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Abstract

This paper contributes to model the industry interconnecting structure in a net-

work context. General predictive model (Rapach et al. 2016) is extended to quantile

LASSO regression so as to incorporate tail risks in the construction of industry inter-

dependency networks. Empirical results show a denser network with heterogeneous

central industries in tail cases. Network dynamics demonstrate the variety of in-

terdependency across time. Lower tail interdependency structure gives the most

accurate out-of-sample forecast of portfolio returns and network centrality-based

trading strategies seem to outperform market portfolios, leading to the possible

’too central to fail’ argument.
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1 Introduction

Interdependency among different assets is always the key topic of portfolio management.

From the very beginning of portfolio theory (Markowitz 1952) , correlation between every

two assets is considered to be one of the most important factors in portfolio construction.

Ever since the recent financial crisis, studies in interdependencies in the context of risk

management have increased rapidly with most of them showing a great interest in the de-

pendency structure within financial sector, i.e. financial contagion (Rodriguez 2007, May

& Arinaminpathy 2010, Hasman 2013, Georg 2013, Acemoglu et al. 2015). However, as

broad asset allocation including industry assets becomes more and more popular, interde-

pendency among industries started to attract more attention as well. Some research takes

the perspective of the interdependency among financial sector and other real economy

sectors (Baur 2012, Chiu et al. 2015, Claessens et al. 2012). With no exception, work in

this direction concentrates on the effect of financial sector on other real economy sectors,

not the way around. Whilst if we consider an easy example containing three corporations,

being them oil (X), car manufactory (Y ) and autos dealer (Z) from the perspective of

supply chain, we have to say that interconnectivity across different industries (not limited

to financial to others) is pretty common, as the work done by Rapach et al. (2016). They

use the one-period predictive model to establish return predictability among different

industries as a depiction of industry interdependency among various sectors and claim

the interdependency is pretty widespread among each other. Nevetheless, the industry

interdependency in an extreme or stress situation hasn’t been addressed intensively. One

may imagine that the interdependency may not necessarily show a monotonic linearity

w.r.t the quantile level being considered. We therefore contribute to the extant literature

by aiming this extreme interdependency which can be referable in the industry portfolio

in a market downturn. Tail event based quantile regression with LASSO regularization

is implemented here, which is cast into a dynamic network context.

We study the industry interdependency from the network point of view for mainly three
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important reasons: First, it has been proved in literature as an excellent tool to de-

pict interconnectivities. Real network analysis includes the work of Schweitzer et al.

(2009), by taking a socioeconomic perspective, they argue a network architecture built

upon trade, R&D alliances, ownership or credit-debt relationships can vividly study the

strategic behavior of the interacting agents. Gençay et al. (2015) use North American

supplier-customer network data of public companies to assess counterparty risk and de-

tect counterparty network effects as significant determinants of credit spreads. In the

empirical part of Zhu, Pan, Li, Liu & Wang (2016), they test the ’Chinese Twitter’ -

Xinlang Weibo social network and observe a significant network effect in Chinese social

activities. Zhu, Wang, Wang & Härdle (2016) extend Zhu, Pan, Li, Liu & Wang (2016)

into the quantile regression framework to consider tail risks. They then exert the quan-

tile network autoregressive model to describe Chinese stocks’ interconnecting behivors

on the basis of common shared ownership information. For artificial networks, statistical

methods need to be used to construct linkages. Based on vector autoregressive (VAR)

model, Diebold & Yilmaz (2014) propose a generalized variance decomposition to define

a weighted directed network. They apply their method to US financial institutions and

it turns out to be coordinated pretty well with the 2008 financial crisis. Similarly, Billio

et al. (2011) use linear as well as nonlinear Granger-Causality tests to construct pairwise

connections in the network and apply it to monthly returns of different sectors of finance

department stocks. Their empirical results show the advantage of network models in

measuring the systematic risk levels. Chan-Lau et al. (2016) adopt a default correlation

model to construct the forward-looking partial default correlations, which turn out to be

the network element. Depending on their network construction, they study the systemic

risk of over 1000 exchange-traded banks in the global network framework and argued

that connectivity hasn’t been paid enough emphasis in Financial Stability Board. Härdle

et al. (2016) propose a nonlinear semiparametric quantile regression method on CoVaR

to construct a tail-event driven network in order to study the systemic risk among differ-

ent financial sectors and conclude that the interconnectedness is growing during financial

crisis period with largest systemic risk receivers and emitters being the most systemically
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important.

The second reason for adopting network methodology due to industry characteristics

themselves. As it is not just limited to the dyadic relationship, industry interconnectivity

has more complicated dependency structure. It focuses on concentration. In a bunch of

various companies from different industries, some companies are more important in the

sense that they are connected to more of the others with others just being less important

locating in the periphery. An obvious example concerning concentration is the banking

industry acts actively in the group of companies which need funding. None of these

funding-needed companies can thrive without the financing from the banking sector. In

addition, Baxamusa et al. (2015) provided the empirical evidence that in the customer-

suplier network, the more central the firm, the lower its returns from the acquasition

activities. And this concentration can be easily established in the network framework.

Thirdly, it is not hard to properly specify the node set and edge set in our research

question, which are the basic elements of a network structure. Fama-French industry

portfolios are the nodes, while for edges establishment, we have to use appropriate statis-

tics methods. Former popular calibration methods on interdependency analysis include

correlation analysis (see Chiang et al. (2016), for instance), vector autoregressive models

(e.g. Diebold & Yilmaz (2014)) and copula based methedology (Poshakwale & Mandal

(2016)). However, to include the information of return predictability and further use the

network to do forecasts, we construct the edges as the one-month ahead return predictive

model parameters. As Rapach et al. (2016) argue, there is a significant relationship be-

tween their general predictive model and the US production network. We therefore claim

the setup of using predictive model parameters as edges is reasonable.

The motivation to incorporate tail risks are the consideration of the parallelity between

industry portfolios and financial stocks. Lots of research has investigated the importance

of downside risk in financial stocks and comparatively, beyond just financial sector, we
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conjecture that industry interdependencies are also affected by extreme situations. There-

fore, we refer to Tibshirani (1996) and Li & Zhu (2008) to introduce quantile LASSO

techniques upon the industry return general predictive model of Rapach et al. (2016). We

have the penalizing techniques come into play here to solve high dimensionality problem.

For different quantiles, we can model median level as well as tail level interconnectivities

to fulfill the purpose of comparison. In a nutshell: Tail event based quantile regression

with LASSO regularization is cast into a dynamic network context. Our main contri-

bution is to extend the general predictive regression framework into the tail case using

quantile LASSO regularization to construct networks under different quantile levels and

compare median and tail-centered return data of industry portfolios in order to show the

increase of the connection during extreme periods. Based on the differences between nor-

mal and extreme markets, we would also like to compare the prediction accuracy of the

one-month forward return. For utilizing the network information into financial markets,

we will construct network-based trading strategies of industry portfolios as well in order

to see whether the markets can be beaten. Lastly, by studying the dynamic structure of

industry portfolio network across time, we would like to discern some evolution pattern

of this industry network.

The remaining of our work is organized as follows: Section 2 describes the economet-

ric model that we are using to construct the industry network; Some basic concepts of

network structure and its key parameters are given in Section 3; Section 4 shows the em-

pirical network analysis of 49 industry portfolios obtained from Kenneth French’s data

library. Analysis in this part includes the construction of whole network as well as dy-

namic networks, predicition accuracy computation and performance of network-based

trading strategy; Section 5 concludes and summarizes. Tables and figures are organized

in Appendices at the end.
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2 Econometric Modelling of Industry Interdependency

Rapach et al. (2016) propose a general predictive model of industry returns to study the

interdependency among 30 industries. They compare their model to American production

network, concluding that their model could represent a good construction of industry

network. However, only the sector return is considered in their work, while we all agree

that in stress situations, tail events carry information on the network infrastructrue. This

motivates to extend the general predictive model to different tails, e.g. quantile levels, to

investigate the role tail risks playing in industry portfolios.

The general predictive model proposed by Rapach et al. (2016) is given as follows:

ri,t+1 = β0,i +
N∑
j=1

βi,jrj,t + εi,t+1, t = 1, . . . , T − 1 (1)

where ri,t is the monthly return of industry portfolio i at time t; N is the total number

of industries and εi,t is the white noise error term.

The generalized quantile regression is described as: {X, Y } = {xi, yi}ni=1, xi = (xi1, . . . , xip)
> ∈

Rp, τ ∈ (0, 1).

Y = Xβ + ε (2)

β̂ = arg min
β∈Rp

n∑
i=1

ρτ (yi − x>i β) (3)

where ρτ (·) is an asymmetric loss function:

ρτ (u) = |u|α| I(u ≤ 0)− τ |, α ≥ 1 (4)

with α = 1 and α = 2 corresponding to a quantile and expectile regression respectively,

see Breckling & Chambers (1988). The aforementioned general predictive model (1) is a

special case of the generalized quantile regression (2), if we set yi = ri,t+1, xi = (1, rt), α =

1, τ = 0.5, where rt = {rj,t}Nj=1.

For large dimension p one runs into singularity problems and a plethora of too many small
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coefficients. Prediction accuracy and model interpretability become so big problems with

large p that standard ordinary least squares (OLS) turns out to be valid no longer.

Standard techniques for improving the OLS estimates contain subset selection and ridge

regression while neither of which solves the two problem simultaneously. The way to go

here is the implementation of Least Absolute Shrinkage and Selection Operator (LASSO)

(Tibshirani 1996):

β̂(LASSO) = arg min
β

n∑
i=1

(yi − x>i β)2 + λ

p∑
i=1

|βi| (5)

where λ is a nonnegative regularization parameter, p is the total number of possible

covariates that explains Y and the second term
∑p

i=1 |βi| = ‖β‖1 is the l1 norm.

Combining the idea of tail event QR with LASSO leads us to

β̂(qLASSO) = arg min
β0,β

T−1∑
t=1

ρτ (ri,t+1 − β0 − r>t β) + λ‖β‖1 (6)

where rt denotes the return vector of all industries at time t; β the vector of coefficients

of the regression and β0 the intercept. The l1-norm quantile LASSO model can be refered

to Li & Zhu (2008).

As is known from Härdle & Simar (2015), the solution to (6) yields a finite subset of

nonzero elements of the β̂(qLASSO) vector. The coefficients in this ’active set’ may be

called ’prominent’ since all other coefficients are actually zero.

Later in Section 4 we will use quantile LASSO regression method to build the network

across different industry portfolios. Before going to that, we would like to give a brief

introduction of network structure, the main graphic tool in our analysis.

3 Network Structure

A binary set G = (V , E) represents the network structure of a system where V denotes

the collection of vertices (also called nodes) in the system and E stands for the collection
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of edges (or linkages, etc) between each pair of the vertices. In our application, vertices

V are the industries and the edges E are constructed as the prominent quantile LASSO

coefficients. A network is always corresponding to an adjacency matrix which specifies

the edges between each pair of the nodes. At the very beginning, adjacency matrix is

simply a symmetric binary matrix but it is later extended to weighted and asymmetrix

ones, which is exactly the case in our later empirical analysis.

Given a network G, two important and interesting questions are always asked: first, how

to measure the graph level connectivity of the network? Second, which parameter gives

us insight into the relative importance of each vertice?

3.1 Revisit Fagiolo (2007)

The answer to the first question is the concept of ’connectedness’. Connectedness is a

measure specified in network analysis depicting the degree of interdependency among all

nodes and the whole network connectedness is achieved by averaging all the node-specific

connectedness. In the context of graph theory, connectedness is usually refered to as

clustering coefficient, which measures the inherent tendency of nodes clustering together.

The global verison of clustering coefficient gives the measure of the connectedness of

the whole network. The most common definition is designed for undirected and binary

adjacency matrices, following Fagiolo (2007), we use four patterns (cycle, middleman, in

and out) to depict directed networks.

• cycle: there is a cyclical relation among i and any two of its neighbors (i → j →

h→ i or viceversa);

• middleman: when one of i’s neighbors reach a third neighbor directly with an

outward edge or indirectly with i as a medium;

• in: i has two inward edges;

• out : i has two outward edges.
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For an asymmetrix binary adjacency matrix, in-degree, out-degree total-degree and bilateral-

degree of node i are defined as:

dini =
∑
j 6=i

aji = (A>)i1

douti =
∑
j 6=i

aij = Ai1

dtoti = dini + douti = (A> + A)i1

d↔i =
∑
j 6=i

aijaji = A2
ii

where A> is the transpose of A, Ai the ith row of A, Aii the ith diagonal element of A, 1

is the N-dimensional column vector (1, 1, · · · , 1)>.

Based on above notations, the number of all possible triangles that node i could form

(TDi ):

TDi = dtoti (dtoti − 1)− 2d↔i

For weighted adjacency matrix W , the four patterns of clustering coefficient are defined

as:

Ccyc
i =

(W [1/3]3)ii
dini d

out
i − d↔i

Cmid
i =

(W [1/3]W [1/3]>W [1/3])ii
dini d

out
i − d↔i

Cin
i =

(W [1/3]>W [1/3]2)ii
dini (d

in
i − 1)

Cout
i =

(W [1/3]2W [1/3]>)ii
douti (douti − 1)

where W [1/3] denotes the matrix with each element generated as the cubic roots of W ’s
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elements. To get overall connectedness, we just average these C∗i via:

C∗ = N−1
N∑
i=1

C∗i

where * stands for elements in cyc, mid, in, out .

3.2 Centrality Measures

For the second, the answer is centrality. Centrality basically answers the question ’what

characterizes the important vertices?’ There are various kinds of centrality definitions. In

the simplest cases, Degree centrality measures how many ties each node has and assigns

the biggest value of importance to the node which has the largest number of ties. A

more complex extension of degree centrality is to consider the directions of linkages in

directed networks. Therefore we have ’in’ as well as ’out’ degree centralities. Though

simple and easily to exert, degree centrality assigns equal values to all the edges. Baveias

(1950) defined the closeness centrality of a node as the average length of the shortest

path between the node and all other nodes. Freeman (1977) introduced the betweenness

centrality that measures the number of times that the node plays as a bridge along

the shortest path between any other two nodes. A more appropriate version of these

two centrality measures is to incorporate the concept of ’cost’ in which case we define

the shortest path in the sense of actual lenghth instead of number of nodes. Since the

version with ’cost’ pays attention to the actual distance between each pair of node, it

is more appliable to real world networks, for instance, transportation networks. As for

differentiating the relative importance of different nodes, these two measures contributes

little. A good measure to incorporate relative importance of different nodes is Eigenvector

centrality. For a network G = (V , E), eigenvector centrality of node v - CE(v) equals

CE(v) =
1

λ

∑
t∈M(v)

CE(t) =
1

λ

∑
t∈G

av,tCE(t) (7)
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where λ is the maximum eigenvalue of the adjacency matrix A; M(v) the set of neighbors

of v and av,t the element of A in row v and column t. According to this measure, a

node in a network is important if it is linked to other important nodes. Hence one does

not consider the edges between every pair of the nodes as equally important, one assigns

different importance value through the first eigenvector. Similar to degree centrality,

when in directed graphs, we can have ’in’ and ’out’ eigenvector centrality measures to

discriminate the ’receiving’ and ’emitting’ effects respectively. Since industries need to

be treated differently and receving and emitting effects have to be set apart, we are going

to adopt eigenvector centrality for the weighted, directed graphs in the empirical part.

4 Empirical Results

4.1 Data

Monthly return of the 49 industry portfolios constructed by Kenneth R. French is used

as our data sample. The data is available from Kenneth French’s webpage 1. As monthly

data is mostly often used in industry portfolio analysis, we select it from January 1970

to January 2017 with 565 observations in total.

As quantile-quantile (QQ) plots (Figure 1 to Figure 5) of the 49 industry portfolios show,

compared to normal distributions, tail behaviors exist in most industries, which justifies

our analysis of focusing on industry network structure at different tail levels.

4.2 Whole sample network

We now come to the network construction based on Equation (6). The edge between node

i and node j exists if and only if the lagged return of industry j (i) is selected by LASSO

as the significant predictor of the return of industry i (j). The edges are constructed as

directional: if i (j) helps predicting j (i) , then the edge goes from i to j (j to i); if i
1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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helps predicting j and j helps predicting i as well, then the edge between i and j has

both arrows. Furthermore, the edges in our industry network are also weighted. And the

weight assigned to each edge depends on the absolute value of the beta coefficients. To

sum up, the adjacency matrix corresponding to our industry interdependency network is

the absolute value of beta coefficients.

To discern the probable varieties between median network and tail-event driven network,

we set τ = (0.05, 0.5, 0.95), denoting the crisis, stable and boom situations respectively.

Figure 6 depicts the whole sample (1970.01-2017.01) industry networks under these three

situations. In every subfigure, we locate the 49 industries in a circle and fix their positions

in favor of convenient comparison among different τ levels. The nodes in the network have

different sizes according to their ’in’ and ’out’ eigenvector centrality scores respectively,

as introduced aforementioned. We arrange the network plots with eigenvector centrality

from the ’in’ direction in the left panel and ’out’ the right panel of each subfigure in

Figure 6. Specifically, the leading industries possess larger sizes in our industry network.

The grey arrows with directions within the network circle suggest the intensity of the

interconnectivity of the industry network. Comparing the density of edges in these three

figures, we can clearly reach the conclusion that in extreme cases, the industry network

connection increases a lot when comparing to stable situation, which means the whole

economy becomes more connected in extreme cases, as is listed in Table 2. Meanwhile,

the leading industries change as well. To see this perspective more precisely, we list the

top leading industries which has eigenvector centrality score larger than 0.200 (both ’in’

and ’out’) under each situation in Table 3. Comparing the leading industries in different

cases, we have several interesting findings:

a. More central industries are identified under extreme cases with more even centrality

score distribution. It is a signal of intercorrelation rise among various industries in

extremes.

b. Financial-related industries (banking, insurance and trading) play important roles

as risk emitters under whatever market situations (banking has rank 6 as risk emit-

12



ters when τ = 0.95 with centrality score 0.186). It is determined by the nature of

financial-related industries.

(a) Banking evolves as a leading risk emitter when extreme events happen. It

complies with our common knowledge that when markets go to extremes,

banking affects other industries more.

(b) Insurance arises as the NO.1 risk emitter when market goes down. It is a

reflection of the market sentiment.

(c) However, when market goes down, financial trading also becomes a crucial

risk receiver which to some degree, signifies the hard time that traders have

to endure during financial crisis.

c. Coal remains leading risk emitter in various markets. It may be accounted to the

relative position of coal industry in the supply chain. As an upperstream industry,

coal price can actually affect the return of many others which need it as raw material.

Furthermore, no matter what the market looks like, basic production still has to be

done.

d. Gold always stays as top risk receiver for which we may argue from the role gold

plays as a financial hedging instrument.

e. The leading industries detected has little to do with industry size according to our

empirical analysis.

4.3 Dynamic networks

In the last section we see the differences in whole sample networks under different τs.

However the information is limited since it is a static picture. One step further, we can

gain more insight by investigating the dynamics of networks. Through this, we expect

to discover some potential patterns in industry networks. As introduced in Sec 3.1, we

plot the 4 clustering coefficients under three τs in a moving window framework. We

compute the network structures using quantile LASSO for samples of every three years’
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data. The data sample starts from 1970.01, then we move the window forward every three

months to compute the next one, that is, the first sample is 1970.01-1972.12, the second

one 1970.04-1973.03, so on so forth. Finally, we get 177 data points of each clustering

coefficients and their plots are shown in Figure 7 (arranged by different τs) and Figure8

(arranged by different clustering patterns in a directed network).

The dynamic networks vary across time are shown in Fig 7 and Fig 8. Under each τ

levels, the ’cycle’ and ’out’ clustering are lower than ’middleman’ and ’in’ clustering in

our industry network. Besides, ’cycle’ and ’out’ also possess smaller volatilities. However,

the four have similar pattern under each τ across time. Around 1997-2002, 2007-2010

and 2012-2013 there are sharp ups and downs in all connectedness measures no matter

whether we take tail risks into account. These time slots also approximately match the

economic crisis in history. When comparing each of the four connectedness measures

under various τs, we once again validate that median level network is less connected

than those in tail cases, from the perspective of network dynamics. When zooming in

those special time periods, we have an interesting finding that lowertail connectedness

behave oppositely with uppertail and median ones in periods 2000-2002, 2011-2012, 2016

thereafter but move more simultaneously during the recent financial crisis during 2007-

2008. This, probably, can be explained by the relative important positions financial-

related industries possess in the industry network. When the financial-related industries

triggered the crisis in 2007 and 2008, lots of industries are affected which leads to the

comovement of the connectedness under different τs. This argument also complies with

centrality analysis in section 4.2.

4.4 Three additions based on specific network construction

4.4.1 Prediction Directions

As far as we discussed, we use the abslute value of the beta coefficients as the adjacency

matrix inasmuch as to comply with the cannonical definition of adjacency matrix. How-

ever, this setting has the drawback of ignoring the signs of coefficients, which is very useful
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in return prediction. As is contained in the quantile LASSO regression (6), not only do

we know the magnitude of industry return prediction network (the absolute values of the

betas), but also the information on directions of industry return predictability (the signs

of the beta coefficients). Therefore we add the information of whole sample interdepen-

dency in the image plots in Fig 9 and in Table 4 and of rolling window predictability in

Table 5, which, in our opinion, are valuable additions to the cananical network analysis.

In order for later return prediction, the rolling window in constructed as follows: we first

use the data from 1970.01-1995.12 to construct the first ’network’ composed of beta coef-

ficients(here with signs). After the first step, we enlarge our estimation window with one

more month every time, i.e. in the second step we compute the beta coefficients network

using data from 1970.01-1996.01, and so on so forth. Finally we get 253 beta networks

of the industry interdependency.

In all three image plots (Figure 9), the horizontal represents the predictive power one

industry getting from all others (receiving) and vertical stands for the predictive power

that industry to others (emitting). Comparing these three image plots in Table 4, we can

see that in common, the LASSO method selects quite a small set of significant predictors

out of the 2401 cells in total. Besides, the differences are quite obvious. The difference

between normal market and extreme markets is that when market changes from stable to

extremes, a larger quantity of significant connections are detected (either in crisis or in

booms). In network language, we say the entire industries become more interconnected

in stress situations. Furthermore, there are still some differences between these two

extremes. First of all, more negative connections are detected in boom than that in crisis

while more positive ones in crisis than in boom, indicating a higher and non-diversifed

tail risk and a difficulty w.r.t industry diversification in the market crisis. The benefit

of industry diversification is diminished in this situation, implying an inevitable tail risk.

Second of all, the average connectedness is positive when τ = 0.05 and negative when

τ = 0.95. It sends out the signal that bad market conditons tend to affect most industries

in the same direction while good ones is more favorable for portfolio management since

the average connectedness is negative. The averaged dynamic directions of the beta
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coefficients under rolling window framework dipict a similar pattern in Table 5 as that

in Table 4. Combining them together, we claim it’s hard to diversify industry portfolios

in crisis, indicating a higher and non-diversified tail risk, which, when translates into

risk-return relationship, tells us that we can expect higher returns with the tolerance of

higher risks, if we construct appropriate trading strategies. This point is going to be

shown in 4.4.3.

4.4.2 Prediction Performance

To make use of the industry network structure that we constructed before and the pre-

diction directions information, a dynamic network structure within a rolling window

framework is used to predict the one-month ahead industry returns. We here compare

the performance of the interdependencies under different τ levels in the use of predicting

future returns. Based on the predicted and actual monthly industry returns, we calculate

the root mean squared error (RMSE) of the three models, i.e. with different τs, as a mea-

sure of the prediction accuarcy. Specifically, we first use the data from 1970.01-1995.12 to

construct the first ’network’ composed of beta coefficients(here with signs). We multiply

this beta matrix with the industry monthly returns in 1995.12 as the prediction of the in-

dustry monthly returns in 1996.01. After the first step, we enlarge our estimation window

with one more month every time, i.e. in the second step we compute the beta coefficients

network using data from 1970.01-1996.01 and multiply the new beta matrix with the

returns in 1996.01 as a prediction of those in 1996.02, and so on so forth. Finally we get

253 predictions of the monthly returns for each industry. Lastly, we compute square of

the differences between the predicted returns and the real ones and average them over the

length of time series, i.e., 253. Figure 10 shows the average RMSEs of the 49 industries

in our data sample for the three τs.

As expected, beta ’network’ dynamics under extreme cases have better prediction per-

formance (smaller out-of-sample forecast error) than that in normality. In general, for

these three cases, we claim that lower tail predition achieves the highest accuracy (the

smallest out-of-sample forecast error). Therefore, incorporating tail risks contributes to
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industry return prediction which justifies the necessity of extending extant studies which

focus only on median level to different quantiles.

4.4.3 Network centrality-based trading strategies

As we can see from the aforementioned discussion, some vital characteristics about the

industry interdependency network have been investigated. However, we still lack the

tactic to make use of the network information to profit from financial markets. We are

going into this direction here. Network centrality-based trading strategies are considered

due to the importance of the concept of centrality as well as our specific construction

of industry network. As discussed earlier, centrality measures the relative importance of

different industries in the network structure, which, in our framework, is based on one-

month-ahead return predictability. Therefore the most central nodes demonstrate the

relatively important roles of influencing or being influenced by others more than the rest

in the sense of return predictability. That is, industries with higher ’out’ (’in’) eigenvector

centrality scores can also be called ’prediction emittors’ (’prediction receivers’) which

affect more of others (are affected more by others) in the sense of return prediction.

We conjecture that highly centralized industries are more likely to ourperform market

portfiolios due to the similar effect as ’too connected to fail’, we call it ’too central to

fail’. Centralized industries are more connected to other central industries and hence

possess more complicated risk structures, which in turn, lead to higher excess returns.

However, we would also like to conjecture that the centrality-based trading portfolios

have no abnormal return,i.e., no mispricing about the industry portfolios. To verify our

assumption, we do the same rolling window computation as described in Subsection 4.4.2

to generate a time series of 253 networks under each τ level and find the first and least

leading industries of each network. Then we construct the 4 centrality-based trading

strategies and balance them every month with the updated beta network. Finally, we

calculate the average of annualized cumulative log-returns of these strategies and of the

MKT and report their t-stat to decide whether the excess returns are significant. Also, we

regress the monthly excess returns of these strategies to Fama-French three risk factors
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so as to check the existence of abnormal returns. Details are reported in Table 6 and

Table 7. The 4 trading strategies we constructed are as follows:

• long the top 10 leading ’in’ centralized industries (HI strategy)

• long the top 10 leading ’out’ centralized industries (HO strategy)

• long the bottom 10 leading ’in’ centralized industries (TI strategy)

• long the bottom 10 leading ’out’ centralized industries (TO strategy)

The empirical results mostly authenticate the assumption under various market situa-

tions: except for HI in median case, all other more centralized industry portfolios outper-

forms less centralized ones and outperform market portfolios as well. Furthermore, they

have no significant abnormal return when regressing on Fama-French three risk factors.

Even in market with huge downside risk, the more centralized portfolios gain a sizeable

excess return. Therefore, our empirical analysis stands up for the assumption of ’too

central to fail’ of the industry networks, which rests on complicated risk structures of

more centralized industry portfolios.

5 Conclusion

This study extends the general predictive model of industry portfolios to different quantile

levels so as to incorporate tail risks in interdependency measurement and construct net-

work analysis under different market situations. By comparing median level (τ = 0.50)

with upper (τ = 0.95) and lower (τ = 0.05) tail networks, we find out that interde-

pendency across USA industries increases a lot during extreme market situations in the

whole period from 1970.01 to 2017.01. Similar results are achieved under dynamic network

framework - connectedness in stress situations is always higher than that in normality.

The time series of four connectedness measures corresponding to weighted directed net-

works show significant varieties of the interdependency structure dynamics. In addition,

leading industries vary as well when market switches from stable to highly volatile. An
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obvious finding is that financial-related industries evolve as leading ones under stress

situations which highlights their role in bad times. At last, three more additions to net-

work analysis are summarized in the last subsection. First, prediction directions differ

under different τs: lower-tail case involves more positive coefficients while upper-tail cir-

cumstance has more negative ones, which reflects the movement in the same direction

of different assets in crisis, i.e. asset returns are highly affected in the same direction

when market goes down. While in promising situations, they tend to be negatively re-

lated therefore it is more effective to do risk management during these periods since we

can easily find negative-related assets. Second, when quantifying the one-month-ahead

industry return prediction accuracy using dynamic coefficients networks under different

quantile levels, as expected, the lower tail case gives the best prediction performance in

the sense of RMSE. Third, four trading strategies based on network centrality dynamics

are constructed and compared with market portfolio. Empirical results report significant

sizeable excess returns for more centralized industry portfolios, which outperform less

centralized ones and market portfolio, even in bad market situations. With a risk adjust-

ment for Fama-French factors, these strategies do not possess significant risk-adjusted

abnormal returns. Therefore, the higher returns come from the more comlicated risk

structures central industries endow. To conclude, we argue for the possibility of the ef-

fect ’too central to fail’.
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6 Appendices

6.1 Tables

Code Full name Code Full name

Agric Agriculture Drugs Pharmaceutical Products
Food Food Products Chems Chemicals
Soda Candy & Soda Rubbr Rubber & Plastic Products
Beer Beer & Liquor Txtls Textiles
Smoke Tobacco Products BldMt Construction Materials
Toys Recreation Cnstr Construction
Fun Entertainment Steel Steel Works Etc
Books Printing and Publishing FabPr Fabricated Products
Hshld Consumer Goods Mach Machinery
Clths Apparel ElcEq Electrical Equipment
Hlth Healthcare Autos Automobiles and Trucks
MedEq Medical Equipment Aero Aircraft
Ships Shipbuilding, Railroad Equipment LabEq Measuring and Control Equipment
Guns Defense Paper Business Supplies
Gold Precious Metals Boxes Shipping Containers
Mines Non-Metallic & Industrial Metal Mining Trans Transportation
Coal Coal Whlsl Wholesale
Oil Petroleum and Natural Gas Meals Restaurants, Hotels, Motels
Util Utilities Banks Banking
Telcm Communication Insur Insurance
PerSv Personal Services RlEst Real Estate
BusSv Business Services Fin Trading
Hardw Computers Other Almost Nothing
Softw Computer Software Rtail Retail
Chips Electronic Equipment

Table 1: 49 industry portfolios from French’s data library
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τ cycle middleman in out

0.05 0.013 0.016 0.016 0.013
0.50 0.003 0.006 0.006 0.003
0.95 0.015 0.019 0.020 0.014

Table 2: Four connectedness measures of whole sample industry network
INET-connectedness

τ
Leading industries

receivers emitters

0.05
Gold(44)(0.293), Softw(3)(0.284),

Smoke(26)(0.279), Hardw(10)(0.262),
Fin(12)(0.248)

Insur(8)(0.378), Books(32)(0.355),
Autos(21)(0.287), Bank(1)(0.252),
Toys(42)(0.241), Coal(48)(0.228),
Agric(41)(0.209), Aero(24)(0.209),

Hlth(34)(0.203)

0.50 Gold(44)(0.612), Smoke(26)(0.238),
Meals(25)(0.234), Coal(48)(0.216)

Coal(48)(0.624), Fin(12)(0.342),
Ships(46)(0.289), Clths(31)(0.246),

Hlth(34)(0.246)

0.95
Softw(3)(0.356), Guns(39)(0.281),
Gold(44)(0.249), Steel(33)(0.224),
Agric(41)(0.222), Hlth(34)(0.219)

Ships(46)(0.506), Drugs(2)(0.229),
Other(11)(0.225), Coal(48)(0.214),

Boxes(40)(0.213)

Table 3: Top central industries under various stress situations (the number in the first
(second) parentheses is the rank of industry size (eigenvector centrality score) )

INET-eigcentr
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τ
No. of

Coefficients
No. of

Nonzeros
No. of

Negatives
No. of

Positives Max Min Average

0.05 2401 498 158 340 0.517 -0.477 0.007
0.50 2401 218 86 132 0.228 -0.108 0.001
0.95 2401 658 348 310 0.367 -0.729 -0.003

Table 4: Summary predictability magnitude and directions - whole sample
INET-totaldire

τ
No. of

Coefficients
No. of

Nonzeros
No. of

Negatives
No. of

Positives Max Min Average

0.05 2401 579 218 361 0.535 -0.618 0.007
0.50 2401 255 99 156 0.199 -0.150 0.001
0.95 2401 718 396 321 0.575 -0.590 -0.003

Table 5: Summary predictability magnitude and directions - rolling window
INET-rollingdire
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Strategies τ = 0.05 τ = 0.50
HI HO TI TO HI HO TI TO

Excess Returns 0.094** 0.088** 0.074* 0.079** 0.059 0.089*** 0.084* 0.065*
t-stat 2.157 2.050 1.678 2.068 0.929 2.761 1.855 1.756

Strategies τ = 0.95 MKTHI HO TI TO

Excess Returns 0.088* 0.095*** 0.065* 0.072 0.073
t-stat 1.911 2.742 1.853 1.577 1.328

Table 6: Excess returns of centrality-based trading strategy and market portfolio. *,**,
*** denoting the 10%, 5% and 1% significance level respectively.

INET-nettrading

Strategies intercept Mkt-Rf SMB HML R2 Adjusted R2

HI-lowertail 0.002 0.978*** 0.125*** 0.147*** 0.791 0.788
HO-lowertail -0.000 1.020*** 0.085** 0.467*** 0.835 0.833
TI-lowertail -0.002 1.045*** 0.228** 0.564*** 0.875 0.874
TO-lowertail 0.000 0.970*** 0.095*** 0.331*** 0.890 0.888
HI-median -0.002* 1.148*** 0.155*** 0.153*** 0.886 0.885
HO-median 0.000 1.048*** 0.173*** 0.359*** 0.810 0.808
TI-median 0.001 0.983*** 0.147*** 0.321*** 0.797 0.795
TO-median 0.000 0.968*** 0.126*** 0.279*** 0.885 0.883
HI-uppertail 0.001 0.968*** 0.251*** 0.285*** 0.768 0.766
HO-uppertail 0.001 1.001*** 0.169*** 0.339*** 0.853 0.851
TI-uppertail 0.001 0.870*** -0.042 0.334*** 0.842 0.840
TO-uppertail 0.000 0.979*** 0.070** 0.284*** 0.888 0.886

Table 7: Coefficients of excess portfolio returns regressing on Fama-French risk factors.
*,**, *** denoting the 10%, 5% and 1% significance level respectively.

INET-regression

6.2 Figures
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Figure 1: QQ plots of the industries
INET-qqplot
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Figure 2: QQ plots of the industries
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Figure 3: QQ plots of the industries
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Figure 4: QQ plots of the industries
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Figure 5: QQ plots of the industries
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Whole sample industry network_ tau = 0.05 (197001−201701)
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Whole sample industry network_tau=0.95(197001−201701)
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Whole sample industry network_tau=0.95(197001−201701)
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Figure 6: Whole sample network of industry portfolios with larger size denoting the
eigenvector centrality(’in’-left, ’out’-right) - τ = 0.50 (top), τ = 0.05 (middle), τ = 0.95
(bottom)
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Figure 7: The cycle, middleman, in and out connectedness of industry networks:
upperleft(τ = 0.50), upperright(τ = 0.05), lower(τ = 0.95)
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Figure 8: The comparison of industry network connectedness under τ = 0.50, τ = 0.05
and τ = 0.95: upperleft(cycle), upperright(middleman), lowerleft(in), lowerright(out)
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Figure 9: Connectedness across 49 industries - τ = 0.50 (upperleft), τ = 0.05 (upper-
right), τ = 0.95 (lower)
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Figure 10: RMSE of industry return prediction over 253 months for τ = 0.05, τ = 0.50
and τ = 0.95
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