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Spatial Functional Principal Component Analysis

with Applications to Brain Image Data∗

Yingxing Li†, Chen Huang‡, Wolfgang K. Härdle§

Abstract

This paper considers a fast and effective algorithm for conduct-

ing functional principle component analysis with multivariate factors.

Compared with the univariate case, our approach could be more pow-

erful in revealing spatial connections or extracting important features

in images. To facilitate fast computation, we connect Singular Value

Decomposition with penalized smoothing and avoid estimating a huge

dimensional covariance operator. Under regularity assumptions, the

results indicate that we may enjoy the optimal convergence rate by

employing the smoothness assumption inherent to functional objects.

We apply our method on the analysis of brain image data. Our ex-

tracted factors provide excellent recovery of the risk related regions of

interests in human brain and the estimated loadings are very informa-

tive in revealing the individual risk attitude.
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Asymptotics; functional Magnetic Resonance Imaging (fMRI).
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1 Introduction

Principal component analysis (PCA) and its functional version (FPCA) are

widely used for dimension reduction. This method has been successfully ap-

plied in many fields including genetic studies, risk management, psychology,

environmental studies, etc (Jolliffe, 2002; Ramsay and Silverman, 2005). The

basic principle is to find a basis for a k-dimensional affine linear subspace

that best approximates the data. If the data points are finite-dimensional

vectors, the basis vectors are called principal components, or factors. If the

data points are in an infinite-dimensional Hilbert space, the basis functions

are then called functional principal components or factors. One could sum-

marize the data variation and information via some low dimensional loadings,

which are projections of the individual observations over the factors.

In classical FPCA, factors are often used to capture the dynamics in

time and are assumed as smooth univariate functions of some time variable,

say t (Yao et al., 2003; Di et al., 2009; Staicu et al., 2014). Along with

the advance of technology, it is now very often to obtain data sets that

are measured at different locations or units. It is then of great research

interest to characterize the spatial connection among these observations for

better inference or prediction. From the perspective of dimension reduction,

it is quite natural to extend the idea of FPCA and let the factors be the

space function to capture the spatial correlation. However, location index

is usually of multi-dimensionality and require careful handling to balance

between flexibility and complexity.

One motivated example for this is from neuro-economics study. Recently,

there have been explosive interests in understanding which part of our brain

is activated during risky decisions and how the human brain regulates spe-

cific decision-making tasks (Wang et al., 2013; Majer et al., 2016). A po-

tential solution to this problem is to analyze the fMRI image data during

an experiment, where each fMRI image contains signals that are captured
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on a 3 dimensional spatial brain maps. In the study of van Bömmel et al.

(2014), each fMRI image has a total dimension of 91×109×91 observations.

Such huge dimensionality raises new challenges for statistical inference. A

straightforward approach would vectorize the 3D image into 1D vector of di-

mension 106, but this might implicitly break the spatial connections (Heller

et al., 2006). Chen et al. (2015) proposes to conduct a 3D FPCA, but their

approach needs to estimate a 6D smooth covariance function, and the com-

putation cost is quite expensive.

In this paper, we propose a general algorithm that could conduct FPCA

for d-way arrays, where the spatial feature is captured by nonparametric

factors, and individual characteristics is summarized by the factor loadings.

Our contributions could be summarized as the follows: First, our approach

could be viewed as a nonparametric multidimensional PCA. On one hand,

we avoid vectorization and potential destroy of spatial structure. On the

other, the nonparametric approach frees us from severe model misspecifica-

tion. Second, by utilizing penalized splines and singular value decomposition

techniques, we propose a fast data-driven algorithm that could reduce com-

putation burdens without much scarification of estimation efficiency; Third,

we also develop asymptotic properties for our estimators. To the best of our

knowledge, this might be the first paper that discuss theoretical properties

of fPCA associated with non 1D domain. Our settings embrace scenarios

with a very large dimensional observations and a relatively small number of

individuals. Under regularity assumptions, the results indicate that we may

enjoy optimal convergence rate by employing smoothness assumption. The

real data analysis also demonstrate the success of our approach.

The rest of the paper is organized in the following way. We introduce

our estimation procedure and discuss its theoretical properties in Section 2.

Section 3 conducts real data analysis and Section 4 concludes. All proofs

and technical details are put in the appendix.
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2 Methodology

Let {Xi}Ii=1 denote i.i.d. random functions on a compact region F , satisfying∫
F E(X2

i ) <∞. In this paper, we focus on the dense setting such that Xi has

d-dimensional array structure, where the total dimension for each individual

n =
∏d
k=1 nk could be large. For example, Xi could be the 3D image of

individual i, then it consists of an n1×n2×n3 array data. Denote the mean

function of all Xi as µ. Then we may represent each Xi as

Xi(s) = µ(s) +
∞∑
j=1

ψijφj(s), (2.1)

where s denotes the d-dimensional coordinate, φj and ψij are the jth factor

and its loading respectively, satisfying that ψij are i.i.d. random variables

with mean 0 and variance σ2j . In practice, one has noisy observations Yi,s =

Xi(s)+εi,s instead, where the error terms are independent with 0 mean and

variance σ2i (s).

It is natural to estimate the factors φj(s)’s via eigendecomposition per-

formed on a smooth estimate of Cov(Xi(s), Xi(s
′)). Utilizing multivariate

smoothing techniques, we could achieve this task by smoothing the sample

version of the covariance Cov(Yi,s, Yi,s′) for s 6= s′. Such an approach could

guarantee the orthogonality among φj(s), and it is also valid under irregu-

lar sparse setting such that each individual only has a bounded number of

observations. However, in the scenario of a regular dense setting where the

observations from each individual are of a huge dimension n, both multivari-

ate smoothing and eigendecomposition face great computational challenges.

Therefore, it calls for an algorithm that could circumvent the difficulty

mentioned above. As an initial try, we first consider the univariate case

where the collection of all Yi,s forms the vector Yi = (Yi1, . . . , Yin)>. Un-

der the regular dense setting, the sample covariance has the matrix form

I−1
∑I

i=1(Yi − Ȳ )(Yi − Ȳ )>, where Ȳ = I−1
∑I

i=1 Yi. Motivated by the
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idea of Xiao et al. (2013), a fast bivariate smoothing could be done via left

and right multiplying the smoothing matrix Sλ using a common smoother λ

due to the symmetry of the covariance function, where λ is the smoothing

parameter and

Sλ = B(B>B + λP )−1B>, (2.2)

with B and P being the B-spline design matrix and penalty matrix respec-

tively. Correspondingly, the smoothed covariance estimate has the form

Sλ{I−1
∑I

i=1(Yi− Ȳ )(Yi− Ȳ )>}Sλ = I−1
∑I

i=1{Sλ(Yi− Ȳ )}{Sλ(Yi− Ȳ )}>.

This implies that, when I is finite or moderately small, the sample covariance

of the smoothed individual functions could also yield a smoothed covariance

function. In the general case with d way array data Yi,s, we could consider the

following algorithm to avoid 2d dimensional multivariate covariance smooth-

ing and eigendecomposition:

Step 1 Partition the whole domain into m =
∏d
k=1mk cubes and calculate

the sample average µi,s̃ and the sample variance σ2i,s̃ for each cube of

index s̃.

Step 2 Calculate the I × I inner product matrix V , whose (i, i′)th element

is vij = m−1〈Ỹi − Ỹ , Ỹj − Ỹ 〉 for i 6= i′, where Ỹi is the vector that

collects all µi,s̃, and Ỹ = I−1
∑I

i=1 Ỹi. Let Vσ be the diagonal matrix

whose (i, i)th element is
∫
σ2i,s̃ds̃. Perform eigendecomposition on Ṽ =

V −mn−1Vσ and obtain the raw estimate of the loading ψ̃ij ’s.

Step 3 Regress Yi,s on loading ψ̃ij over all i to obtain the raw estimate of the

jth factor φ̃j(s). Then smooth φ̃j(s) over s to obtain φ̂j(s).

Step 4 Regress Yi,s over φ̂j(s) to obtain the updated loadings ψ̂ij ’s.

In brief, the above algorithm gains computation advantages by combin-

ing the idea of singular value decomposition (SVD) and smoothing. Step 1
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conducts simple binning to smooth all the observations using a common but

raw smoother, while step 2 implements SVD in order to reduce the compu-

tation burden caused by conducting eigendecomposition. However, a direct

application of SVD on the original data or the smoothed data might still

be less effective due to the existence of measurement errors. Therefore, we

calculate Ṽ and use it for correction. Smoothing in step 3 is crucial for satis-

factory estimates of φ̂j(s)’s. To reduce computation burden, we recommend

using the penalized spline techniques and shall provide more detailed discus-

sions later. Step 4 updates the estimated loadings to improve efficiency. Our

procedure shares some similarity with Kneip and Utikal (2001) in step 1 and

2, but their work is based on kernel approach, and is not motivated by the

connection between smoothing the bivariate covariance and smoothing the

univariate individual function. The main distinction is in step 3, where they

propose to first smooth the original data (using some common smoother) and

then obtain the estimated factors by regression. In contrast, we propose to

first regress (using the original data) and then conduct smoothing. We could,

indirectly, view our estimated factors as constructed from regressing some

pre-smooth data on the loadings, but the amount of pre-smoothing varies

across individuals as it implicitly takes into account the impact of the load-

ings. Moreover, the kernel procedure might be computationally expensive

and Kneip and Utikal (2001) use a plug in bandwidth that requires estimates

of higher order derivatives. Their approach is valid for the univariate case,

but it casts some doubts how it could be extended for multivariate case.

Now we provide more discussions on how our procedure above could be

implemented in general for array structure data of arbitrary fixed dimension.

Recall that the binning in step 1 aims at getting a crude but consistent

estimate of ψij , so the requirement on the bin number m is relatively mild.

In contrast, the multivariate smoothing in step 3 is essential as it completes

the refinements. Hence we first discuss how to implement step 3 using a fast
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data-driven algorithm. In general, denote the observation at location s as Zs,

where the coordinate s contains d components s1, . . . , sd, and 1 ≤ si ≤ ni.

Let Z be the array that collects all n =
∏d
i=1 ni observations. Extending the

idea of Xiao et al. (2013), we tempt to utilize the advantages of the tensor

product for reducing the computation costs and smooth the covariates such

that the fitted data satisfying

vec(Ẑ) = (Sλd ⊗ · · · ⊗ Sλ1) vec(Z), (2.3)

where Sλj is the smoothing matrix defined as in equation (2.2) with the

penalty parameter λj , the B-spline design matrix Bj and the penalty matrix

Pj . Different from the bivariate case where one could simply obtain Ẑ =

Sλ1ZSλ2 due to the property of kronecker product, the computation for the

general dimension d might be more involved as no sandwich form is available

now. Xiao et al. (2013) recommend to compute this by a sequence of nested

operations with rotations of array as described in the Generalized Linear

Array Model (GLAM) algorithm (Currie et al., 2006). Now we want to

propose a new approach to gain more computation advantages by avoiding

the rotated transformation for dimension flattening and reinstating.

To illustrate our idea, let us first take a deeper look at the bivariate

smoothing. For a given j, notice that the jth column of Sλ1Z could be in-

terpreted as fitted values obtained from smoothing Zs1,j for all 1 ≤ s1 ≤ n1.

Therefore, the left and right multiplying of Sλ1 and Sλ2 are essentially con-

ducting two conditional smoothing procedures along the first and the second

axis respectively. In the general case of d way array, when the smooth-

ing parameter λ = (λ1, . . . , λd) is given, we could also conduct multivariate

smoothing via a sequence of d times conditional smoothing, where each time,

we condition on all other axis except the ith one, and smooth the available ni

observations using Sλi . Interestingly, the fitting is irrelevant to the order of

conditioning. For example, in the trivariate smoothing case, we could either
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conduct three univariate smoothing along each axis in turn, or we could first

condition on the third axis and perform bivariate smoothing, and then con-

dition on the first two axes and perform univariate smoothing on the third

axis.

To select the appropriate smoothing parameter λ, we propose to use the

generalized cross validation (GCV) criterion with the following fast compu-

tation expression.

Proposition 2.1. Let Z be an array structure data of dimension n =∏d
i=1 ni. Suppose the pith degree B-splines defined on Ki knots are used.

Denote the spline design matrix and the penalty matrix for the ith axis as

the matrix Bi and Pi respectively. Then the GCV value equals

〈Z − Ẑ, Z − Ẑ〉
n− tr(Sλd ⊗ · · · ⊗ Sλ1)

=
〈W ◦W, Z̃ ◦ Z̃〉 − 2〈W, Z̃ ◦ Z̃〉+ 〈Z,Z〉

n−
∏d
j=1 trj

, (2.4)

where trj =
∑Kj+pj

i=1 1/(1 + λjηj,i) with ηj,i be defined under equation (A.1),

and W and Z̃ are defined as in equations (A.2) and (A.3).

Remark 2.1. According to Proposition 2.1, we could precalculate ηj,i’s, Z̃

and 〈Z,Z〉. For each λ, we only need to update the calculation of trj as well

as two inner products that involves W . As the dimension of W is
∏d
i=1(Ki+

pi) instead of
∏d
i=1 ni, this could further reduces the computation cost.

Remark 2.2. One may also apply the multivariate penalized smoothing along

with some data-driven algorithm in step 1. In this case, the pooled GCV cri-

terion proposed by Zhang et al. (2007) might be used, as we adopt a common

smoother for all individual functions. For the pooled GCV, it equals a sim-

ilar formulae as in (2.4) except that we now replace the denominator by∏d
i=1(pi − tri).

Now we consider the asymptotics of our estimates under the following

conditions.
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(C1) Suppose E(Y 2+δ
i,s ) < ∞ and Yi,s = Xi(s) + εi,s, where the error terms

εi,s are independent across individual i and space (s). They are also

independent of Xi(s) and they have 0 mean and finite variance σ2i (s).

The random functionXi(s) admits representation (2.1) with a bounded

support. The factors φj(s) has continuous second derivatives, and the

loadings ψij are independent with mean 0 and distinct positive variance

γj for j = 1, . . . L. The number of observations along each axis has the

same order n1/d, where n =
∏d
k=1 nk. The number of individuals

satisfies I = O(nd/4).

(C2) Suppose ψ̃ij are obtained as described in step 1 and 2, where the pilot

binning over Yi,s yields an undersmoothed estimate Ỹi,s such that along

each axis k, mk grows at the rate of nδk with 3/4 < δ < 1.

(C3) In step 3, we use a tensor product B-splines basis to estimate φ̂j(s).

Let pk > 0 and Kk denote the spline degree and the number of knots

along the kth axis. The knots are equally spaced on F and Kk grows

faster than the rate of nαk
k for some fixed constant αk > 1/5. The

second order penalty is imposed on φ̃j . Denote the penalty parameter

as λj = (λj1, . . . , λjd), where the relationship between the penalty

parameter and the equivalent bandwidth, along the kth axis, satisfies

λjk = {Kkhjk(In)−1/(4+d)}2, (2.5)

for some positive constant hjk.

Theorem 2.1. Assume Conditions (C1)-(C3). For any interior point s,

(In)2/(4+d){φ̂j(s)− φj(s)} L→ N{Bj(s),Vj(s)}, (2.6)

where the asymptotic bias Bj(s) and the asymptotic variance Vj(s) are given

as in equation (A.5).
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Remark 2.3. (C1) imposes regularity conditions on the observations. Our

approach is similar as a two-stage procedure. (C2) implies that the pilot

binning conducted at the first stage has to be so that the bias has negligible

effects, while the second stage complements the refinement. The detailed

setting of the penalized spline smoothing, including the choice of penalty and

the splines are provided in (C3). As pointed out by Li and Ruppert (2008),

the placement of the knots is not crucial as long as the number of knots

exceeds some threshold. Under this large penalty setting, the key smoothing

parameter is the penalty term and the penalized smoothing approach using

penalty λ is equivalent to the kernel smoothing approach using an equivalent

bandwidth h defined as in equation (2.5).

3 Applications

In this section, we implement our approach to the fMRI data to learn how

the human brain responds to the investment decision tasks. In particular,

we extract the spatial functional factors to recover the risk related regions of

interests (ROIs) and employ the factor loadings to predict the risk attitude

on reward and risk.

3.1 Experiment design and data

Our data are collected from a risk perception investment decisions experi-

ment. The data set consists of the high resolution fMRI brain images of 22

subjects (age 18-35 years, 11 females, native German speakers, right-handed

and had no history of neurological or psychiatric disease). The same data

set is analyzed by Mohr et al. (2010); van Bömmel et al. (2014); Chen et al.

(2015). Three participants had to be excluded due to extensive head motion

(> 5 mm absolute head movement) or modeling problems (always chose only

one alternative). Another two were excluded due to a different scanning fre-
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quency. The experiment was conducted as follows: subjects were requested

to answer investment related tasks. Each task consists of two phases. In

the first phase a stream of 10 returns was sequentially presented for 2 × 10

seconds. The random return streams were independently drawn from Gaus-

sian distribution with means of 6%, 9%, 12% and standard deviations of 1%,

5%, 9% (9 different combinations in total). In the second phase, subjects

performed one of the three task types within 7 seconds: either to choose

between 5% fixed safe and risky investment (as shown in the random returns

stream) or to tell their subjective judgment (expected return or perceived

risk) on the random returns. There were 27 trails for each task type (3× 27

tasks in total) and the order of the task types were randomly arranged.

The fMRI data were acquired every 2.5 seconds during the whole ex-

periment procedure. This resulted in 1400 observations of 3-dimensional

(91 × 109 × 91) array that represents the Blood Oxygenation Level Depen-

dent (BOLD) signals. At the same time, the answer for each task from each

subject was also collected. The data are available at the Research Data

Centre (RDC), Humboldt-Universität zu Berlin.

3.2 Estimation

Recall that for each subject we have a series of 1400 images of 3 dimensional

(91× 109× 91). We divide the whole time series into subseries based on the

beginning of each task. Since the subject was required to give an answer

within 7 seconds and the fMRI was taken every 2.5 seconds, we consider

the first three images taken for the lth subject during the mth task, and

denote them as {Zl,m,s,t}, where 1 ≤ l ≤ 17, 1 ≤ m ≤ 81, s = (s1, s2, s3)

is the spatial coordinate with 1 ≤ s1 ≤ 91, 1 ≤ s2 ≤ 109, 1 ≤ s3 ≤ 91, and

t ∈ {1, 2, 3}.

We assume that the subjects exhibit identical brain structure and com-

monly share the same active regions during the whole experiment procedure.
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As we focus on exploring how the BOLD signals change when the subject

makes decisions, we take

Yi,s =
Zi,s,2 + Zi,s,3

2
− Zi,s,1,

where i = 81 ∗ (l − 1) + m, or equivalently, 1 ≤ i ≤ 1377. The spatial

functional factors and the corresponding loadings are estimated according

to the algorithm described in Section 2. In step 1, we take the simplest

smoothing procedure by evenly dividing the 91× 109× 91 voxels into 30×

35 × 30 cubes and computing the sample mean and variance in each cube,

resulting in µi,s̃ and σ2i,s̃, s̃ ∈ [1, 30]× [1, 35]× [1, 30], respectively. Then µi,s̃

could serve as approximation to Yi,s if voxel s falls into the cube s̃. Moreover,

let Vσ be a diagonal matrix whose (i, i)th element is given by
∫
σ2i,s̃ds̃.

Next, we compute an I×I symmetric matrix V with the (i, i′)th element

equals
∫
µi,s̃µi′,s̃ds̃. The eigendecomposition Ṽ = V −mn−1Vσ = UΛU> is

imposed and the preliminary estimation on the loadings of the jth factor can

be obtained by the Λ1/2Uj , where Uj is the jth column of U . By regressing

Yi,s on ψ̃ij , we obtain the estimate of the jth factors at location s, i.e. φ̃j(s).

Then we do the 3D penalized smoothing on the factors. We adopt the cu-

bic B-spline bases with 30,35,30 knots along the x, y, z axis respectively. The

penalty matrices for all directions are of order 2. Firstly fix s3 and conduct

the 2D smooth on the matrix φ̃j(·, ·, s3). Then fixed (s1, s2) and implement

the 1D smooth on the vector. After these two steps of conditional smooth-

ing, we achieve φ̂j(s). The tuning parameters in the penalized smoothing

are selected by minimizing the GCV values calculated from equation (2.4).

At last, we update all the loadings for the ith individual by Φ−1G·i, where

the (j, j′)th element of the matrix Φ is defined by 〈φ̂j(s), φ̂j′(s)〉 and the jth

element of the vector G·i is 〈φ̂j(s), Yi,s〉

When implementing the above algorithm, we also need to determine the

number of factors and we adopt a two stage procedure for this purpose.
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Firstly, we determine a rough choice on the number of factors based on the

eigendecomposition of Ṽ . Note that Ṽ might have some negative eigenval-

ues due to the numerical approximation in calculation. Let c denotes the

magnitude of the minimum eigenvalue. For the eigenvalues with magnitude

less than c, we truncate them into 0. For the rest of the eigenvalues, we

calculate the cumulative proportion and select the number of factors when

the explained proportion first exceeds 80%. After we update the loadings in

step S4, we could calculate the variance of the loadings associated with each

factor. Then we update our estimate about the number of factors using the

same principle, i.e. when the explained proportion first exceeds 80%. In our

case, we first select 19 factors and then refine this choice into 9 factors.

3.3 Empirical results

The objectives of our empirical analysis are to recover the risk related regions

and also to predict subjects’ risk attitude.

3.3.1 Recovery of the risk related ROIs

It is evident from Tobler et al. (2007); Mohr et al. (2010); van Bömmel et al.

(2014) that parietal cortex, ventrolateral prefrontal cortex (VLPFC), lateral

orbifrontal cortex (lOFC), anterior insula (aINS), and dorsolateral prefrontal

cortex (DLPFC) are the 5 regions which activate the brain activities in in-

vestment decision making. They are regarded as the active regions to be

recovered in Chen et al. (2015), where the same data set is analyzed. To

evaluate the estimation performance of the factors, we also compare the spa-

tial functional factors identified by our approach to those 5 target regions.

In particular, the values of the factors are trimmed by the 0.1%- and 99.9%+

quantile levels for each j and the locations where φ̂j(s) have nonzero values

are marked as red area in Figure 3.1, which presents the recovery of the 5

ROIs.
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(a) VLPFC (b) aINS

(c) Parietal Cortex (d) lOFC

(e) DLPFC

Figure 3.1: The recovery of VLPFC and aINS by φ̂1(s), Parietal Cortex by
φ̂4(s), IOFC by φ̂5(s), and DLPFC by φ̂8(s), respectively.

The results show that the 5 risk related regions can be identified by

φ̂j(s) for j = 1, 4, 5, 8 with our approach (75.81% of the variance can be

explained by the first 8 factors, where the proportion of j = 1, 4, 5, 8 is

14



42.60%). In contrast, Chen et al. (2015) consider the first 19 factors and find

that j = 4, 18, 3(or 12), 5, 19 correspond to these 5 regions respectively. Our

method seems to be more efficient in extracting the crucial features when

dealing with high-dimensional data. In addition, the computational time

consuming of our approach is much less compared to Chen et al. (2015),

where the exactly same data set is used. In our case, it took 4 hours to run

the R codes for our analysis (2.5 hours for loading and preprocessing the

data and 1.5 hours for the estimation procedure) on a desktop with Inter(R)

Core(TM) i7-6700 CPU @ 3.40GHz processor and 32.0 GB memory without

calling parallelization.

3.3.2 Prediction of the risk attitude

We have estimated the subject specific factor loadings and we expect that

the individual information carried by the loadings can predict the subjects’

risk attitudes. Mohr et al. (2010) estimate the risk attitude parameters Rl

for the 17 subjects in the same experiment by the psychological risk-return

model, see Appendix B for more details. We shall explore the relationship

between their Rl and our estimated loadings by simple regression and con-

duct predictions on the risk attitudes.

From the brain images associated with the lth subject and the mth task,

we obtain the corresponding loading ψ̂i,j , j = 1, . . . , 9, where i = 81(l− 1) +

m. In order to predict Rl using the loadings, we first summarize the loadings

associated with the lth subject and the jth factor by calculating the sample

mean and sample standard deviation among the 81 tasks, i.e.

νl,j
def
=

1

81

81∑
m=1

ψ̂{81(l−1)+m},j ,

ςl,j
def
=

√√√√ 1

81

81∑
m=1

(ψ̂{81(l−1)+m},j − νl,j)2. (3.1)
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We shall adopt three approaches to figure a suitable model for risk attitude

prediction. To simplify the notation, we drop the subjects indicator l from

the subscript to represent the vector accordingly.

In our first approach, we explore the relationship between risk attitude

and the covariates of the sample mean νj in a standard linear regression

model

R = α0 +
9∑
j=1

αjνj + u. (3.2)

As not all covariates might be important, we adopt the backward regres-

sion and delete the variable that has the largest p-value respectively until the

model selection criterion - AIC no longer decreases. Table 3.1 summarizes

the newly deleted variables in each step and the corresponding AIC.

Model 1 2 3 4 5
Deleted variable - ν6 ν7 intercept ν3
AIC 117.74 115.74 113.99 112.60 111.18
Model 6 7 8 9 10
Deleted variable ν8 ν4 ν2 ν9 ν5
AIC 110.90 110.60 108.81 107.51 112.13

Table 3.1: The newly deleted variable and the corresponding AIC of the
model in each step by backward regression with νj .

The final estimated regression is

R̂ = −1.50
(0.36)

ν1 −1.75
(0.65)

ν5 + û, (3.3)

where the values in the parentheses are the estimated standard deviation

errors.

In contrast, if we incorporate the information that factors 1, 4, 5, 8 are

associated with the risk related ROIs, then we may start from setting the
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regression model as

R = α0 +
∑

j∈{1,4,5,8}

αjνj + u, (3.4)

By backward regression, we also attain the same optimal result as (3.3).

We think that νj and ςj might reflect different information of the overall

performance and dispersion among tasks. In our second approach, we plan

to include ςj in the covariates for improvement. We start from the optimal

model obtained in the first approach and first use all covariates defined by

the sample standard deviation. We then adopt the backward regression and

delete the variable that has the largest p-value respectively until the AIC no

longer decreases. Table 3.2 summarizes the newly deleted variables in each

step and the corresponding AIC.

Model 1 2 3 4 5
Deleted variable - intercept ς2 ς3 ς8
AIC 112.84 110.88 109.17 107.69 106.22
Model 6 7 8
Deleted variable ς6 ς7 ς1
AIC 105.04 103.50 106.36

Table 3.2: The newly deleted variable and the corresponding AIC of the
model in each step by backward regression with incorporating ςj .

The final estimated regression is

R̂ = −0.65
(0.48)

ν1 −2.68
(1.69)

ν5 + 1.34
(0.70)

ς1 + 2.60
(0.89)

ς4 −3.4
(1.58)

ς5 −2.14
(0.89)

ς9 + û. (3.5)

In contrast, if we incorporate the information that factors 1, 4, 5, 8 are

associated with the risk related ROIs, then we may start from a base model

as

R = α0 +
∑

j∈{1,4,5,8}

αjνj +
∑

j∈{1,4,5,8}

βjςj + u. (3.6)
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By backward regression, we come to the following results

R̂ = −0.98
(0.61)

ν1 −1.66
(1.92)

ν5 +1.37
(0.81)

ς1 +2.46
(1.18)

ς4 −3.62
(1.82)

ς5 −1.55
(1.11)

ς8 + û. (3.7)

The results are quite similar to our proposed model (3.5), except that it

includes ς8 rather than ς9. However, the AIC of this fitted model is 108.00,

much higher than the AIC of 103.50 in model (3.5).

In our third approach, we try to further improve our model by adopting

a bi-directional stepwise selection based on (3.5). To be more specific, alter-

nately we add the variable which improves the AIC most due to the inclusion

of itself and then delete the variable that has the highest p-value (only if the

AIC can be further reduced by the exclusion, otherwise we do not take the

action). We stop the procedure once the AIC cannot be improved anymore

by adding any new variable. All the actions taken in the procedure and the

corresponding AIC are presented in Table 3.3.

Model 1 2 3 4
Add(+)/Delete(-) +ν4 +ν9 +ς2 +ν2
AIC 99.75 99.38 95.62 90.87

Table 3.3: The actions taken in the bi-directional selection and the corre-
sponding AIC of the model in each step.

Note: In each step after a new variable is included into the model, ς5, ν9, ς2, ν2

are detected to have the highest p-values accordingly. But the exclusion was not
implemented because the AIC was found to become worse.

The final estimation we get is

R̂ =−1.35
(0.55)

ν1 +0.85
(1.41)

ν2 +4.07
(1.57)

ν4 −4.11
(1.59)

ν5 +4.51
(2.44)

ν9

+2.69
(0.96)

ς1 +0.92
(0.60)

ς2 +3.11
(0.90)

ς4 −6.83
(2.18)

ς5 −2.69
(0.83)

ς9 + û. (3.8)

In contrast, if we start from model (3.6) and adopt the bi-direction stepwise
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selection, it ends up with the following model

Model 1 2 3
Add(+)/Delete(-) +ς9 -ν8 +ν6
AIC 101.81 99.82 95.53

Table 3.4: The actions taken in the bi-directional selection and the corre-
sponding AIC of the model in each step.

Note: In the last step, ν6 is detected to have the highest p-values. But the exclu-
sion was not implemented because the AIC was found to become worse.

R̂ =−0.95
(0.43)

ν1 +4.63
(1.50)

ν4 −3.84
(1.42)

ν5 −2.31
(1.22)

ν6 +1.46
(0.55)

ς1

+3.17
(0.84)

ς4 −4.74
(1.30)

ς5 +4.01
(1.81)

ς8 −5.09
(1.30)

ς9 + û. (3.9)

For this fitted model, the coefficients associated with ν4, ν5, ς1, ς4, ς5, ς9 are

significant at the level 0.05. Moreover, they are also significant in the esti-

mated model (3.8).

Finally, we compare the out-of-sample performance of the three selec-

tion approaches described above. In particular, we conduct a leave-one-out

procedure to predict {R̃l}17l=1. The steps are as below:

(1) Fix l, where l = 1, ..., 17, conduct ordinary linear regression with the

sample of the remaining 16 subjects to estimate the coefficients of the

variables in different models.

(2) Predict R̃l by plugging in the coefficients estimated in step (1).

(3) Repeat steps (1) and (2) for each l = 1, ..., 17.

(4) Calculate the Spearman’s and Kendall’s rank correlations between

{R̃l}17l=1 and {Rl}17l=1 to check the prediction accuracy on the order

of risk-aversion among the subjects.
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We summarize the out-of-sample prediction performance of the models

in Table 3.5.

Selected variables Spearman’s rank corr Kendall’s rank corr
ν1, ν5 0.15 0.13
ν1, ν5, ς1, ς4, ς5, ς9 0.46 0.35
ν1, ν5, ς1, ς4, ς5, ς8 0.37 0.26
ν1, ν2, ν4, ν5, ν9, ς1, ς2, ς4, ς5, ς9 0.71 0.51
ν1, ν4, ν5, ν6, ς1, ς4, ς5, ς8, ς9 0.57 0.45

Table 3.5: The Spearman’s and Kendall’s rank correlations for the out-of-
sample prediction of the models with the selected variables.

The results in Table 3.5 confirm that the factor loadings estimated in

our analysis can provide credible prediction on subjects’ risk attitude with

appropriately determined models. In particular, we notice that factor 9

might also be of importance for risk perception (especially the dispersion

measure of the corresponding loadings), even though it does not match with

the five risk related regions; whereas factor 8 might not be as necessary as the

other factors associated with the ROIs (factors 1, 4, 5) in predicting subjects’

risk attitude.

4 Conclusions

In this paper, we propose the spatial fPCA method that is applicable to

arbitrary fixed d way array data. The approach could preserve the spatial

structure and efficiently extract the important features via a model free di-

mension reduction approach. We design a fast algorithm that could reduce

the computation burden without sacrificing the estimation efficiency. We also

derive the asymptotic properties of our estimator. Potential future research

direction could consider impose time dynamic structure on the loadings as

well, and thus modelling the temporal and spatial process simultaneously.
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APPENDIX

APPENDIX A:
Proof of Proposition 2.1. Recall that the smoothing along the jth axis

is Sj = Bj(B
>
j Bj + λjPj)

−1B>j . If we apply singular value decomposition

on B>j and obtain B>j = UjDjQ
>
j , then we could define the square root of

(B>j Bj)
−1 simply by Σ

−1/2
Bj

= UjD
−1
j U>j . Correspondingly,

(B>j Bj + λjPj)
−1 = Σ

−1/2
Bj

(IKj+pj + λjΣ
−1/2
Bj

PjΣ
−1/2
Bj

)−1Σ
−1/2
Bj

,

where IKj+pj is the identity matrix of dimension (Kj + pj) × (Kj + pj).

Perform eigen decomposition to obtain

Σ
−1/2
Bj

PjΣ
−1/2
Bj

= ŨjD̃jŨ
>
j , (A.1)

where D̃j is the diagonal matrix whose (i, i)th element is denoted as ηj,i.

Then BjΣ
−1/2
Bj

= QjDjU
>
j UjD

−1
j U>j = QjU

>
j , which is an orthogonal ma-

trix. Then the eigendecomposition of Sj could be expressed as

Sj = BjΣ
−1/2
Bj

(IKj+pj + λjŨjD̃jŨ
>
j )−1(BjΣ

−1/2
Bj

)>

= QjU
>
j (ŨjŨ

>
j + λjŨjD̃jŨ

>
j )−1(QjU

>
j Ũj)

>

=: ÛjWj(Ûj)
>,

where Ûj = QjU
>
j Ũj is an orthogonal matrix, Wj is the diagonal matrix

whose (i, i)th element is 1/(1 + λjD̃j).

Let W be an array with dimension (K1 + p1, . . . ,Kd + pd) constructed

by applying the outer products on the vectors from the diagonal elements of
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Wj . For the element of W with coordinate s being (i1, . . . , id), we have

Ws =

d∏
k=1

( 1

1 + λjηj,ik

)
. (A.2)

Let Z̃ be the array obtained from multiplying all Ûj ’s along the jth axis

respectively. Equivalently, we could also define Z̃ in an iterative way. When

d = 2, Z̃ = Û1ZÛ
>
2 . When d = k + 1,

A(Z̃) = (⊗kj=1Ûj)A(Z)Ûk+1, (A.3)

where A(Z) is a mapping that convert the (n1, . . . , nd) dimensional array

Z into a (
∏k
i=1 ni) × nk+1 matrix such that the kth column collects all

observations whose last coordinate equals k. We now show that

〈Z, Ẑ〉 = 〈W, Z̃ ◦ Z̃〉. (A.4)

First consider d = 2. By the definition of Z̃, we have

Ẑ = S1ZS2 = Û1W1(Û
>
1 ZÛ2)W2Û

>
2 = Û1W1Z̃W2Û

>
2 .

By the definition of W and the property that W1 and W2 are both diagonal

matrices, it holds that W1Z̃W2 = W ◦ Z̃. Let n =
∏d
i=1 ni. Then

〈Z, Ẑ〉 = vec(Z>) vec(Ẑ) = vec(Z>) vec(Û1(W ◦ Z̃)Û>2 )

= vec(Z>)(Û2 ⊗ Û1) vec(W ◦ Z̃)

= vec(Z̃)> vec(W ◦ Z̃) = 〈Z̃,W ◦ Z̃〉 = 〈W, Z̃ ◦ Z̃〉.

Assume equation (A.4) holds when d = k. Now we prove that it also
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holds for d = k + 1. By definition of Ẑ and equation (A.3), we have

A(Ẑ) = (⊗kj=1Ûj)(⊗kj=1Wj)A(Z̃)Wk+1Û
>
k+1.

As (⊗kj=1Wj)A(Z̃)Wk+1 = A(W ◦ Z̃), we conclude that

〈Z, Ẑ〉 = vec(Z̃)> vec(W ◦ Z̃) = 〈Z̃,W ◦ Z̃〉 = 〈W, Z̃ ◦ Z̃〉,

and thus equation (A.4) holds in general.

Using similar techniques, we could also show that

〈Ẑ, Ẑ〉 = vec(W ◦ Z̃)> vec(W ◦ Z̃) = 〈W ◦ Z̃,W ◦ Z̃〉 = 〈W ◦W, Z̃ ◦ Z̃〉.

Finally, the smoother satisfies tr(Sλd ⊗ · · · ⊗Sλ1) =
∏d
i=1 tr(Sλi). Moreover,

tr(Sλi) = tr(Wi) =
∑Ki+pi

j=1 1/(1 + λiηi,j) = tri. Therefore, equation (2.4)

holds.

Proof of Theorem 2.1. Define Vx as the I × I matrix whose (i, j)th

element is
∫
Xi(s)Xj(s)ds. Let γ̃j and γj be the jth largest eigenvalue of

Ṽ and Vx respectively. By our assumption (C2) on mk, the bin width along

each direction mk/nk is O(n
−1/4
k ). Therefore, we could follow Kneip and

Utikal (2001) and show that

‖Ṽ − Vx‖2 = sup
‖v‖2=1

{v>(Ṽ − Vx)>(Ṽ − Vx)v}1/2 = Op(In−1/2).

Hence γ̃j − γj = Op(I1/2n−1/2), j = 1, . . . , L. Define ψj = (ψ1j , · · · , ψIj)>

and we could decomposed it as γj multiplying a unit vector pj = (p1j , · · · , pIj)>.

Similarly, we could define ψ̃j and decompose it as γ̃j p̃j . Note that |p̃ij−pij | =

Op(I−1/2n−1/2). Consequently, ‖p̃j − pj‖2 = Op(n−1/2) and hence we have

|ψ̃ij − ψij | = Op(n−1/2), j = 1, . . . , L.

Denote the regression coefficient of Yi,s on ψij as zj,s. For each j, we

have zj,s = φj,s + ej,s, where ej,s are independent across s with mean 0

23



and its variance is I−1σ̄2j (s), where σ̄2j (s) = I−1
∑I

i=1 σ
2
i (s). Denote hj =

(In)−d/(4+d)
∏d
k=1 hjk. For any interior point s0 = (s01, . . . , s0d), denote z∗j,s

as

z∗j (s) = (nh)−1
n1∑
s1=1

· · ·
nd∑
sd=1

zj,s

d∏
k=1

H

(
s0k − sk

hjk(In)−1/(4+d)

)
,

where H is the second order kernel function 2−1 exp(−|x|). Note that

E[ẑj(s)−z∗j (s)] = O( max
1≤k≤d

{Kkh
−2
j,k(In)−2/(4+d)}) = O( max

1≤k≤d
{h2j,k(In)−2/(4+d)})

and Var(ẑj(s) − z∗j (s)) = O((Inh)−1). Since z∗j (s) is the Nadaraya-Watson

estimate with product kernel, we have (In)2/(4+d){E[ẑj(s)]−φj(s)} → Bj(s),

and (In)4/(4+d)Var(ẑj(s))→ Vj(s), where

Bj(s) =

d∑
k=1

h2j,k
∂2φj(s)

∂2sk
, Vj(s) = (

d∏
k=1

hj,k)
−1σ̄j(s){

∫
H2(u)du}d. (A.5)

Therefore, we could establish the asymptotic normality similar as equation

(2.6).

When ψij is not available, we will regress Yi,s on ψ̃ij . Denote the regres-

sion coefficient as z̃j,s. Note that the deviation between ψ̃ij and ψij is of

higher order magnitude Op(n−1/2). When I = O(nd/4), such a deviation is

negligible compared to (In)−2/(4+d). Therefore, we conclude that smoothing

over z̃j,s will yield the same asymptotic results as equation (2.6).

APPENDIX B: Risk Attitude Parameter
The risk attitude parameter R is estimated by logistic model via maxi-
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mum likelihood estimation (MLE)

P{risky choice|x} =
1

1 + exp[−{x̄− S(x)R− 5}]
,

P{sure choice|x} = 1− 1

1 + exp[−{x̄− S(x)R− 5}]
, (C.1)

where x is the displayed return stream, x̄ and S(x) are the subjective ex-

pected return and perceived risk judged by the subjects.

The estimated risk attitude parameters for the 17 subjects in order are

plotted in Figure C.1. Lower parameters imply risk-seeking behaviors; while

higher parameters indicate averse risk patterns. The two extremes #19 and

#21 are the most risk-averse and most risk-seeking persons respectively.

Note that 5 of 22 subjects were excluded from the sample due to the afore-

mentioned reasons, but we keep the numbers remain.

Subject l

β l

19 18 15 4 16 10 1 3 8 2 9 5 11 6 17 12 21

0
5

10
15

Figure C.1: Risk attitude parameters for the 17 subjects.
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