 0

0 αsi 0

0 0 αci




li,t−1

si,t−1

ci,t−1

+


εlit

εsit

εcit

 (2)

 υit

εit

 ∼ i.i.d.N


 0

0

 ,
 Qi 0

0 Σi




where the disturbance vector υit = [υit(τ1), υit(τ2), · · · , υit(τk)]> and εit = (εlit, εsit, εci,t)>.

The parameter matrix αi is diagonal in transition equation. δ the constant decay factor

(here δ = 0.0609). We varied the decay factors and estimated it for each bank, however

it changes little on the results, therefore, for simplicity it is set to be a constant. yit(τ) is

the so-called term structure of CDS spreads or CDS curve of institution i at time t.

The three DNS parameters lit, sit, and cit can be interpreted as LT, ST, and MT latent

factors. Since the factor loading on lit is 1, which is a constant and the same for all
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maturities, lit can be viewed as the long-term or level factor. Any increase in lit will cause

the entire curve to shift upwards, representing the ’level’ and ’long-run’ components of

credit curve. The factor loading of sit is 1−exp(−δi τ)
δi τ

, starting from 1 and exponentially

deceasing to 0, can be viewed as the ST factor. The ’slope’ of credit curve is changing

accordingly. The loading of cit is 1−exp(−δi τ)
δi τ

− exp(−δi τ), a function which starts from

0 then increases and decays to 0, hence it is the MT factor. In sum, the shape of the

credit curve is captured by these three factors. A time-varying shape is reflected by the

changing loads on the three factors.

For the purpose of depicting the interplay of projected factors among banks, one has

the challenge to calibrate the dynamics of lit, sit, and cit as e.g. a VAR(1) process. This

motivates us to study dynamically evolving lit, sit, and cit. Ideally, the DNS model for each

bank immediately forms a state-space system as expressed in (2). Motivated by PCA, we

assume the level factor, the slope, and the curvature factor are orthogonal. The parameter

matrix αi is diagonal in transition equation. For this state space system, we will resort to

the Kalman filter estimation method. We, therefore, assume the disturbance vector υit
and εit to be independent and both follow a normal distribution with covariance matrix

Qi and Σi respectively. By doing so, one can distill the entire CDS curves, period by

period, into three dynamically evolving dimensional parameters and model their interplay

characterized by a VAR(1) process.

2.2 Network topology of DNS factors

Joint default may become systemic in the moment as banks call for bailout together or

even go bankrupt sequentially. The fact of correlated default and default spillover draws

more attention (see Duffie et al. (2009); Duan and Miao (2015)). Due to interbank loans

and shared credit exposures, a default risk of one bank can easily spread to others. The

speed and scope of spread is subject to bank’s systemic importance. We introduce a

network topology of variance decomposition to measure the ’credit connectedness’ which

quantifies the scope of ’default risk transmission’. The embedded dynamics mechanism

allows us to evaluate the speed of default risk transmission.
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2.2.1 Approximating model - VAR

We endow the level, the slope, and the curvature factors with a VAR(p) dynamics:

xt =
p∑

k=1
Akxt−k + ut, ut ∼ i.i.d.N(0,Σ) (3)

xt =(x1t, x2t, · · · , xNt)> (4)

where xt represents lt = (l1t, l2t, · · · , lNt)>, st = (s1t, s2t, · · · , sNt)>, ct = (c1t, c2t, · · · , cNt)>.

N is the number of banks, in our case, N = 10. The autoregression matrix Ak is N ×N

dimensional, p denotes the lag order of VAR. If the lag order is identically equal to 1 for

lit, sit, and cit, then equation (3) represents,

lt =



l1t

l2t
...

lNt


=



αl11 αl12 · · · αl1N

αl21 αl22 · · · αl2N
... ... · · · ...

αlN1 αlN2 · · · αlNN





l1,t−1

l2,t−1
...

lN,t−1


+



ul1t

ul2t
...

ulNt


(5)

st =



s1t

s2t
...

sNt


=



αs11 αs12 · · · αs1N

αs21 αs22 · · · αs2N
... ... · · · ...

αsN1 αsN2 · · · αsNN





s1,t−1

s2,t−1
...

sN,t−1


+



us1t

us2t
...

usNt


(6)

ct =



c1t

c2t
...

cNt


=



αc11 αc12 · · · αc1N

αc21 αc22 · · · αc2N
... ... · · · ...

αcN1 αcN2 · · · αcNN





c1,t−1

c2,t−1
...

cN,t−1


+



uc1t

uc2t
...

ucNt


(7)

It is well known that the VAR model (3) (if stationary) can be written as xt = Θ(L)ut,

Θ(L) = Θ0 + Θ1L + ...ΘhL
h + ..., Θi = A1Θi−1 + A2Θi−2 + · · · + ApΘi−p, where Θ0 and

A0 are N ×N identity matrix, Ai = 0 for i < 0. This representation allows us to extract

connectedness information. Following Diebold and Yılmaz (2014), we resort to apply this

variance decomposition to establish a network structure.
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2.2.2 Pairwise directional default connectedness

Default connectedness measures the shares of forecast error variation due to shocks arising

from others. This is captured by the variance decomposition, in which the forecast error

variance of variable i is decomposed into parts attributed to the remaining variables in

the system. The generalized variance decomposition (GVD) (Koop et al., 1996) yields

d̃ij(H) as the ij−th H−step component, which represents the fraction of bank i’s H−step

forecast error variance due to credit shocks in bank j,

d̃ij(H) =
σ−1
jj

∑H−1
h=0 (e>j ΘhΣej)2∑H−1

h=0 (e>i ΘhΣΘ>h ei)
(8)

where σjj is the jth diagonal element in the covariance matrix Σ of the error vector ut,

that is, the standard deviation of the error term of jth equation, and ej = (0, 0, ..., 1, ..., 0),

a zero vector except jth element unity. H denotes the forecast horizon.

Since the sum of d̃ij(H) in each equation does not necessarily equal to unit, that is,∑N
j=1 d̃ij(H) 6= 1, we normalize as follows:

dij(H) = d̃ij(H)∑N
j=1 d̃ij(H)

(9)

Define the pairwise directional credit connectedness from bank j to bank i as Ci←j =

dij(H), and note that in general Ci←j 6= Cj←i. This leads finally to the connectedness in

Table 1,

Table 1: Connectedness table

x1 x2 · · · xN From others
x1 d11 d12 · · · d1N

∑N
j=1 d1j, j 6= 1

x2 d21 d22 · · · d2N
∑N
j=1 d2j, j 6= 2

... ... ... . . . ... ...
xN dN1 dN2 · · · dNN

∑N
j=1 dNj, j 6= N

To others ∑N
i=1 di1

∑N
i=1 di2 · · · ∑N

i=1 diN
1
N

∑N
i,j=1 dij

i 6= 1 i 6= 2 i 6= N i 6= j

Note that a higher H horizon in a higher prediction error variance, a higher value of

Ci←j. When H is very small, it limits Ci←j to short periods. On the other hand, as H
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increases the corresponding Ci←j increases slightly due to the incrementally less valuable

conditioning information. For the case H → ∞, one obtains an unconditional variance

decomposition. To strike a balance between these effects, we select H = 12. It is close

to the time period (10 days) of value at risk (VaR) required under the Basel accord, and

also in the practical rebalancing interval of portfolio management. In the empirical part,

we also calculate the results for a range of horizons, it turns out that when H is larger

than a certain value, around 10, Ci←j increases trivially. We can provide a robustness

check for other H if required.

2.2.3 Interpreting the connectedness

Consider as an example of the first row of Table 1, the sum of the off-diagonal dij, j 6= i

of bank 1 accounts for shocks attributed to other banks, while as for the first column, the

sum of di1, j 6= 1 indicates the risk contribution of bank 1. Total directional connectedness

from others to i is

Ci←• =
N∑

j=1,j 6=i
dij(H) (10)

Likewise, the total directional connectedness to others from j is

C•←j =
N∑

i=1,i 6=j
dij(H) (11)

The net default connectedness i is the difference ’To’ and ’From’:

Ci = C•←i − Ci←• (12)

The total default connectedness is:

C = 1
N

N∑
i,j=1,j 6=i

dij(H) (13)

Note that there are N ’To’ and ’From’ net connectedness adding up to total connected-

ness. Economically speaking, as C increases, banks spread default risk mutually. Hence,

C in (13) is a quantitative measure of default spillover or contagion in a system.
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2.3 Out-of-sample forecasts

To evaluate the informativeness of the predefined network connectedness, it is of interest

to compare the forecasting performance between the network-based DNS model and the

conventional DNS model. Using (3) one predicts:

ŷi,t+h|t(τ) = β̂i1,t+h|t + β̂i2,t+h|t

{
1− exp(−δ τ)

δ τ

}
+ β̂i3,t+h|t

{
1− exp(−δ τ)

δ τ
− exp(−δ τ)

}
(14)

where β̂is,t, s = 1, 2, 3 denotes l̂it, ŝit, ĉit respectively, and can be estimated through (1)

and (2).

The autoregressive process of transition equation without the influence from the latent

factors of other banks, named as DNS-AR(1),

β̂is,t+h|t = γ̂0
is + γ̂is β̂is,t (15)

As the forecast model comparison, the transition equation in a multivariate factor frame-

work to undertake their interaction, named as DNS-VAR(1),

β̂is,t+h|t = γ̂0
is + γ̂is β̂is,t + φ̂js β̂js,t, j 6= i (16)

where β̂js,t is the latent factors from other banks j, which are estimated in the initial

step, such as using (1) and (2). The parameter γ̂0
is, γ̂is and φ̂js are estimated by Kalman

filter method. Technical details are specified in appendix.

3 Model Estimation

The VAR approximating model of default intensity factor connectedness has a natural

state-space model representation. If we pool all the banks together, the measurement
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and transition equations are

Yt = HXt + υt (17)

Xt = FXt−1 + εt (18)

where

Yt =



y1t(τ1)

y1t(τ2)
...

yNt(τk)


(Nk×1)

, Xt =



l1t

s1t
...

cNt


(3N×1)

, υt =



υ1t(τ1)

υ1t(τ2)
...

υNt(τk)


(Nk×1)

, εt =



εl1t

εs1t
...

εcNt


(3N×1)

,

and

H =


1 1−exp(−δ1τ1)

δ1τ1
1−exp(−δ1τ1)

δ1τ1
− exp(−δ1τ1) · · · 0 0 0

1 1−exp(−δ1τ2)
δ1τ2

1−exp(−δ1τ2)
δ1τ2

− exp(−δ1τ2) · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 1 1−exp(−δNτk)
δNτk

1−exp(−δNτk)
δNτk

− exp(−δN τk)


(Nk×3N)

(19)

Meanwhile, when level, slope and curvature factors are orthogonal with autoregressive

process of order one, the parameter matrix F is,

F =



αl11 0 0 αl12 0 0 · · · αl1N 0 0

0 αs11 0 0 αs12 0 · · · 0 αs1N 0
... ... ... ... ... ... · · · ... ... ...

0 0 αcN1 0 0 αcN2 · · · 0 0 αcNN


(3N×3N)

(20)

which accommodates (2), (5), (6), and (7).

We introduce a two-step estimation method that couples the DNS model with the variance

decomposition technique: In the first step, we estimate the dynamic level factor lit, the

slope factor sit, and the curvature factor cit for each bank i through the Kalman filter

estimation of the state space model, based on equation (1) and (2); In the second step, by

utilizing the network framework based on variance decomposition in Diebold and Yılmaz

(2014), we investigate the dynamics of LT, ST and MT default factors in a network

perspective, based on equation (3). In order to uncover the dynamics of the network

connectedness, we use a rolling window estimation for the each factors.
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4 Data

We firstly discuss the information content of CDS spreads that provides the theoreti-

cal foundations for using CDS, and then perform preliminary analysis to support the

motivations in the subsequent study.

4.1 Implied default intensity in CDS spreads

The basic pricing formula for CDS contracts is to achieve the payoff balance between

CDS buyers and CDS sellers. Consider a CDS contract with the maturity of M years

and quarterly premium payments. CDSt(M) denotes the annualized spread at issue. L is

the risk-neutral expected loss of the notional value in the event of default. We normalize

the notional face value of the contract as 1. λt denotes the risk-neutral arrival rate of

a credit event, i.e., default intensity. Then, at issue, the present value of CDS-provider

side and that of CDS-buyer side should be equal,

1
4CDSt(M)

4M∑
j=1

Et
[
exp

{
−
∫ t+j/4

t
(rs + λs)ds

}]
= L

∫ t+M

t
Et
[
λu exp

{
−
∫ u

t
(rs + λs)ds

}]
du

(21)

where rt is the risk free rate. Pan and Singleton (2008) assumed the s years time discount

factor as δ(s) = exp
(
−
∫ t+s
t rudu

)
, and presumed the conditional survival probability q(s)

follows

q(s) = exp (−λts) (22)

Then (21) is transformed to

1
4CDSt(M)

4M∑
j=1

Et
{
δ(j4)q(j4)

}
= L

4M∑
j=1

Et
[
δ(j4)

{
q(j − 1

4 )− q(j4)
}]

(23)

Combing (23) and (22), we can directly imply the default intensity from CDS spreads,

λt = 4 log
{

1 + CDSt(M)
4L

}
(24)
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It is noteworthy that the explicit relationship between default intensity and CDS spreads,

such as in (24), is only satisfied under certain assumptions, such as constant loss given

default L, and survival probability q(s) in (22). Since implied default intensity is naturally

dependent on predetermined model set-up, we thoroughly focus on CDS spreads as a

direct indicator of default intensity (see Equation (24)), to get rid of the potential model

misspecification risk. Besides, through CDS spreads investigation, it also permits us to

perform an out-of-sample forecast and practice a convenient comparison.

4.2 CDS spreads data

We draw our attention to the CDS spreads belonging to the Top 10 of the global sys-

temically important banks (G-SIBs), i.e., N = 10, for their plenty maturities in CDS

contracts. In Table 2, the CDS spreads with maturities ranging from 6 months, 1, 2,

3, 4, 5, 7, 10, 20, 30 years are available via DataStream. These 10 banks are selected

out of the thirty-four G-SIBs based on the availability of sufficient maturities of CDS.

Banks with less than the 10 maturities of CDS are excluded from the study to ensure the

representative ability of latent factors. The sample period is selected from January 1st,

2008 to December 31th, 2015, at daily frequency.

Table 2: Banks

Institution Ticker Country
1 Bank of America BAC United States
2 Citygroup C United States
3 Goldman Sachs GS United States
4 J.P.Morgan JPM United States
5 Wells Fargo WFC United States
6 Deutsche Bank DB Germany
7 Commerzbank CBG Germany
8 Barclays Bank BCS United Kingdom
9 HSBC Bank HBC United Kingdom
10 UBS UBS Switzerland

Note: List of banks under study.

Figure 1 depicts a 3D plot of the time-varying CDS spread curves of Goldman Sachs and

HSBC Bank. The display of the CDS curves for the banks is depicted in Figure 10 in

Appendix. The CDS curves display apparently substantial level movements across time,
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and they also exhibit a clear commonality to support the notion of credit comovement.

One can observe a simultaneous increase of credit curve into banks during the Eurozone

debt crisis periods, which motivates us to analyse the connectedness across banks.

Figure 1: CDS spreads data

Note: (log) Credit default swap spreads 2008.01.01 - 2015.12.31 with daily data for Goldman Sachs and
HSBC Bank across 10 maturities. The data in our study is after logarithm transformation.

DDINetwork_CDS

4.3 Preliminary analysis of CDS spreads

In summary, there are 26 free parameters to be estimated: the 3× 3 transition matrix of

the three state variables containing 9 free parameters, the mean state variables contain-

ing 3 free parameters, the 1 decay parameter in measurement equation, the diagonal of

disturbance covariance matrix of transition equation containing 10 free parameters with

each covariance for the counterpart of 10 maturities of CDS spreads, and the 3 free pa-

rameters constituting from the diagonal of measurement disturbance covariance matrix

with each for one of the 3 latent variables.

We use the Kalman filter to derive the state variables and CDS spreads of next stage, after

which we proceed to evaluate the unknown parameters with the maximum likelihood esti-

mation under Gaussian distribution assumptions for the disturbance of measurement and

transition equations. The initial parameter values are obtained by using the Diebold-Li

two-step ordinary least squares regression and the startup value for the decay parameter

is 0.0609. The estimated decay parameters are varying across banks.

Table 3 reports summary statistics for the estimated DNS factors, which will be used
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Figure 2: DNS factors

Note: Data period: 2008.01.01 - 2015.12.31 with daily data. The upper panel collects the level factors,
middle panel for the slope factors, and the bottom panel for the curvature factors.

DDINetwork_network_static
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Table 3: Descriptive statistics for the estimated DNS factor.

Factor Mean Std.dev. Min Max ρ(5) ρ(10)
Bank of America
lt 5.156 0.327 3.962 6.039 0.920 0.867
st -1.475 1.160 -3.613 1.181 0.989 0.976
ct 0.894 0.921 -1.150 3.414 0.976 0.946
Citygroup
lt 5.242 0.270 4.273 6.379 0.891 0.827
st -1.486 1.146 -3.731 0.944 0.989 0.978
ct 1.040 0.799 -0.823 3.276 0.972 0.944
Goldman Sachs
lt 5.175 0.323 3.867 6.498 0.914 0.854
st -1.207 1.123 -3.273 0.914 0.989 0.977
ct 0.751 0.822 -0.497 3.817 0.976 0.949
J.P.Morgan
lt 4.841 0.329 3.651 5.631 0.951 0.916
st -1.717 1.029 -3.736 0.738 0.985 0.971
ct 1.198 0.817 -0.083 4.275 0.966 0.932
Wells Fargo
lt 4.841 0.197 4.067 5.621 0.868 0.777
st -1.868 1.232 -5.051 0.718 0.977 0.959
ct -0.932 1.228 -3.984 1.453 0.985 0.969
Deutsche Bank
lt 4.864 0.267 4.151 5.754 0.930 0.880
st -1.558 0.974 -4.344 0.420 0.975 0.953
ct 1.405 1.054 -0.589 5.226 0.954 0.916
Commerzbank
lt 5.027 0.439 3.927 5.898 0.966 0.945
st -1.436 0.997 -3.893 0.307 0.984 0.969
ct 0.996 0.885 -0.361 4.757 0.965 0.932
Barclays Bank
lt 4.933 0.353 4.048 5.764 0.938 0.902
st -1.394 0.908 -3.464 0.385 0.979 0.959
ct 1.345 0.934 -0.480 4.166 0.955 0.912
HSBC Bank
lt 4.778 0.321 3.948 5.329 0.972 0.945
st -1.381 1.014 -6.551 0.180 0.931 0.887
ct -2.058 1.194 -6.017 0.472 0.959 0.927
UBS
lt 4.819 0.325 4.023 5.819 0.946 0.891
st -1.540 1.101 -4.462 0.305 0.983 0.965
ct 1.585 1.295 -0.277 6.928 0.964 0.927

Note: ρ(5) and ρ(10) denote the autocorrelation coefficients with the lag of 5 or 10 periods.
DDINetwork_network_static
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in the subsequent network analysis. The level factors present least variance compared

with the slope and curvature factors. The factor autocorrelations reveal that all factors

display persistent dynamics, with the level more persistent than the slope. Although the

level, the slope and the curvature factors behave distinctly, they clearly display a certain

degrees of similarity across banks, as shown in Figure 2.

The basis for the network analysis is the possible existence of co-movements in the factor

dynamics across banks, implying the exist of potential spillover effects or underlying

transmission mechanism. To investigate this, we plot the estimated factors for all banks

in Figure 2. The upper, middle and bottom panel present the level, the slope and the

curvature factor, respectively. To visualize the difference across the banks in the US and

Europe, we feature the factors of 5 US banks with solid line, while the counterparts of

European banks in dashed line. Figure 2 reveals clear evidence of co-movements in factors

dynamics, especially for the level and slope factor. One can observe that the slope/ST

factors across 10 G-SIBs have climbed since the outbreak of the European debt crisis,

indicating possible inverted credit curves (downward slope curves).

5 Empirical results

To characterize the evolution of the default risk connectedness among the US and Euro-

pean banks, we proceed to a four steps analysis: we firstly perform a full-sample analysis

separately for level, slope, and curvature factor, to assess the unconditional or average

connectedness. After this static connectedness analysis, a rolling-window sample analysis

is conducted for the three factors respectively, to portray the dynamics of conditional

connectedness. By doing so, one can monitor the dynamics of spillover effect between the

US and European banks over time. Using the total connectedness in the rolling-sample

framework as an indicator of systematic default risk, we analyse the sources of the sys-

tematic risk. Finally, having the predefined connectedness among bank default risk, we

report the forecasting performance when incorporating the factors from other banks.
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5.1 Network: static

Systemic risk is not easy to define, but the universally accepted characteristics are that

it has large impact; is widespread, and has a ripple effect that endangers the financial

system. Network analysis enables us to cover three major concepts of systemic risk by

portraying the interplay among financial institutions, measuring their interconnectedness

and quantifying the spillover effect.

Interconnectedness of financial institutions on the interbank market is an absolute key to

understanding systemic risk. Interconnectedness captures the situations when financial

distress in one institution subsequently raises the likelihood of financial distress in other

institutions because of their network of contractual relations and interbank lending among

them, leading to a ’too-interconnected-to-fail’ situation. The resulting connectedness

parameters like C from (13), therefore, can be used to monitor systemic vulnerability.

In the following analysis, we examine the interconnectedness and spillover with respect

to the default factors in the ST, MT and LT perspective. This effort can help to answer

the questions e.g. Will credit spillover or contagion evenly be observed in the short-term

and long-term credit horizon? Can we use this information to foresee crisis and evaluate

the tension embedded in the credit assets with different maturities?

5.1.1 Level factor

Table 4 reports the full-sample connectedness of level factors. As the level factors capture

the long-term component of CDS spreads, the entries in Table 4 turn to be the long-term

directional connectedness measures. Many features are revealed. Blocks of high pairwise

directional connectedness are notable, especially for the US banks. The values in the

first five columns, which captures the spillover effect contributed to the US banks, are

apparently higher than that of European banks. The total connectedness for level factor

is on average 85.50%. In addition, the ’From’ degree distribution is noticeably less volatile

than the ’To’ degree distribution in the case of the US group, but it is not a case for the

EU group. Through this table, one can find the US banks are exporting LT default risk

to the EU ones.
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Table 4: Static Connectedness: Level factor

BAC C GS JPM WFC DB CBG BCS HBC UBS FROM
BAC 19.95 14.00 13.27 12.39 12.84 6.79 5.01 5.27 5.06 5.43 80.05
C 16.85 17.91 14.13 13.05 13.47 5.98 4.14 4.76 4.65 5.05 82.09
GS 16.46 18.54 20.03 14.03 14.95 3.58 2.39 2.74 3.48 3.81 79.97
JPM 17.42 17.73 16.22 15.67 15.17 4.12 2.96 3.11 3.76 3.83 84.33
WFC 16.16 16.35 15.05 14.57 15.88 5.27 3.81 3.96 4.38 4.56 84.12
DB 11.82 13.05 12.26 11.61 11.06 12.28 6.50 7.02 6.96 7.45 87.72
CBG 10.29 10.84 10.84 9.81 9.47 12.29 12.49 8.26 7.58 8.13 87.51
BCS 8.84 10.46 10.22 9.57 8.99 12.97 8.40 12.71 8.55 9.29 87.29
HBC 11.37 12.94 12.45 11.48 11.10 10.05 7.05 8.12 7.88 7.56 92.12
UBS 11.27 12.57 11.74 10.89 10.40 10.45 6.03 8.98 7.44 10.23 89.77
TO 120.47 126.48 116.17 107.40 107.44 71.49 46.30 52.23 51.87 55.11 85.50
NET 40.42 44.39 36.20 23.07 23.33 -16.23 -41.22 -35.07 -40.25 -34.65 -

Note: Data period: 2008.01.01 - 2015.12.31 with daily data.
DDINetwork_network_static

Let us discuss some of the features of the long-term connectedness table in more detail.

The highest observed pairwise connectedness is from C to GS (CGS←C = 18.54%), while

in return, the pairwise connectedness from GS to C (CC←GS) is slightly small 14.13%.

The next highest pairwise connectedness is from C to JPM (CJPM←C = 17.73%), which

is slightly higher than the pairwise connectedness from BAC to JPM (BACJPM←C =

17.42%). The bank C has the largest market capitalization before the 2008 financial

crisis periods, it is reasonable that the total connectedness to others are largest. The

bank with bigger market capitalization is more capable of offering interbank loans to

other banks, it is so-called ’too big to fail’. On the other hand, the long-term pairwise

directional connectedness among European banks is relatively smaller (less than 10%),

except a few relatively large measures from DB to BCS (CBCS←DB = 12.97%), and from

DB to CBG (CCBG←DB = 12.29%).

The ’From’ column is the row sum of the pairwise connectedness except the own-effects

(diagonal elements of the matrix). It reveals the total directional connectedness from

others to each of the ten banks. In other words, it captures the contribution of credit

shocks resulting from other banks to the total variance of the forecast error of bank i.

While the total directional connectedness is distributed tightly, the ’From’ effects of US

banks appear consistently smaller than that of the European banks, showing that the US

banks are less impacted by the EU credit shocks.
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The column sum of pairwise connectedness quantify the spillover effect of bank i to others.

By definition, each bank’s share in the forecast error variance of others is not compulsorily

to add up to 1, therefore, elements in the ’To’ row can exceed 100%. ’To’ effect varies

over banks, ranging from 126% to 46%. The largest commercial banks (as of 2008) were

the ones that have the highest values of connectedness to others. C generated the largest

default transmission, 126%, to others. This is consistent with the findings in

Diebold and Yılmaz (2014), which is based on the volatility of stock returns among US

financial institutes. Besides, the five US banks all generate significant (exceeding 100%)

long-term default risk spillover to others, compared with European banks, which evidently

imply the transmission of long-term default risk shocks from the US financial institutions

to the European counterparts.

Further, the strong spillover effects between the connectedness of US and European banks

are clearly observed in their ’Net’ row. The difference between the total directional con-

nectedness to others and the total directional from others results in the net total direc-

tional connectedness to others. C leads the highest net total directional connectedness

(44.39%), followed by BAC (40.42%), with other positive effects of US banks. By contrast,

the values of net total directional connectedness in European banks are significantly neg-

ative, indicating that the contributions of European banks shock to other banks’ forecast

error variance are generally trivial in term of the long run default risk.

5.1.2 Slope factor

The short-term connectedness is shown in Table 5. The highest observed directional

connectedness is CJPM←HBC = 33.71%, followed by CCBG←HBC = 22.48%. Being one of

the most vulnerable banks during the European debt crisis, HSBC Bank clearly spreads

its tail stress to other banks.

One observes above that Bank of America is weakly effected by the shocks from others,

with only CBAC←· = 53.35%. Although in the short run, banks in the same region still

have relatively large connectedness compared with the cross-region connectedness, little

evidence of a consistent spillover effects from US to Europe as we have found in the

long-run investigation. Different from Table 4, HBC creates the strongest risk spillover,
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Table 5: Static Connectedness: Slope factor

BAC C GS JPM WFC DB CBG BCS HBC UBS FROM
BAC 46.65 11.91 8.89 7.71 4.36 4.94 4.66 2.97 4.20 3.72 53.35
C 12.66 15.97 7.80 9.58 9.54 8.19 6.87 7.91 16.05 5.44 84.03
GS 12.20 14.42 9.73 11.00 9.83 9.74 7.55 7.87 10.72 6.93 90.27
JPM 7.00 8.76 3.72 12.13 6.42 10.56 5.48 8.52 33.71 3.70 87.87
WFC 10.08 13.86 6.86 13.84 17.56 8.27 6.26 7.12 10.68 5.48 82.44
DB 8.04 10.09 5.74 9.11 6.73 21.65 10.49 10.29 9.18 8.67 78.35
CBG 6.71 8.88 4.34 9.00 12.05 10.43 10.56 8.14 24.48 5.40 89.44
BCS 6.86 8.93 5.14 7.67 5.07 17.13 13.26 17.49 8.59 9.86 82.51
HBC 3.04 3.73 2.07 3.41 3.00 15.07 9.32 13.14 39.23 8.00 60.77
UBS 6.22 8.11 4.53 7.16 5.41 15.48 11.06 12.36 17.83 11.85 88.15
TO 72.81 88.67 49.09 78.48 62.41 99.81 74.95 78.31 135.43 57.21 79.72
NET 19.46 4.64 -41.18 -9.39 -20.02 21.45 -14.49 -4.20 74.67 -30.94 -

Note: Data period: 2008.01.01 - 2015.12.31 with daily data.
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followed by DB, both were seriously hit especially during the European debt crisis. Con-

sistently, in terms of ’Net’ connectedness measures, HBC leads the head, 74.67%, while

the next highest is from DB. Besides the positive values of BAC and C, the negative

values are generated from other banks. In the end, the total connectedness is 79.72%,

which is slightly smaller than 85.50% derived in the long-term total connectedness.

5.1.3 Curvature factor

Table 6: Static Connectedness: Curvature factor

BAC C GS JPM WFC DB CBG BCS HBC UBS FROM
BAC 22.08 10.89 6.26 6.82 1.19 16.77 9.25 10.36 0.18 16.20 77.92
C 6.40 19.77 7.55 8.62 1.73 16.19 9.16 14.00 2.64 13.94 80.23
GS 10.83 18.24 14.09 9.34 3.53 15.65 7.11 8.35 3.77 9.10 85.91
JPM 14.59 17.26 4.77 31.00 7.07 5.12 3.82 5.56 6.62 4.19 69.00
WFC 5.47 4.60 0.76 8.19 40.90 1.40 0.69 1.69 33.18 3.13 59.10
DB 1.50 5.91 3.35 4.34 0.33 52.11 10.00 11.48 2.57 8.39 47.89
CBG 0.68 2.17 1.16 1.18 0.10 17.45 40.38 10.49 5.35 21.03 59.62
BCS 1.10 5.07 2.60 3.53 0.23 27.17 13.86 29.46 0.12 16.86 70.54
HBC 0.12 2.83 2.80 1.55 0.11 1.71 0.53 2.10 84.39 3.85 15.61
UBS 0.83 5.29 3.53 3.35 0.09 20.97 12.03 17.13 0.35 36.41 63.59
TO 41.52 72.26 32.78 46.92 14.38 122.44 66.45 81.17 54.77 96.69 62.94
NET -36.40 -7.97 -53.12 -22.09 -44.72 74.55 6.84 10.64 39.17 33.10 -

Note: Data period: 2008.01.01 - 2015.12.31 with daily data.
DDINetwork_network_static

The middle term directional connectedness is summarized in Table 6. The total connect-
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edness, 62.94%, is obviously smaller than the short term and long term connectedness. In

terms of the pairwise directional connectedness, the values vary more widely, such as the

highest observed connectedness measure is from HBC to WFC (CWFC←HBC = 33.18%)

while in the return, the lowest one from WFC to HBC (CHBC←WFC = 0.09%) is nearly

zero. The spillover effect in this case is obviously ’asymmetric’. In the case of DB, one

can find its spillover power in the MT or ST, but not in LT (see Table 4). The default

tensions emphasizing on ST and MT imply that DB may hold more short-run risky loans

which endangers its short-run credit. Interestingly, the ’Net’ directional connectednesses

are uniformly positive among European banks compared with the consistent negative

ones in the US.

In a nutshell, the three DNS factors and their connectedness convey information w.r.t the

default risk at the particular credit horizons. For the bank like DB, the potential to have

credit deterioration and subsequently create spillover to others is more likely to happen

in the short term. However, in the longer term the credit condition becomes resilient and

has constrictive transmission as shown through a reverse spillover in its level factor.

5.2 Network: dynamics

The DNS model coupled with a topological network can be seen as a means of monitoring

systemic vulnerability. On the supervisory purpose, the updated assessment is even

more demanded. For this purpose, one studies the dynamics of connectedness in which

credit contagion can therefore be identified in time. Accordingly, they will be asked by

Financial Stability Board (FSB) and Basel Committee on Banking Supervision (BCBS)

for additional loss absorption capacities to ensure the sufficiency of their common equities

in case of the default.

5.2.1 Time-varying total connectedness

Figure 3 presents time-varying connectedness, Ct, estimated via C from (13) in a one-

year (260 observations) rolling window size. It reveals clear default risk cycles. In the LT

perspective, the period of 2009 to middle-2014 exhibits a long lasting cycle, coinciding
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Figure 3: Rolling total connectedness

Note: Data period: 2009.01.01 - 2015.12.31 with daily data. The DNS factors and the corresponding
dynamic of networks are computed by one-year rolling window estimation (260 observations). The
variance decomposition is performed by the forecast horizon with 12 days. The red line denotes the
smoothing line by one-week moving average.

DDINetwork_network_dynamic
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with the outbreak of European sovereign debt crisis. Despite short spells of recovery at

the end of 2014, an increasing connectedness signals a upcoming systemic risk starting

from middle-2015.

The long continuous cycle in the LT connectedness (upper panel) reveals similar patterns

compared with the short term total connectedness by the slope factor (middle panel). The

total connectedness declined from the high 90% to around 74% at the end of 2009, followed

by a raising period cycle of European debt crisis starting from end-2009 to beginning-

2011. It is a transmission cycle starting with the end of the previous disastrous 2007-08

financial crisis to signal an emerging European debt crisis. As the European debt crisis

becomes widespread with a systemic danger, the short term total connectedness measures

stick at the range of 85%-90% until the end of 2014. The banking industry suffered credit

tension again as Chinese stock market became out of control in June, 2015. A third of

the value of A-shares on the Shanghai Stock Exchange was lost within one month and

intrigued a large collapse in global financial markets, leading to a concern on global

economy stability again. The LT, ST and MT connectedness all reflect systemic fear in

2015.

5.2.2 Time-varying risk contribution

Figure 4, Figure 5, and Figure 6 present the dynamics of individual default risk con-

tribution to total directional connectedness, which are quantified by equation (12) for

level factor, slope factor and curvature factor. One can interpret that bank i has higher

marginal risk contribution in the long-run default risk if the shock of level factor of bank i

contributes more on the forecasting errors of level factors of remaining banks. The upper

panel depicts ’To’ others, the middle panel displays ’From’ others, and the bottom panel

collects the ’Net’ results. In each panel the five US banks lie in the first row while other

five European banks are in the second row.

Except Bank of America, in Figure 4, the total directional connectedness ’To’ others

from US banks appears rising from 2008 until 2010, however, they show a downward

trend after 2010. Conversely, the directional connectedness ’To’ others from the five

European banks tends to substantially rise up during the period of 2010-15. Overall,
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Figure 4: Rolling connectedness: level factors

Note: Data period: 2009.01.01 - 2015.12.31 with daily data. The DNS factors and the corresponding
dynamic of networks are computed by one-year rolling window estimation (260 observations). The
variance decomposition is performed by the forecast horizon with 12 days.

DDINetwork_network_dynamic
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the long-term default risk connectedness analysis documents a declined spillover effects

from US banks to others, in return, the default risk shocks resulting in the forecast error

variance are more and more remarkably transmitted from the European banks. This fact

may reflect the effort of the US banking authority on supervisory after the outbreak of

US subprime crisis.

Figure 5: Rolling connectedness: Slope

Note: Data period: 2009.01.01 - 2015.12.31 with daily data. The DNS factors and the corresponding
dynamic of networks are computed by one-year rolling window estimation (260 observations). The
variance decomposition is performed by the forecast horizon with 12 days.

DDINetwork_network_dynamic

Figure 5 reports a similar pattern of short term total directional connectedness dynamics.

In the short term default risk connectedness, the ’To’ effect from US banks, except Bank

of America, tend to fall roughly from 2012, after a rising trend during 2009-2012. In

reverse, the short-term ’To’ effect from European banks declined till 2012, subsequently

followed by a rising trend. In sum, the ’Net’ effect of US banks declines from 2012 after

a consistent rising while the ’Net’ effect of European banks shows a reverse patten. In
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other words, being analogous to the long term directional connectedness, in the short

term, the shocks arising from European banks tend to be dominantly transmitted to

others especially after 2012, which coincides with the burst of European sovereign debt

crisis during 2012-2013.

Figure 6: Rolling connectedness: curvature factors

Note: Data period: 2009.01.01 - 2015.12.31 with daily data. The DNS factors and the corresponding
dynamic of networks are computed by one-year rolling window estimation (260 observations). The
variance decomposition is performed by the forecast horizon with 12 days.

DDINetwork_network_dynamic

In the three figures, one can see that Bank of America during the period of 2014-15

creates a very promising the ’Net’ effect regardless of default horizons. Obviously, BAC

is a overwhelming default shock transmitter and needs to be asked for an additional

loss buffer. Due to the 2008 acquisition of Countrywide Finance, a high-flying mortgage

company that fueled many of the excesses of the housing boom, BAC took huge losses on

distressed Countrywide mortgages. In March, 2014, the bank announced unexpected $6

billion in mortgage related legal expenses. Additionally, another more than $16 billion
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in penalties to settle claims also reported, which turned out to formally announced in

August. After these blows, in April, BAC disclosed an significant accounting error of $4

billion capital loss undetected for several years. The capital error weighed heavily on the

bank shares, which felled by more than 6% on that trading day, wiping out $10 billion in

market value, far more than the actual losses. This indicated the collapse of trust from

investors, which simultaneously triggered large shocks to other financial institutions.

5.2.3 Graphical representation

The network dynamics may be displayed graphically, where the node size and node color

are designed to capture the ’To’ effect. Meanwhile, directional edge thickness indicates

the strength of pairwise directional connectedness, while edge color does not vary with

edge weight. Consider 3 snapshots for 2008, 2011 and 2012 in Figure 7.

In 2008, the node size of US banks is apparently larger than that of EU banks, indicating

a credit spillover from the US. Besides, the thickness of edge weights implies that the

spillover effects are not only closely intertwined among US banks but also transmitted

to EU banks (e.g. from GS to DB or CBG, from BAC to CBG). This evidence did not

yet fade away at the end of 2011 where BAC, JPM, and C are still sizable. However,

the node sizes of European banks at the end of 2011 tend to enlarge compared with that

in 2008, owning to the continuous negative impact from Greece, Ireland, and Portugal

debt crisis. As the European sovereign debt crisis was in its peak at the end of 2012,

the European banks turns out to be enormously large, especially for the banks with big

market capitalization, such as DB, CBG, and BCS. Further, the edge thickness indicates

that the default risk shocks are mutually conducted not only among European banks,

but also substantially outflowed from EU banks to US Banks.

5.3 The network between US and European banks

In order to have a clear picture on the cross-region spillover effects, we look at two groups,

the US v.s. the EU banks, and analyse the dynamics of their default risk transmission.

Figure 8 reveals that the transmission of overall default risk shocks in the long term is
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Panel A 2008.12.30 Panel B 2011.12.30

Panel C 2012.12.30

Figure 7: Level pairwise directional connectedness network

Notes: Node size and node color indicate C•←i of the bank’s level factor. Edge thickness indicates the
pairwise directional connectedness. Edge color does not vary with edge weight.
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Figure 8: Dynamics of connectedness across US and Europe. The blue line presents the
measures from US banks to European banks; the red line presents the measures from
European banks to US banks. DDINetwork_network_US_EU
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getting increased from European banks to US banks since 2010, while that of the short

term has a crossing point in 2013 but fall down around 2014, seemingly followed by a

new cycle of rising up periods, which is consistent with Figure 3 and Figure 5. The

default shocks still originate from Europe even 5-6 years after the burst of the European

sovereign debt crisis.

5.4 The drivers of default connectedness

Having the dynamics of default connectedness in a system, we dive deeper to investigate

the determinants of this dynamics. In order to understand the evolution of systemic

default risk in banking industry and control it further, the policy makers may rely on the

model-implied indicators for monitoring the frailty of default in a system. In our analysis,

the total connectedness can be viewed as an overall measure of system default risk, in

which a high value implies widespread default risk. Hence, in this part, we take the total

connectedness derived from level factor, slope factor, and curvature factor in section 5.2.1

as a measure of long term, short term, and middle term systemic default risk respectively,

and opt for a vector of state variables to analyse what drive the systematic default risk.

We estimate the following regression on the basis of daily data for the determinants of

the connectedness of credit curves:

Cω,t = αω + β>ω Mt−1 + εω,t, εω,t ∼ N(0, σ2) (25)

where Cω,t denotes total connectedness of level factor, slope factor, and curvature factor

at time t respectively, ω = {l, s, c}. Mt−1 denotes state variables at time t− 1.

Adrian and Brunnermeier (2016) propose to use the following macro published variables,

e.g. (1) The change in the three-month yield; (2) The change in the slope of the yield

curve, measured by the spread between the composite long-term bond yield and the

three-month bill rate; (3) A short-term TED spread, defined as the difference between

the three-month LIBOR rate and the three-month secondary market Treasury bill rate.

This spread measures short-term funding liquidity risk. (4) The change in the credit

spread between Moody’s Baa-rated bonds and the ten-year Treasury rate; (5) The daily

market return computed from the S&P500; (6) The daily real estate sector return in
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excess of the market financial sector return; (7) VIX; In addition we employ common

principal components (CPC) the average variance explained by the first principle com-

ponent through the common principle component approach (CPCA), see (Flury, 1984;

Fengler et al., 2003; Chen and Härdle, 2015). The CPC factor here is used to capture a

common factor which may not be directly observed.

Estimating PCs simultaneously in different groups (banks) can result in a joint dimension

reduction transformation, as well as yielding a joint eigenstructure across groups (banks).

The basic assumption of CPCA is that the space spanned by the eigenvectors is identical

across several groups (banks), whereas variances associated with the components are al-

lowed to vary. The CPCA essentially tests whether the principal components for different

banks are the same across different maturities. More formally, for the covariance matrix

across K different maturities of bank i, Ψi, the hypothesis of CPCA is:

HCPC : Ψi = ΓΛiΓ>, i = 1, ..., N (26)

where Ψi is K × K positive definite covariance matrix; Γ = (γ1, ..., γK) is an K × K

orthogonal eigenvector matrix, which is identical for N banks; Λi = diag(λi1, ..., λiK) is

an diagonal eigenvalues matrix of bank i. The estimation details are refered to Appendix

7.2. Through averaging the variance explained by first principal component of each

bank, we estimate the CPC variance explained variable using a fix rolling window of 260

observations, in line with the similar procedure in section 5.2.1.

Table 6 provides summary statistics of the total connectedness and state variables. In

line with the previous results in section 5.1, the mean value of total connectedness of level

factor is larger than that of slope factor, followed by that of curvature factor. The negative

skewness values as well as kurtosis values nearly 3 indicate that total connectedness

measures seem following right-skewed asymmetric normal distribution. As for CPC first

factor variance explained variable, the range is roughly 13% - 92%, reasonable with large

deviation of 15%.

After standardizing all the variables in Table 7, we obtain the estimated parameters

through (25) in Table 8. In column ’NW’ and column ’HH’, the values in parentheses

under the corresponding estimated parameters, present t-statistics based on Newey-West
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Table 7: Summary of variables

Mean S.t.d. Skew Kurt Min Max
Total connectedness: Level 86.99 2.63 -1.26 3.47 79.61 90.26
Total connectedness: Slope 84.07 4.60 -1.15 3.49 69.52 90.44
Total connectedness: Curvature 78.37 6.09 -0.88 3.66 55.39 89.18
Three month yield change 0.01 1.18 0.22 7.84 -7.00 6.00
Term spread change 0.00 5.76 -0.15 6.24 -48.00 25.00
TED spread 29.35 19.21 2.85 11.67 8.76 133.50
Credit spread change -0.15 2.78 0.34 11.46 -14.00 28.00
Market return 0.05 1.11 -0.27 7.69 -6.90 6.84
Real estate excess return 0.00 0.93 0.01 10.92 -6.00 6.98
VIX 20.17 8.04 1.58 5.27 10.32 56.65
CPC first factor variance explained 50.77 15.06 0.26 2.69 13.35 92.64

Note: Data period: 2009.01.01 - 2015.12.31 with daily data. The change, return data, and CPC factor
variance explained are in percentage. We list the standard deviation (S.t.d.), skewness (Skew), kurtosis
(Kurt) and so on.

Table 8: Determinants of Total connectedness

Level Slope Curvature
NW HH NW HH NW HH

Three month yield 0.010 0.010 -0.007 -0.007 -0.003 -0.003
change (0.682) (0.590) (-0.490) (-0.385) (-0.197) (-0.184)

Term spread -0.016 -0.016 -0.009 -0.009 0.001 0.001
change (-0.888) (-0.746) (-0.453) (-0.406) (0.025) (0.026)

TED spread 0.125∗∗∗ 0.125∗∗ 0.153∗∗∗ 0.153∗∗ -0.363∗∗∗ -0.363∗∗∗
(2.483) (1.906) (3.286) (2.289) (-4.473) (-5.811)

Credit spread 0.056∗∗∗ 0.056∗∗ 0.044∗∗ 0.044∗ 0.042∗ 0.042∗
change (3.035) (2.107) (2.108) (1.631) (1.543) (1.644)

Market return -0.046∗∗∗ -0.046∗∗ -0.018 -0.018 -0.022 -0.022
(-2.550) (-2.082) (-0.953) (-0.805) (-0.954) (-1.044)

Real estate excess -0.005 -0.005 -0.021 -0.021 -0.023 -0.023
return (-0.260) (-0.213) (-1.061) (-0.950) (-1.078) (-1.110)
VIX 0.298∗∗∗ 0.298∗∗∗ -0.010 -0.010 -0.120∗ -0.120∗∗

(4.886) (4.545) (-0.170) (-0.151) (-1.428) (-1.924)
CPC factor 0.303∗∗∗ 0.303∗∗∗ 0.434∗∗∗ 0.434∗∗∗ 0.260∗∗∗ 0.260∗∗∗

variance explained (7.996) (8.543) (11.793) (11.994) (9.119) (7.677)
Adjusted R2 (%) 23.04 23.04 19.91 19.91 29.79 29.79

Note: ∗ ∗ ∗, ∗∗, ∗ denotes the significance at the level of 1%, 5% and 10% respectively. ’NW’ presents
that the t-statistics displayed in parentheses are calculated by Newey-West standard errors allowing for
up to 5 periods of autocorrelation. ’HH’ represent the t-statistics displayed in parentheses are calculated
by Hansen and Hodrick standard errors with 5 periods of lag.

standard errors (Newey et al., 1987), and Hansen-Hodrick standard errors (Hansen and

Hodrick, 1980) respectively, both with 5 periods of lag. Besides, the last line reports the

adjusted R2 value of the model.
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In Table 8, higher VIX, higher TED spread, higher credit spread, and lower market return

result in high long term default risk. The short-run connectedness is driven by the TED

spread and credit spread, while the medium-run one is sensitive to the TED spread and

VIX. The CPC factor used to capture the latent common factor is significant across the

LT, MT and ST connectedness, implying the existing latent determinants need to be

discovered more. Overall, the average significance of the conditioning variables reported

in Table 8 show that the state variables do indeed proxy for the time variation in the

total connectedness and particularly in the long-term one.

5.5 Out-of-sample forecasts

To validate the necessity to incorporate the network information while estimating the

CDS curve, we compare the performance between the DNS and the network-perspective

DNS model in forecasting CDS spreads. The forecast horizons are selected as 1 day,

5 days, and 10 days. Following the framework in section 2.3, we report the difference

of root mean squared errors (RMSE)between them. When taking the European crisis

period, from 2011 to 2013, as the out-of-sample forecast period, Figure 9 presents the

results of GS and HSBC bank as examples. Each point denotes the difference between

the RMSE of network DNS model and that of DNS model at each maturity period, and

the resulting negative value in the difference indicates the superiority of the model with

network perspective. One can observe the negative values in the difference of RMSE and

they are homogenously distributed in the majority of maturities, especially as forecast

horizons increase. It reveals that RMSE of forecasting CDS spreads in network DNS

model is smaller than that of DNS model, the network DNS model performs even better

as the forecast horizon increase.

Through overall summarizing the performance of European banks and US banks, we

present the average value of RMSE difference under these two models in Table 9. It

reveals a similar pattern to what has been discovered in Figure 9. More interestingly,

the more frequent negative values shown in the EU group implies that the network in-

formation advantage in forecasting CDS curve seems to be supported more in the EU

area. Predicting the CDS curve in EU banks one has to opt for a network-perspective
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Figure 9: Difference of RMSE of CDS spreads forecast between network DNS model
and DNS model, for horizon h={1day, 5day, 10day}. The left panel lists the values of
Goldman Sachs, the right panel for HSBC bank. The points correspond to different
maturities. The forecast period is 2011.01.01 - 2013.12.31.

DDINetwork_CDS_forecast
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model. The prediction can be used to decide the timing of entering CDS contract to lock

up the hedge cost in term of default from the buyer side. For the seller side, they avoid

underestimating CDS price after incorporating default spillover through their network.

Table 10 reports the Diebold-Mariano test statistics (Diebold and Mariano, 1995) to

compare the network DNS model versus DNS model forecasts. In the Diebold-Mariano

(DM) test, we conduct a pairwise test on the equality of the mean squared forecast errors

by analyzing the difference between the squared forecast errors of the network DNS model

and the DNS model, e2
t,net − e2

t = µ + εt. The null hypothesis of equal performance is

that H0 : µ = 0. We focus on the t-statistics of parameter µ, denoted as DM t-stat,

which supports the network DNS model if it is significantly negative (significance level

marked by asterisks). Regardless the forecast horizons, we find the negative DM t-stat are

prevalent for the maturities less than 10Y lying on the CDS curves. In other words, the

network DNS model is superior than the DNS model in out-of-sample forecast, especially

for the EU CDS curves.

Table 9: US and EU: out-of-sample forecast

h 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y 20Y 30Y

US
1d 0.156 0.029 0.094 -0.031 -0.102 -0.076 -0.029 -0.026 0.158 0.198
5d -0.132 -0.235 -0.116 -0.356 -0.318 -0.108 0.140 -0.037 -0.031 0.092
10d -0.609 -0.637 -0.209 -0.480 -0.597 -0.566 -0.161 -0.290 -0.121 0.111

EU
1d 0.264 -0.162 -0.110 -0.027 0.091 0.022 -0.018 -0.041 0.048 0.081
5d -0.486 -0.973 -0.516 -0.318 -0.058 -0.098 -0.237 -0.354 -0.174 -0.011
10d -1.580 -1.388 -0.685 -0.446 -0.388 -0.524 -0.700 -0.804 -0.309 -0.014

Note: RMSE difference of CDS spreads forecast between network DNS model and DNS model. The
values of US and EU banks are averaged in total. The forecast period is 2011.01.01 - 2013.12.31.
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Table 10: Forecast comparison between network DNS model and DNS model: DM test

h 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y 20Y 30Y
1d

BAC 1.036 2.356∗∗ 0.703 -2.514∗∗ -2.105∗∗ -2.954∗∗∗ -2.389∗∗ -1.286 3.402∗∗∗ 5.344∗∗∗
C 3.259∗∗∗ -2.933∗∗∗ -1.270 -3.529∗∗∗ 0.156 3.543∗∗∗ 4.836∗∗∗ 4.593∗∗∗ -0.968 -1.831∗
GS -3.290∗∗∗ 1.906∗ 4.159∗∗∗ -2.043∗∗ -2.034∗∗ -3.774∗∗∗ -6.257∗∗∗ -3.802∗∗∗ 5.118∗∗∗ 7.390∗∗∗
JPM 3.202∗∗∗ -2.067∗∗ -4.887∗∗∗ -7.285∗∗∗ 0.754 4.240∗∗∗ 4.331∗∗∗ 1.772∗ 1.666∗ 4.398∗∗∗
WFC 1.437 3.347∗∗∗ 7.637∗∗∗ 6.896∗∗∗ -4.741∗∗∗ -9.662∗∗∗ -5.940∗∗∗ -4.403∗∗∗ 10.599∗∗∗ 15.143∗∗∗
DB 2.859∗∗∗ -2.218∗∗ -4.947∗∗∗ -6.677∗∗∗ 2.902∗∗∗ 4.732∗∗∗ 4.827∗∗∗ 2.006∗∗ -1.064 0.292
CBG -2.258∗∗ 4.540∗∗∗ 4.045∗∗∗ 3.719∗∗∗ 0.560 -4.488∗∗∗ -4.772∗∗∗ -1.648∗ 4.138∗∗∗ 5.802∗∗∗
BCS 7.258∗∗∗ -6.434∗∗∗ -6.738∗∗∗ -0.524 8.014∗∗∗ 7.809∗∗∗ 2.624∗∗∗ -1.156 -0.406 2.002∗∗
HBC 3.041∗∗∗ -6.318∗∗∗ -5.654∗∗∗ -2.964∗∗∗ 2.325∗∗ 2.404∗∗ 2.195∗∗ 1.939∗ -3.762∗∗∗ -4.773∗∗∗
UBS -0.533 2.535∗∗ 3.148∗∗∗ 2.773∗∗∗ -3.367∗∗∗ -4.665∗∗∗ -6.062∗∗∗ -7.829∗∗∗ 7.208∗∗∗ 9.688∗∗∗

5d
BAC 0.027 0.242 -0.763 -1.618 -0.896 -0.911 -0.362 -0.615 -0.479 -0.172
C 0.178 -2.284∗∗ -2.459∗∗ -2.490∗∗ 0.840 3.394∗∗∗ 4.498∗∗∗ 3.255∗∗∗ -1.285 -2.572∗∗
GS -2.329∗∗ -1.035 -0.656 -2.747∗∗∗ -2.316∗∗ -1.811∗ -2.223∗∗ -1.913∗ -0.996 -0.412
JPM 0.348 -0.660 -1.559 -2.667∗∗∗ -1.047 0.560 1.347 -0.155 -0.599 0.487
WFC 0.124 0.863 2.756∗∗∗ 2.576∗∗∗ -1.383 -3.892∗∗∗ -2.022∗∗ -1.570 2.431∗∗ 4.420∗∗∗
DB -0.572 -1.703∗ -2.158∗∗ -2.799∗∗∗ -0.073 0.421 0.415 -1.344 -2.286∗∗ -1.383
CBG -2.955∗∗∗ -1.140 -1.377 -1.104 -1.050 -1.748∗ -2.187∗∗ -1.625 -0.613 -0.091
BCS 0.976 -2.924∗∗∗ -2.126∗∗ -0.141 1.372 1.414 -0.485 -1.840∗ -0.852 0.335
HBC -0.993 -3.938∗∗∗ -2.475∗∗ -1.690∗ -0.944 -0.530 -0.559 -0.930 -1.994∗∗ -2.198∗∗
UBS -0.891 0.571 1.185 0.847 -0.731 -1.839∗ -2.878∗∗∗ -2.929∗∗∗ 1.124 2.242∗∗

10d
BAC -0.219 -0.130 -0.349 -0.778 -0.779 -0.958 -0.503 -0.583 -0.438 -0.212
C -0.760 -2.301∗∗ -1.992∗∗ -1.955∗ -0.107 1.855∗ 2.939∗∗∗ 2.075∗∗ -0.405 -1.175
GS -1.896∗ -1.153 -0.888 -1.851∗ -2.224∗∗ -2.579∗∗∗ -2.751∗∗∗ -2.149∗∗ -1.096 -0.605
JPM 0.031 -0.726 -1.051 -1.710∗ -0.890 -0.301 0.041 -0.807 -0.771 -0.034
WFC 0.111 0.588 2.065∗∗ 2.056∗∗ -0.140 -2.124∗∗ -1.075 -0.871 1.405 2.838∗∗∗
DB -1.265 -1.098 -0.891 -1.489 -0.981 -0.972 -0.782 -2.014∗∗ -1.792∗ -0.995
CBG -2.696∗∗∗ -1.534 -1.379 -1.079 -0.985 -1.220 -1.464 -1.299 -0.787 -0.449
BCS -0.295 -1.843∗ -1.256 -0.170 -0.154 -0.789 -2.253∗∗ -3.134∗∗∗ -0.901 0.334
HBC -2.296∗∗ -3.564∗∗∗ -2.595∗∗∗ -2.037∗∗ -1.758∗ -1.426 -1.555 -1.750∗ -1.405 -1.086
UBS -0.964 0.029 0.614 0.609 -0.127 -1.086 -2.235∗∗ -2.289∗∗ 0.780 1.726∗

Note: This table gives the t-statistics of Diebold-Mariano test, that is H0 : µ = 0 in the regression e2
t,net − e2

t = µ+ εt where et,net

and et denote the forecast error of network DNS model and DNS model respectively. The test is modified with robust Newey-West
variances for heteroscedasticity and autocorrelation with the lags equal to the forecast horizon. ∗ denotes a significance level of
10%, ∗∗ denotes a significance level of 5%, ∗ ∗ ∗ denotes a significance level of 1%. The forecast period is 2011.01.01 - 2013.12.31.
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6 Conclusions

Systemic risk, the risk of disruption to financial services, can be teased out directly

through an investigation tagging to CDS curves, in comparison with the conventional

market-based approach by using stock returns as alternatives such as the CoVaR measure.

This study shows the information content of a CDS curve for its term structure implication

corresponding to particular credit horizons. The changing shape of credit curve implies

the credit deterioration over different time frames (ST, MT or LT), which can be used to

manage the credit exposures with different maturities.

The existant literature has paid insufficient attention on the shape of CDS curve, the

dynamics of CDS curve and the comovement or interplay between curves. We contribute

to the existing literature by (1) using the DNS model to extract the ST, the MT and

the LT default factor from a CDS curve; (2) quantifying the comovement of CDS curves

through a total connectedness measure to reflect the firms being downgraded simultane-

ously; (3) measuring the default spillover in the ST, MT and LT perspective, respectively;

(4) conducting out-of-sample prediction for CDS curves based on the network-based DNS

model.

The evidence from G-SIBs banks shows that the CDS curves comove tightly with higher

connectedness, especially in the long-run. The US banks contribute more to the long-run

default spillover before 2012, whereas the European banks are major default transmitters

during and after the European debt crisis either in the long-run or short-run. The time-

varying default connectedness and spillover can be viewed as an indicator for monitoring

systemic default risk, especially for identifying the trouble makers triggering a clustered

default in a system. We find that the TED spread, credit spread and VIX are main

determinants of default connectedness. The outperformance of the network DNS model

indicates that the prediction on CDS curve requires network information.
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7 Appendix

7.1 CDS spreads

7.2 Common principal component analysis (CPCA)

Here we introduce the maximum likelihood estimation procedures of CPC under the

hypothesis in (26). The theoretical proof and the asymptotic properties of the estimates

are referred to Flury (1984) and Flury and Gautschi (1986).

Let Si be the (unbiased) sample covariance matrix of an underlying K-variate normal

distribution NK(µ,Ψi) with sample size ni. Then niSi follows a Wishart distribution

with degrees of freedom ni − 1, Härdle and Simar (2015)

niSi ∼ WK(Ψ, ni − 1) (27)

Hence for N Wishart matrices Si with sample size ni, the likelihood function is

L (Ψ1, ...,ΨN) = C
N∏
i=1

exp
{
tr
(
−1

2(ni − 1)Ψ−1
i Si

)}
|Ψi|−

1
2 (ni−1) (28)

where C is a constant not depending on the parameters Ψi. Maximizing the likelihood is

equivalent to minimizing the function

g(Ψ1, ...,ΨN) =
N∑
i=1

(ni − 1)
{

log |Ψi|+ tr(Ψ−1
i Si)

}
(29)

Assuming that HCPC in Equation (26) holds, replacing Ψi by ΓΛiΓ>, yields,

g(Γ,Λ1, ...,ΛN) =
N∑
i=1

(ni − 1)
K∑
j=1

(
log λij +

γ>j Siγj

λij

)
. (30)

We impose the orthogonal constraints in Γ by using the Lagrange multipliers µj for the

K constraints γ>j γj = 1, and using the multipliers µhj for the remaining K(K − 1)/2
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Figure 10: CDS spreads data
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constraints γ>h γj = 0 for (h 6= j). Hence the Lagrange function is

g∗(Γ,Λ1, ...,ΛN) = g(·)−
K∑
j=1

µj(γ>j γj − 1)− 2
K∑
h<j

µhjγ
>
h γj.

Taking partial derivatives with respect to all λim and γm, the solution of the CPC model

is given by the generalized system of characteristic equations, Flury (1984)

γ>m

{
N∑
i=1

(ni − 1)λim − λij
λimλij

Si

}
γj = 0, m, j = 1, ..., K, m 6= j. (31)

This is solved using

λim = γ>mSγm, i = 1, ..., N, m = 1, ..., K

under the constraints

γ>mγj =


0 m 6= j

1 m = j

. (32)

Flury (1984) proves existence and uniqueness of the maximum of the likelihood function,

and Flury and Gautschi (1986) provide a numerical algorithm.
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