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Abstract

In the present paper we propose a new method, the Penalized Adaptive
Method (PAM), for a data driven detection of structure changes in sparse lin-
ear models. The method is able to allocate the longest homogeneous intervals
over the data sample and simultaneously choose the most proper variables with
help of penalized regression models. The method is simple yet flexible and can
be safely applied in high-dimensional cases with different sources of parameter
changes. Comparing with the adaptive method in linear models, its combina-
tion with dimension reduction yields a method which selects proper significant
variables and detects structure breaks while steadily reduces the forecast error
in high-dimensional data. When applying PAM to bond risk premia modelling,
the locally selected variables and their estimated coefficient loadings identified
in the longest stable subsamples over time align with the true structure changes
observed throughout the market.
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1 Introduction

Parameter instability is widely recognized as a crucial issue in forecasting. This insta-

bility is caused not only by time-variation of coefficients associated with predictors, but

also by varying significance of the predictors themselves. Variable selection is particu-

larly important when the true underlying model has a sparse representation. Ensuring

high prediction accuracy requires high quality of discovering the relevant variables and

ability of adjusting for time-varying coefficient loadings. To handle such instability it is

common to use only the most recent rather than all available observations to estimate

the coefficients and identify significant predictors at each point of time.

In out-of-sample forecasting, model parameters are generally estimated using either

a recursive or rolling window estimation method. These methods are widespread in

many areas, especially in macroeconomics and finance, because structure changes are

often encountered. However, none of them answers the question of how to select the

proper intervals in which the coefficient loadings can be considered to be stationary.

Chen and Niu (2014), Chen and Spokoiny (2015) and Niu et al. (2017), among others,

addressed this issue by applying a data driven adaptive window choice (Polzehl and

Spokoiny (2005), Polzehl and Spokoiny (2006)) to detect the longest homogeneous

intervals over the financial and macroeconomic data samples. The method enables us

to detect structural shifts and select large subsamples of constant coefficient loadings

for predictors, but switches to smaller sample sizes if a structure change is detected.

The procedure is fully data driven and parameters are tuned following a propagation-

separation approach.

As pointed out by Chen and Niu (2014) the short memory view is quite realistic

and easily understood in the context of business cycle dynamics, policy changes and

structural breaks. However, we are going to face another question, where we consider

the stability of the coefficient loadings and their significance.

Considering the variable selection problem, the traditional criteria such as AIC and

BIC become infeasible due to expensive computation in high-dimensional data (Zou

and Li (2008)). Fan and Li (2001) advocate the use of penalty functions satisfying cer-

tain conditions so the resulting penalized likelihood estimator possesses the properties

of sparsity, continuity and unbiasedness while introducing the Smoothly Clipped Ab-

solute Deviation (SCAD) penalty. Moreover, Fan and Li (2001) gave a comprehensive

overview of feature selection and proposed a unified penalized likelihood framework to

approach the problem of variable selection. Alternatively, the recent advances of vari-

able selection enable us to construct efficient estimation methods. Zou and Li (2008)

developed the one-step SCAD algorithm to solve the estimation procedures based on

nonconcave penalized likelihood problems. For the SCAD penalty it has been shown

that for the appropriate choice of the regularization parameter the nonconcave penal-
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ized likelihood estimates perform as well as the oracle procedure in terms of selecting

the correct subset of covariates and consistent estimation of the true nonzero coeffi-

cients.

Although both the adaptive method and penalized regression models enjoying ora-

cle properties increase prediction accuracy compared with traditional least squares or

maximum likelihood methods, neither of them can provide a complete solution when

dealing with parameter instability. On one hand, the adaptive algorithm associates

nonzero coefficients to all of the predictors which may result in a too large model. On

the other hand, treating the whole sample size as a stationary data and performing vari-

able selection and coefficient shrinkage to fit the model also contradicts the economic

background, since it is known there are structural breaks and regime switches observ-

able throughout history. Thus the whole sample size data should not be considered as

homogeneous.

It seems unwise to directly use some of the penalized regression methods to deal with

the macroeconomic problems. It is because predictors can be important during partic-

ular periods of time and insignificant in others when the economic situation changes.

Therefore we propose to do the breaking points detection simultaneously with the

variable selection in a fully data driven way.

In this paper we derive a new method - the Penalized Adaptive Method (PAM) - which

can handle all of the previously described challenges. It provides a new way to per-

form variable selection and structure breaks detection at the same time, i.e. a way to

capture parameter instability. With the use of PAM one can detect the longest homoge-

neous intervals observable throughout the data sample and simultaneously identify the

relevant predictors which improves the performance of the out-of-sample forecasting.

In the derived approach we assume that the local model with homogeneous parame-

ters will hold with high probability for the forecast horizon and can be automatically

identified.

The rest of the paper is organized as follows. In Section 2 we shortly describe the

propagation-separation approach introduced by Polzehl and Spokoiny (2006) and the

penalized regression method SCAD (Fan and Li (2001)) with its one-step algorithm

developed by Zou and Li (2008). Further into the section we then combine those two

methods into so-called PAM. In Section 3 we perform the simulation study. Section 4

deals with the application of PAM to a real dataset consisting of excess bond returns

and macrovariables observed on the market. Section 5 concludes.

Both simulation study and real data application were performed with help of R software

(R Core Team (2014)) and the codes are available on quantlet.de.
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2 Penalized Adaptive Method

As mentioned previously, there are several approaches on how to model time-variation

in coefficient loadings. One can simply use rolling windows as it was done for example

in Härdle et al. (2016), where the authors modelled time variation observable on the

financial market. However, this approach has a drawback of selecting the window size

prior to model fitting. Of course, this can be done using some external information

about the behaviour of the data, e.g observable business cycles or seasonality.

2.1 Propagation-separation approach

In the proposed framework we want to circumvent the use of a priori knowledge about

the data by selecting the window in a fully data driven way. We will do so by im-

plementing the propagation-separation approach of Polzehl and Spokoiny (2005) and

Polzehl and Spokoiny (2006). In the context of model fitting, propagation condition

means that the local model can be extended to a longer interval under the assumption

of homogeneity. To the opposite, separation means that the extension is restricted to

the homogeneous interval. Let us introduce the notation we are going to use throughout

this paper, in order to denote the propagation-separation approach from mathematical

point of view.

Assume a linear model with a vector of responses Y = (Y1, Y2, . . . , Yn)>, a vector of

parameters β = (β1, . . . , βp)
>, an (n× p) design matrix X and a vector of independent

errors εi with zero mean and variance σ2. In this work we assume that the number

of parameters p and that the parameter vector β is sparse, i.e. only some number q,

q < n, of the true coefficients are nonzero.

Now divide the sample of n observations into M nested subintervals. Then for each

time point t we have

I
(1)
t ⊂ I

(2)
t ⊂ I

(3)
t ⊂ . . . ⊂ I

(M)
t ,

with n
(m)
t observations in each subinterval I

(m)
t , for m = 1, . . . ,M . Number of subin-

tervals M is arbitrary, however should be reasonably small, so the computation and

model fitting is feasible. Increments of observations between two adjacent intervals do

not have to be constant.

The algorithm starts with fitting a local model with maximum likelihood (ML) method

for the shortest interval I
(1)
t

β̃
(1)
t = arg max

β
L(β, I

(1)
t ), (1)

where L(·) stands for the joint log-likelihood function. The interval I
(1)
t is homogeneous

by assumption, therefore should be short enough so this assumption holds with high
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probability. In order to explain the adaptive algorithm, we closely follow Chen and

Niu (2014). Let us denote the so called adaptive estimator of the m-th interval by

β̂
(m)
t . The adaptive estimator of the first subinterval I

(1)
t is equal to the ML estimator

β̃
(1)
t , which holds because of the previously stated assumption of local homogeneity

throughout the interval I
(1)
t .

Then the propagation-separation approach means that we are testing for significant

changes across the neighbouring subsamples with the use of the following test statistic

T
(m)
t = |2L(β̃

(m)
t , I

(m)
t )− 2L(β̂

(m−1)
t , I

(m)
t )|1/2, m = 2, . . . ,M. (2)

Here β̃
(m)
t stands for the ML estimator of the vector of parameters using the subinterval

I
(m)
t and β̂

(m−1)
t = β̃

(m−1)
t is the previously accepted adaptive estimator from the subin-

terval I
(m−1)
t . Both log-likelihood functions in (2) are evaluated over the subinterval

I
(m)
t so the test statistic T

(m)
t measures the difference between the adaptive estimator

from the previous subsample and the current ML estimator. Correctly calibrated set

of critical values ζ1, . . . , ζM is crucial in quantifying the significance level. We refer to

Chen and Niu (2014) or Niu et al. (2017) for a calibration relevant for an unpenalized

linear model.

Having the set of critical values ζ1, . . . , ζM , the algorithm proceeds as follows

Adaptive Algorithm

1. Initialization: β̂
(1)
t = β̃

(1)
t

2. m = 2

3. While T
(m)
t ≤ ζm and m ≤M

β̂
(m)
t = β̃

(m)
t

m = m+ 1

4. Final estimate β̂
(l)
t = β̂

(m−1)
t , for l ≥ m

According to Chen and Niu (2014), after detecting a structure change in the dataset

using step 3 from the algorithm, the final estimate from step 4 is the ML estimate from

the longest identified homogeneous interval and it is used as a valid estimate also for

longer subsamples. Since we want to correctly identify all of the possible change points

in our data, after detecting the change we initiate the algorithm from the beginning

with a smaller data sample.

2.2 SCAD penalty

So far we were dealing with a linear model, where the number of parameters is pre-

defined or chosen by one of the variable selection methods available. As mentioned
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previously, variable selection with use of BIC or AIC criteria might not be compu-

tationally feasible when dealing with high-dimensional data. Therefore our aim is to

combine the foregoing adaptive algorithm with penalized regression methods, which

serves the objective of simultaneous dimension reduction and nonstationarity detec-

tion.

For this purpose we are using the smoothly clipped absolute deviation (SCAD) method

introduced by Fan and Li (2001). The reason why we choose nonconcave SCAD penalty

over the least absolute shrinkage and selection operator (LASSO) developed by Tibshi-

rani (1996) is that the SCAD penalty yields oracle estimator under some conditions on

a shrinkage parameter λ. LASSO selects the true model consistently (almost) only if

the irrepresentable condition is satisfied (Zhao and Yu (2006)). As this would impose

constraints on the design matrix X, we are omitting the application of LASSO as a

variable selection method.

Moreover, SCAD estimator enjoys three important properties desirable in penalized

regression model fitting, which are sparsity, continuity and unbiasedness. All of them

play a crucial role in PAM when it comes to calibration of critical values and, finally,

longest homogeneous subinterval identification.

However, a drawback of SCAD penalty is its nonconcavity. Fan and Li (2001) proposed

an algorithm with local quadratic approximation (LQA) of SCAD penalty to be able

to perform the shrinkage and selection as a minimization problem. Zou and Li (2008)

revisited the task of finding the solution to penalized likelihood problem and devel-

oped an algorithm with local linear approximation (LLA) of the broad class of penalty

functions with SCAD among others. In their work they showed the proposed method

outperforms the LQA approach, in a sense that it automatically adapts a sparse solu-

tion. What is more, the computational cost is significantly reduced by using only one

iteration step as the efficiency of the algorithm is the same as for the fully iterative

method. This holds under the assumption that the initial estimators are reasonably

chosen.

In this paper we perform the penalized likelihood estimation of the vector of parameters,

i.e. we maximize the objective function

Q(β) =
n∑
i=1

li(β)− n
p∑
j=1

pλ(|βj|), (3)

with li(·) a non-penalized log-likelihood function for an observed couple (Yi, Xi) and

pλ(·) a penalty function with parameter λ > 0. The SCAD penalty is in Fan and Li

(2001) defined as a continuous differentiable function

p′λ(|βj|) = λ

{
I(|βj| ≤ λ) +

(aλ− |βj|)+
(a− 1)λ

I(|βj| > λ)

}
, (4)
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for some a > 2 (a = 3.7 was suggested as a generally good choice) and λ > 0. By I(·)
we denote an indicator function and (·)+ = max(0, ·).

Following the LLA approach by Zou and Li (2008), the general penalty function pλ(|βj|)
can be locally approximated by

pλ(|βj|) ≈ pλ(|β(0)
j |) + p′λ(|β

(0)
j |)(|βj| − |β

(0)
j |), (5)

for some βj ≈ β
(0)
j . Then the k-th iteration step estimator of their proposed procedure

is defined as follows

β(k+1) = arg max
β

{
n∑
i=1

li(β)− n
p∑
j=1

p′λ(|β
(k)
j |)|βj|

}
(6)

for k = 1, 2, . . ., and β(0) being a non-penalized maximum likelihood estimator. The

iteration process stops if the sequence {β(k)} converges. We refer to Zou and Li (2008)

for the proof of convergence and oracle properties of the one-step SCAD estimator

under condition that the penalty parameter λ satisfies

√
nλn →∞ and λn → 0. (7)

Here we use a subscript n to denote the dependency of λn on number of observations

n in the model.

2.3 Penalized Adaptive Method

As discussed, both propagation-separation approach and penalized regression with

SCAD penalty function have their advantages in capturing non-stationarity and di-

mension reduction, respectively. To combine the properties of these two methods,

we propose an algorithm called Penalized Adaptive Method (PAM). In PAM we are

building a procedure, which deals with non-stationary and high-dimensional data si-

multaneously in a data driven way. Adaptive way of choosing window size helps us

in determining the longest homogeneous subsample of a given dataset and penalized

regression reduces the dimension so the interpretability of the model is improved.

One of the differences from previously introduced propagation-separation approach lies

in using a penalized likelihood function Q(β) rather than its non-penalized counterpart,

i.e. the test statistic takes the form

T
(m)
t = |2Q(β̃

(m)
t , I

(m)
t )− 2Q(β̂

(m−1)
t , I

(m)
t )|1/2, m = 2, . . . ,M, (8)

where Q(β, ·) is defined as previously in equation (3) with the second argument denot-

ing the interval over which is the function evaluated. β̃
(m)
t is a SCAD estimator over

7



the subinterval I
(m)
t , i.e. β̃

(m)
t = arg maxQ(β, I

(m)
t ) and β̂

(m−1)
t = arg maxQ(β, I

(m−1)
t )

is a SCAD estimator from previously accepted homogeneous subinterval I
(m−1)
t . Nev-

ertheless, a major difference comes into play when one focuses on calibration of the

critical values as a crucial part of the adaptive method itself. Distribution of the test

statistic is unknown for the non-penalized case in (2) and for the penalized case (8) one

important question arises; how do we compute confidence sets for sparse estimators of

β? Fan and Li (2001) derived a formula for variance approximation of the non-zero

components of the SCAD estimator of β. However, as pointed out in their work, esti-

mated standard deviation for zero components of the estimator is 0 and therefore one

is unable to do any inference related to those elements of vector β. This was also a

problem in Tibshirani (1996) and it was reconsidered by Chatterjee and Lahiri (2011).

In their work, Chatterjee and Lahiri (2011) developed a modified residual bootstrap

which, under some mild conditions, consistently estimates variance of all of the param-

eter values, both zero and nonzero. Moreover, they show that for the adaptive LASSO

(Zou (2006)) the residual bootstrap yields consistent variance estimators even without

use of any modification.

Despite these results, residual bootstrap should not be used when the design matrix

is random. Instead, one should perform bootstrap on the observed couples (Yi, Xi),

i = 1, . . . , n, where Xi ∈ Rp is the i-th row of the design matrix X. Since we are

interested in evaluating likelihood based confidence sets, one of the possibilities at

hand is so-called wild or multiplier bootstrap. For the case of non-penalized likelihood

Spokoiny and Zhilova (2015) developed useful theoretical results valid even for small

or moderate sample sizes with possible model misspecification. In this section we are

going to relate their results with the method used for critical values calibration in PAM.

2.3.1 Multiplier Bootstrap for Penalized Likelihood

In order to describe the multiplier bootstrap procedure for likelihood based functions,

we closely follow Spokoiny and Zhilova (2015) with extension of the notation for the

penalized likelihood case. Let us use the notation from previous chapters for the non-

penalized log-likelihood function L(β) =
∑n

i=1 li(β), i.e. li(β) denotes the parametric

logarithmic density of the i-th observation in a given sample. Assume a set of i.i.d.

scalar random variables ui, i = 1, . . . , n, which are independent of Y and X, if X

is considered random. Further assumptions about the so-called multipliers are that

E(ui) = 1, var(ui) = 1 and E(exp(ui)) < ∞. Multiplying the elements of L(β) by the

defined random variables ui we get the bootstrap penalized log-likelihood function as

follows

Q◦(β) =
n∑
i=1

li(β)ui − n
p∑
j=1

pλ(|βj|). (9)
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Denoting E◦(·) = E(·|Y ) we then can write

arg max
β

E◦Q◦(β) = arg max
β
Q(β) = β̃. (10)

Thus, as pointed out by Spokoiny and Zhilova (2015), the target parameter in the

bootstrap world coincides with the penalized MLE of the real world. The penalized

MLE of the bootstrap world is then defined as

β̃◦ = arg max
β
Q◦(β). (11)

It is important to note, that the parameter λ of the SCAD method is the same for

Q(β) and Q◦(β). Then one circumvents the problem of penalizing elements of vector β

by a different amount in the real and the bootstrap case, which could lead to unstable

results.

If one wishes to approximate the distribution of the test statistic {2Q(β̃)−2Q(β∗)}1/2,
where β∗ denotes the real unknown parameter vector, it can be done (up to some

approximation error) by using the ratio {2Q◦(β̃◦)−Q◦(β̃)}1/2, where all of the elements

are known. Then, similarly, one can use this approximation for finding critical values

for the aforementioned test statistic. Specifically, let 1 − α ∈ (0, 1) be a determined

confidence level of a testing procedure. It is then straightforward to follow, that the

approximation of a desired quantile of the distribution of the likelihood ratio

ζ∗α = inf{z ≥ 0 : P{Q(β̃)−Q(β∗)} > z2/2 ≤ α} (12)

can be evaluated as

ζ◦α = inf{z ≥ 0 : P◦{Q◦(β̃◦)−Q◦(β̃)} > z2/2 ≤ α}, (13)

where P◦ denotes conditional probability given vector of observation Y. For further the-

ory on embedding multiplier bootstrap into non-penalized likelihood function setting,

we refer the reader to Spokoiny and Zhilova (2015).

2.3.2 Critical Values Calibration

Using results from the previous section, we propose to calibrate corresponding critical

values for PAM by using the multiplier bootstrap method based on penalized likelihood

function from (3). Speaking in terms of the adaptive window choice the procedure is as

follows. Assume sequence of nested intervals I
(1)
t ⊂ I

(2)
t ⊂ . . . ⊂ I

(M)
t for a given time

point t. Suppose the interval I
(m−1)
t is homogeneous. We have the SCAD estimator

β̃
(m−1)
t = arg max

β
Q(β, I

(m−1)
t ), (14)

which we also call an adaptive estimator for the given subinterval and denote it by

β̂
(m−1)
t . Next step is to analogously find β̃

(m)
t and corresponding penalty parameter

9



λ
(m)
t . Remember, the second parameter of the SCAD penalty function, a, is kept

constant and equal to 3.7 as suggested by Fan and Li (2001).

We implement the multiplier bootstrap into assessing quantiles of the test statistic from

(8) by simulating a large number B of i.i.d. multipliers ui, i = 1, . . . , n
(m)
t . Computing

|2Q◦b(β̃◦b(m)
t , I

(m)
t )− 2Q◦b(β̃

(m)
t , I

(m)
t )|1/2, b = 1, . . . , B, (15)

we get an approximate distribution of |2Q(β̃
(m)
t , I

(m)
t ) − 2Q(β

∗(m)
t , I

(m)
t )|1/2, a trans-

formation of the real likelihood ratio if one denotes the real unknown parameter over

the supposedly homogeneous interval I
(m)
t by β

∗(m)
t . Next, for a given confidence level

1− α ∈ (0, 1) the critical value is defined as

ζ
(m)
tα = inf{z ≥ 0 : P◦{Q◦(β̃◦(m)

t , I
(m)
t )−Q◦(β̃(m)

t , I
(m)
t )} > z2/2 ≤ α}. (16)

Comparing the test statistic from (8) to the above defined critical value we either reject

the homogeneity hypothesis, if T
(m)
t > ζ

(m)
tα , for the given confidence level, or move to

the next step in PAM algorithm and prolong the subsample regarded as homogeneous.

3 Simulation Study

In order to justify the use of multiplier bootstrap in critical values calibration we

include a simulation study concerning its performance. Using the LLA algorithm of

Zou and Li (2008), we need multipliers ui, i = 1, . . . , n to be non-negative. Therefore

we propose to use either ui ∼ Exp(1) or ui having a bounded distribution on interval

(0, 4) with a pdf

f(ui) =


3

14
if 0 ≤ ui ≤ 1;

1

12
1 < ui ≤ 4.

(17)

In the simulation study we consider a linear model Y = Xβ + ε with number of

observations n and number of parameters p from which only q ≤ p are nonzero. Design

matrix X is taken from p-dimensional normal distribution as follows

{Xi}ni=1 ∼ Np(0,Σ), (18)

with elements {σij}pi,j=1 of the covariance matrix Σ satisfying σij = 0.5|i−j|. Error

terms εi are simulated as i.i.d. from N(0, 1). We consider n = 50, 100, 200 to assess

performance for small to medium sized samples. Number of parameters p is set to be

p = 10 and for each n we define q = 3, 5 as number of real nonzero parameters, i.e.

β = (1, 1, 1, 0, . . . , 0)> or β = (1, 1, 1, 1, 1, 0 . . . , 0)>. For each of the studied settings

we simulated 1 000 scenarios and for each scenario we simulated 10 000 ui’s both
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exponentially and bounded distributed in order to obtain an approximation of the

penalized likelihood distribution.

Summary of the simulation is given in Table 1. We set α = 0.1, 0.05, 0.025 to compute

the upper quantiles of the bootstrap penalized likelihood ratio distribution. In Table

1 one can see percentage of occurrences of the event, when the real likelihood ratio

Q(β̃) − Q(β∗) was smaller or equal than the respective quantile of its approximated

distribution.

Bound Exp Bound Exp Bound Exp
n q 90 % 95 % 97.5 %

50
3 85.7 85.9 90.6 91.2 94.3 95.2
5 80.3 80.1 87.8 89.6 94.0 95.4

100
3 94.0 93.9 96.8 97.0 98.0 98.4
5 89.4 89.4 94.2 94.8 96.8 97.5

200
3 95.4 95.5 97.7 98.3 99.3 99.4
5 89.7 89.5 94.0 94.4 96.3 97.0

Table 1: Multiplier bootstrap performance

As can be seen from Table 1, for the case of n = 50 approximated quantiles of the

penalized likelihood ratio statistic are smaller than expected. This is due to use of the

penalized regression method, which creates bigger estimation error for small sample

sizes and this error is not mirrored in the bootstrap world. Also the performance

of bootstrap quantiles increases with increasing ratio q/p, the ratio of nonzero to all

parameters in the model. For the cases of n = 100, 200 and q = 5 we see, that the

bootstrap quantiles approximate the real quantiles reasonably well. This holds for

both bounded and exponentially distributed multipliers ui, i = 1, . . . , n. Explanation

lies in the use of SCAD penalty and its oracle properties, which with increasing n

guarantee that the model parameters are consistently fitted. Moreover, with penalty

parameter λn approaching zero as number of observations n increases one can see

that the penalized likelihood Q(β) approaches its non-penalized form L(β) where the

number of parameters of the model is equal to q and inference from Spokoiny and

Zhilova (2015) can be applied.

3.1 Change Point Detection

In the following we perform a simulation study regarding the use of bootstrap critical

values in a change point detection, i.e. in the propagation-separation approach to

adaptive window choice. We again assume a linear model Y = Xβ + ε, with the same
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design matrix X and the error term ε as before. For this study we use number of

subintervals M = 20 and we keep increments between successive subintervals constant,

n
(m+1)
t − n(m)

t = 50, for m = 1, . . . ,M − 1. Then we define the true parameter vector

β∗i ∈ Rp, p = 10, i = 1, . . . , n
(M)
t as

β∗i =

{
(1, 1, 1, 1, 1, 0, . . . , 0) if i < icp;

(2, 2, 2, 2, 2, 0, . . . , 0) i ≥ icp,
(19)

where icp denotes an observation with a change point. Further, for comparison, we use

multipliers ui with exponential and bounded distribution, where the latter is defined

by (17). We simulated 500 scenarios for 18 different icp, i.e. for each scenario there

was only one change point occurring throughout the set of all observations n
(M)
t . Re-

sults of the multiplier bootstrap performance are summarized in Table 2 and Table 3,

respectively.

icp 50 100 150 200 250 300
Corr 100 100 100 100 100 100

1stCorr 100 79.6 78.2 78.2 78.2 78.2
icp 350 400 450 500 550 600

Corr 100 100 100 99.8 99.6 99.8
1stCorr 78.2 78.2 78.2 78.2 78.0 78.0
icp 650 700 750 800 850 900

Corr 100 99.4 99.6 98.6 99.4 98.2
1stCorr 78.2 77.6 77.8 76.6 77.8 76.8

Table 2: Percentage of correctly identified change points with use of ui
iid∼ Exp(1).

icp 50 100 150 200 250 300
Corr 100 100 100 100 100 100

1stCorr 100 79.6 78.2 78.2 78.2 78.2
icp 350 400 450 500 550 600

Corr 100 100 100 99.8 99.6 99.8
1stCorr 78.2 78.2 78.2 78.2 78.0 78.0
icp 650 700 750 800 850 900

Corr 100 99.4 99.6 98.4 99.4 98.2
1stCorr 78.2 77.6 77.8 76.6 77.8 76.8

Table 3: Percentage of correctly identified change points with use of ui
iid∼ bounded

from (17).

In the aforementioned tables we denote a percentage of correctly identified change

points by “Corr” and “1stCorr” stands for a percentage of correctly identified change

12



points, which were identified as the first ones occurring. One can see that the latter went

abruptly down when the change point occurred later than in the second subinterval

I
(2)
t . This is the issue we addressed previously noticing that the critical values are

generally smaller than the real quantiles of the test statistic (8) if the sample size

is small. Therefore they incorrectly reject the homogeneity hypothesis of the second

interval and this error mirrors in the lower number of correctly identified occurrences

of the first change points in the given set of observations. After this abrupt decline, the

value of “1stCorr” stays approximately constant for both distributions of ui’s, meaning

that the homogeneity hypothesis of the interval I
(2)
t is falsely rejected in approximately

20 % of the scenarios for all of the 18 cases. Otherwise the method performs reasonably

well with high values of “Corr” in all of the cases.

With reference to the simulation results one would suggest the use of moderate number

of observations for model fitting or a correction of calibrated critical values correspond-

ing to smaller sample sizes.

4 Excess Bond Premia Modelling

In this section we use the previous results and apply PAM to the excess bond premia

modelling problem. Motivation for this application comes mainly from Cochrane and

Piazzesi (2005) and Ludvigson and Ng (2009), where they used linear model with macro

factors in order to forecast bond risk premium, which was regarded, by the expectation

hypothesis, as unforecastable in the past. Cochrane and Piazzesi (2005) reconsidered

model of Fama and Bliss (1987), who proved that the expectation hypothesis does

not hold and compared it to their newly proposed factor model which was shown to

outperform the preceding one.

However, all of the previous authors considered the coefficient loadings in their models

to be homogeneous throughout the whole sample size and if not, they assumed the

factor models compensate for the non-stationarity (Ludvigson and Ng (2009)). Our

aim is to introduce possible time-varying coefficient loadings into the modelling and

also propose a different dimension reduction which will not come from factor models,

but rather from a penalized regression. The advantage of the latter lies in direct

association of the modelled bond risk premia with actual macroeconomic variables,

which simplifies model interpretation. To the best of our knowledge such an approach

has not yet been implemented in the case of macroeconomic modelling.

As for the notation, we closely follow Cochrane and Piazzesi (2005) throughout the

chapter. Let us denote the log bond prices by p
(k)
t = log price of k-year discount bond
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at time t. Then the log yield is determined by

y
(k)
t = −1

k
p
(k)
t .

Further, log forward rate for loans between time t+ k− 1 and t+ k specified at time t

is

f
(k)
t = p

(k−1)
t − p(k)t

and the log holding period return from buying a k-year bond at time t and selling it

at time t+ 1 as a (k − 1)-year bond is denoted by

r
(k)
t+1 = p

(k−1)
t−1 − p

(k)
t .

Finally, for the excess log returns we write

rx
(k)
t+1 = r

(k)
t+1 − y

(1)
t , for k = 2, 3, 4, 5.

In their work, Cochrane and Piazzesi (2005) started with considering linear regressions

with excess log returns for all maturities as dependent variables and all of the related

forward rates as predictors, i.e.

rx
(k)
t+1 = β

(k)
0 + β

(k)
1 y

(1)
t + β

(k)
2 f

(2)
t + . . .+ β

(k)
5 f

(5)
t + ε

(k)
t+1, (20)

for k = 2, 3, 4, 5. Further they specified a single factor for modelling expected excess

returns for all k. Since we are interested in time-variation and dimension reduction, we

omit the description of their further model. Nevertheless, let us take the model from

(20) as a baseline model with which we later compare performance of PAM.

In what follows we deviate from work of Cochrane and Piazzesi (2005) in the sense

that we adopt results of Ludvigson and Ng (2009) who showed that inclusion of macro

variables, or factors based on macro variables to be more specific, improves the model

fit and its forecasting performance. This serves our purpose, since with PAM we can

include large number of covariates and reduce the dimension of the model afterwards.

We use monthly US data obtained from CRSP and Federal Reserve Board. The time

span over which the data sample was taken is from January 1995 to December 2014.

In addition to the forward rates as defined previously we consider their 1-year lagged

values and other macroeconomic variables which are specified in Table 4. Altogether

the predictors yield a dimension of p = 20.

As discussed previously, when using multiplier bootstrap in combination with penalized

likelihood function, the critical values are small and falsely detect change points in

the model if the number of observations in the sample n is small. Therefore we use

a cubic spline interpolation of given covariates to obtain “weekly” observations and

therein increase our information set.
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Let us now specify the proposed model. For each k = 2, 3, 4, 5 we assume

rx
(k)
t+1 = β0t

(k) + β
(k)>
1t ft + β

(k)>
2t ft−1 + β

(k)>
2t Mt + ε

(k)
t+1, (21)

where ft = (y
(1)
t , f

(2)
t , . . . , f

(5)
t )> and ft−1 is defined analogously. Vector Mt then defines

all of the macro variables from Table 4. Apart from adding more predictors into the

model, there is another difference between our approach and that of Cochrane and

Piazzesi (2005), we allow for time-variation which is denoted by the subscript t.

Figure 1: Comparison of a fitted baseline forward rates model (blue) and PAM (black)
performance where the true excess bond risk premia for maturity 2 years is depicted
as a red curve.

5 Concluding Remarks

In the presented paper we introduced a novel approach for capturing nonstationarity

and reducing dimension of the model by Penalized Adaptive Method. We argued its
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1. Federal fund returns
2. 10-year treasury bond returns
3. 7-year treasury bond returns
4. 5-year treasury bond returns
5. 2-year treasury bond returns
6. 1-year treasury bond returns
7. Inflation rate (year-on-year price changing rate)
8. Industrial production (year-on-year growth of industrial production)
9. Returns on S&P 500 index
10. Value-weighted return excluding dividend

Table 4: List of macroeconomic variables

advantages and applied the procedure to excess bond risk premia modelling, where we

compared our model to the baseline of Cochrane and Piazzesi (2005). Further extension

of PAM which we hope could be of interest lies in implementing the case when p ≥ n

and/or modelling quantiles.
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