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Abstract

High-frequency data can provide us with a quantity of informa-

tion for forecasting, help to calculate and prevent the future risk

based on extremes. This tail behaviour is very often driven by ex-

ogenous components and may be modelled conditional on other vari-

ables. However, many of these phenomena are observed over time,

exhibiting non-trivial dynamics and dependencies. We propose a func-

tional dynamic factor model to study the dynamics of expectile curves.

The complexity of the model and the number of dependent variables

are reduced by lasso penalization. The functional factors serve as

a low-dimensional representation of the conditional tail event, while

the time-variation is captured by factor loadings. We illustrate the

model with an application to climatology, where daily data over years

on temperature, rainfalls or strength of wind are available.

Keywords: factor model, functional data, expectiles, extremes.

JEL Classification: C14, C38, C55, C61, Q54.
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1 Introduction

Statistical analysis of high-dimensional data nowadays plays a crucial role

in various fields. Usually, one observes a high-dimensional vector evolving

in time, that can be not only correlated to other variables but hide various

types of inter-dependencies. One solution on how to analyze such data for

further modelling is to treat it as discrete observations of functional times

series. For example, in climatology and meteorology the evolution of temper-

ature curves as Ramsay and Silverman (2005), the wind speed as Burdejova

et al. (2017), or pollution data as Ignaccolo et al. (2008), observed as a func-

tion of time over the year, can exhibit the trend or interesting periodical

pattern supporting the thesis of climate changes. The same approach of

functional data analysis was applied in health-care and clinical research, see

e.g. Erbas et al. (2007) who tested the trend in breast-cancer mortality, or

Lee and Carter (1992) who performed the population analysis for mortality

and fertility curves. Countless applications can be found in financial engi-

neering, for example yield curve modelling as Nelson and Siegel (1987) or

Härdle and Majer (2016), modelling the collateralized debt obligations, see

Choros-Tomczyk et al. (2016), analyzing the dynamcis of limit order book

or implied volatility, see e.g. Benko et al. (2009) or even the intraday price

curves, see Kokoszka et al. (2014).

However, in most of the above mentioned applications, one is interested

in capturing the tail behaviour of the variables rather than variation around

the mean. The majority of recent research in functional data has nonetheless

focused only on the variation around the mean, as can be seen in monographs

of Ramsay and Silverman (2005), Ferraty and Vieu. (2006) or Horváth and

Kokoszka (2012).

For that purpose, in our work we generalise one of the functional analyt-

ical models for expectiles. Expectiles, similar to quantiles, are tail measures,

which uniquely characterise the conditional distribution of random variables.

The same way as the quantile for the level of τ = 0.5 corresponds to the me-
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dian, the τ = 0.5 expectiles correspond to the mean. In case of the condi-

tional expectiles on the other variable, e.g. time over year for the temperature

or time over day for intra-day price curves, we refer to, so-called, expectile

curves.

Guo et al. (2013) modelled such expectile and quantile curves by rewrit-

ing them via Karhunen-Loève expansion. Tran et al. (2016) also presented

an analogue principal components of such tail event curves in an asymmetric

norm. Both of these approaches assume the observations to be the indepen-

dent realizations of a stationary stochastic process. Even-though Hörmann

and Kokoszka (2010) showed that Karhunen-Loève expansion approach is

suitable for the temporal dependence between functional observations as well,

the question of modelling strong-dependent or non-stationary functional ob-

servations of extremes remains open. Therefore, the goal of our model is

three-fold: focus on the modeling of the conditional extreme events, e.g. dif-

ferent expectile-levels, capture the dynamics of such tail event curves and do

that with respect to any hidden pattern, dependence or non-stationarity.

In this work we extend the generalized dynamic semi-parametric factor

model for expectiles and provide the convergent algorithm for its estima-

tion. This approach offers focus on modeloling the time-development of tail-

event expectile curves with respect to possible strong-dependency or non-

stationarity as well. Our work refers to the factor models as in Park et al.

(2009) and Song et al. (2014), who did similar dynamic semi-parametric fac-

tor models for the L2-norm, which, for our model, corresponds as a specific

case of expectile at 0.5-level.

As a motivation, let us assume that there is a need to estimate a col-

lection of expectile curves, each coming from a separate data-set. Our first

motivation example used in Chapter 5 regards a set of daily observations

of average temperature, i.e. the data as a vector Xn ∈ R365 for a year

n = 1, . . . , N . In this situation, one needs to analyse jointly the time (over

years for n = 1, . . . , N) as well as space dynamics (within the year for t-th

3
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element of Xn[t] for t = 1, . . . , 365) by simultaneous fitting. In the factor

model, functional factors serve as a low-dimensional representation of the

conditional tail event, while the time-variation is captured by factor load-

ings. All of them we approximate by a linear combination of basis-functions.

Since the temporal dependencies and non-stationarity can arise from differ-

ent sources, we start with an overparametrized model, which captures almost

any behaviour or trend, e.g. the cycles, the linear or quadratic trend as well.

Since then we seek a sparse solution and reduce the complexity of the model

and the number of dependent variables by lasso penalization. Further, we

apply the proposed model for estimation and forecasting of daily tempera-

ture. Other applicable examples can be also found in the analyses of cus-

tomer demand planning, e.g. forecasting of electricity consumption as seen

in López-Cabrera and Schulz (2017) via VAR-model or finance, economics,

climatology or neurobiology as mentioned already above.

The paper is organized as follows. After reviewing the concept of expectile

curves in the first chapter we present the dynamic semi-parametric factor

model for expectiles and the algorithm to estimate this model based on the

itterative weighted least squares. In Chapter 3 we examine the performance

of our model and algorithm in the simulation study. Finally, we apply the

model to a Chinese temperature dataset in Chapter 5 and to the dataset of

the wind speed of hurricanes in Chapter 6. The last section summarises our

findings. All codes used to obtain the results in this paper are available at

Quantlet, see details in Borke and Härdle (2017a) and Borke and Härdle

(2017b).

2 Expectiles and expectile curves

The concept of expectiles was first presented by Newey and Powell (1987).

Expectiles have a similar interpretation as quantiles, but are more efficient,

easier to compute due to the L2-norm and they are also a coherent risk
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measure. Having a random variable Y the τ -expectile can by obtained by

minimizing the expected loss:

eτ = arg min
θ

E {ρτ (Y − θ)}

with asymmetric loss function

ρτ (u) = |u|α
∣∣τ − I{u<0}

∣∣ ,
where α = 2. In case of α = 1 we get the quantiles. By generalization we can

also get M-quantiles, see Breckling and Chambers (1988) or Jones (1994),

who also showed that expectiles can be expressed as quantiles.

Expectiles can be understood intuitively in a similar way as quantiles.

Though the τ -quantile can be defined as a value above the τ ·100% obser-

vations, expectile also takes the distance into the account. τ -expectile is

defined such that τ ·100% of the distance of observations to it corresponds to

the observations below it. Thus, expectiles are more sensitive to the extreme

observations and outliers.

However, in reality Y is usually associated with a vector of covariates X,

e.g. the variable X can express the development over time, i.e.:

eτ (x) = arg min
θ

E {ρτ (Y − θ) | X = x} .

One is then interested in studying the conditional expectile as a function

of x. For that purpose we define the generalized regression τ -expectile as:

eτ (x) = arg min
f∈F

E {ρτ (Y − f(X))} .

where f(·) is a nonparametric function of covariates X from a set of functions

F , such that the expectation is well defined.

There are more possibilites on how to estimate such an expectile curve

from an observed dataset. For example, expectile curve eτ (x) can be approx-
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imated by any basis and estimated iteratively. Schnabel and Eilers (2009)

proposed to approximate the curves with P-splines and combine it with the

LAWS (least average weighted squares) algorithm.

The aim of our work is to model a collection of N generalized expectiles

curves eτn(x), n = 1, . . . N with semi-parametric factor model.

3 Dynamic semi-parametric factor model for

expectile curves

Let us fix the level τ and assume the functional time series en, n = 1, . . . , N .

We represent such a random process via factor model :

en(t) =
K∑
k=1

Znkmk(t) = Z>nm(t),

with time-varying factor loadings Znk and functional factors mk(t). Index t

captures the spatial dependency while the index n express the evolution over

time.

Suppose both sequences factorize over space and time with respect to

some fixed bases. Thus, for some J-dimensional time basis U> = (U1, . . . , UJ)

with Ui = (Ui(1), . . . , Ui(N)), i = 1, . . . , J and L-dimensional space basis

Ψ = (Ψ1, . . . , ΨL) with Ψi = (Ψi(1), . . . , Ψi(T )) , we have the decomposition:

Znk =
J∑
j=1

αkjuj(n) i.e. Zn = AKxJ · U(n)

and

mk(t) =
L∑
l=1

βklΨl(t) i.e. m(t) = BKxLΨ(t),

which lead to the final dynamic semi-parametric factor model:
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en = (AU)>(BΨ) = U>CΨ, (1)

where C = A>B is a J × L matrix of coefficients needed to be estimated.

For the choice of both basis, one may employ various basis functions.

To capture the periodic variation in time one can use the fourier basis, for

the global trend over time, any orthogonal polynomial basis may be suitable.

For the purpose of space spaces either B-splines, any polynomial basis or

even principal components or their alternatives such as principal expectile

components defined by Tran et al. (2016) may be used.

In order to estimate this model we propose the iterative algorithm for

minimising the penalized loss function. We define the weights in a similar

manner as in Schnabel and Eilers (2009). Once the space and time basis are

pre-specified, the choice of significantly loaded space and time basis func-

tions is done via LASSO-penalization of the coefficient matrix C. As before,

assume the fixed expectile level τ ∈ (0, 1) and for the observed discrete dat-

apoints Yn,t, n = 1, . . . , N and t = 1, . . . , T :

1. Start with a set up for the weights wn,t = 0.5. That corresponds to

the mean curves.

2. Estimate the matrix Ĉ by minimising

argmin
C

N∑
n=1

T∑
t=1

wn,t
{
Yn,t − U(n)>CΨ(t)

}
︸ ︷︷ ︸

l(C)

+λ
J∑
j=1

‖cGj‖2,

where the penalization term λ
∑J

j=1 ‖cGj‖2 is a group-Lasso penaliza-

tion.

7
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3. Update the weights

wn,t =

{
τ if Yn,t > U(s)>ĈΨ(t),

1− τ otherwise.

4. Iterate via Steps 2. and 3. Recompute the weights until convergence,

i.e. until there is no change in weights wn,t.

Even-though we can set the separate elements of C-matrix as the groups

in LASSO-penalization, the group-LASSO would also allow us to give some

specific structure or importance into the pre-defined basis if needed. Note

that function l(C) in Step 2 is continuously differentiable and obtains a global

minimum. Yang and Zou (2015) proposed the algorithm to solve such opti-

mization problem and proved its convergence for different types of ”empirical

loss + group lasso penalty” optimisation problems satisfying a quadratic ma-

jorization condition. It is easy to show that our specific definition of weighted

least squares in combination to group-lasso penalization in Step 2 for the fixed

weights fulfill these requirements.

4 Simulation study

In order to evaluate the performance of the proposed model and the algorithm

above we did a simulation study. We follow the set up of Guo et al. (2013) or

Tran et al. (2016), since they both proposed the alternatives for the modelling

of tail event expectile curves. The data Yn,i, n = 1, . . . , N and i = 1, . . . T ,

are simulated as:

Yn,i = µ(ti) + α1,nf1(ti) + α2,nf2(ti) + εn,i,

where ti’s are the equidistant points on [0, 1]. We set the mean function µ(t)

as µ(t) = 1 + t+ exp {−(t− 0.6)2/0.05} and the principal component curves

as f1(t) =
√

2 sin(2πt) and f2(t) =
√

2 cos(2πt).
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Further, we consider the two following different scenarios for the scores

of principal components α1,n and α2,n and 4 different error scenarios:

1. The scores set as α1i ∼ N(0, 36) and α2i ∼ N(0, 9) are both iid.

The error term εn,i’s is: (1) iid N(0, σ2
1), (2) iid t(5), (3) independent

N{0, µ(tj)σ
2
1} and (4) iid logN(0, σ2

1). With σ2
1 = 1.

2. The scores set as α1i ∼ N(0, 16) and α2i ∼ N(0, 9) are both iid.

The error term εni’s is: (1) iid N(0, σ2
2), (2) iid t(5), (3) independent

N{0, µ(tj)σ
2
2} and (4) iid logN(0, σ2

2). With σ2
2 = 0.5.

For each of the parameter settings we run the simulations 200 times.

These scenarios allow us to analyse the different coefficient-to-coefficient-

to-noise variations as well as the scenarios for fat tail errors (scenario of

ε2), heteroscedastic (scenario of ε3) and skewed errors (scenario of ε4). We

analyse the performance for τ = 0.5, 0.6, . . . , 0.9 based on the mean squared

error (MSE) and its standard deviation (SD). Summary of the recorded MSE

for the simulations is given in Table 4, the standard deviations are given in

the brackets.

Regarding the choice of basis in all scenarios we choose to use T/2 B-spline

curves for the space basis. The time basis was create as N/2 curves of the

fourier basis and 3 trend curves: linear, quadratic and logarithmic. One has

to be aware that the choice of basis, i.e. number of basis functions can also

have an impact on the results.

From the observed MSEs we conclude that on whenever the error dis-

tribution is skewed ,the model is likely to produce big MSEs. The model

performs, in general, very well for different τ -levels and comparable to the al-

ready mentioned alternatives proposed by Guo et al. (2013) or Tran et al.

(2016). However, since there is a lack of the extreme observations, the MSEs

increase with higher τ -s.
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τ ε
N=20, T=100 N=50, T=150

σε = 0.5 σε = 1 σε = 0.5 σε = 1

τ = 0.5

ε1 ∼ N(0, σ2
ε) 0.238 0.247 0.467 0.462

(0.011) (0.012) (0.023) (0.013)
ε2 ∼ t(5) 0.779 0.773 0.777 0.761

(0.053) (0.028) (0.054) (0.028)
ε3 ∼ N(0, µ(ti)σ

2
ε) 0.439 0.443 0.868 0.853

(0.022) (0.013) (0.054) (0.023)
ε4 ∼ logN(0, σ2

ε) 1.444 1.444 1.444 1.444
(0.058) (0.028) (0.592) (0.271)

τ = 0.6

ε1 0.251 0.267 0.488 0.485
(0.013) (0.018) (0.024) (0.016)

ε2 ∼ t(5) 0.824 0.822 0.820 0.806
(0.059) (0.034) (0.059) (0.033)

ε3 ∼ N(0, µ(ti)σ
2
ε) 0.461 0.469 0.906 0.888

(0.023) (0.019) (0.046) (0.026)
ε4 ∼ logN(0, σ2

ε) 0.721 0.713 3.523 3.257
(0.097) (0.051) (1.055) (0.501)

τ = 0.7

ε1 0.288 0.355 0.540 0.562
(0.011) (0.012) (0.023) (0.013)

ε2 ∼ t(5) 0.937 0.971 0.927 0.936
(0.079) (0.066) (0.079) (0.055)

ε3 ∼ N(0, µ(ti)σ
2
ε) 0.517 0.568 0.995 0.989

(0.028) (0.061) (0.050) (0.043)
ε4 ∼ logN(0, σ2

ε) 0.985 1.014 5.087 4.733
(0.148) (0.096) (1.655) (0.800)

τ = 0.8

ε1 0.418 0.786 0.629 0.816
(0.073) (0.365) (0.053) (0.204)

ε2 ∼ t(5) 1.094 1.392 1.056 1.217
(0.108) (0.320) (0.103) (0.187)

ε3 ∼ N(0, µ(ti)σ
2
ε) 0.641 0.972 1.093 1.228

(0.069) (0.347) (0.068) (0.182)
ε4 ∼ logN(0, σ2

ε) 1.289 1.598 6.514 6.209
(0.205) (0.367) (2.204) (1.089)

τ = 0.9

ε1 2.316 3.819 1.660 2.221
(1.247) (1.648) (0.689) (0.779)

ε2 ∼ t(5) 2.669 3.821 2.020 2.484
(1.069) (1.527) (0.675) (0.751)

ε3 ∼ N(0, µ(ti)σ
2
ε) 2.349 3.719 1.989 2.428

(1.087) (1.577) (0.652) (0.741)
ε4 ∼ logN(0, σ2

ε) 3.078 4.551 8.486 8.295
(1.154) (1.542) (2.627) (1.519)

Table 1: Average MSE and its standard deviation in brackets by 200 simu-
lation runs and different scenarios.

DYTEC simulation all
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5 Application for temperature curves

We apply our model to Chinese temperature data, which consists of daily

average temperatures of 159 weather stations for the years 1957 to 2009. In

this case n = 1, . . . , 53 corresponds to the year and t = 1, . . . , 365 corresponds

to the day during the year. Model is applied for each station separately. It is

obvious that while the factor loadings Znk vary over the years, the dependence

within the year is captured by factors mk(t) themselves.

5.1 The choice of time basis U

The proper time basis allows us to capture any periodic variation as well as

any trend. In case of temperature data, we do not assume only linear trend,

but also add quadratic and logarithmic function to the basis:

u1(t) =
t

T,
u2(t) =

t2

T 2
, u3(t) =

log t

log T
.

For the periodicity we use N−1 fourier basis functions with period N = 53:

u4 = constant,

u5 =
1√
N
2

sin

(
2 · π · t
N

)
,

u6 =
1√
N
2

cos

(
2 · π · t
N

)
,

. . .

u52 =
1√
N
2

sin

(
(N−1)

2 · π · t
N

)
,

u53 =
1√
N
2

cos

(
(N−1)

2 · π · t
N

)
.
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In general, one may operate with various types of basis functions, such

as higher-power polynomials, local polynomials, trigonometric or periodic

functions, splines, etc., with regard to follow various types of non-linearity

concerning the specific design of a given data.

5.2 The choice of space basis Ψ

In order to model the specific structure and pattern within the year we set

the space basis Ψ as simple B-splines, particularly T−1
2

functions of the order

5. One can also choose to use first few principal components explaining 85%

of variance or even more complex Principal expectile components introduced

by Tran et al. (2016) not to loose the specific information in tails.

5.3 Forecasting

One of the traditional approaches for the forecasting of functional data can be

done via Karhunen-Loève expansion. The functional time series is rewritten

via principal components and their scores are consequently modeled sepa-

rately with an appropriate model. The forecast obtained by the model of

the scores together with the original principal components are used for the

prediction of functional time series. Similar approach can be done for expec-

tiles, see e.g. López-Cabrera and Schulz (2017) who did a two-step approach.

In the first step, for a fixed level of τ , the series of expectiles curves is com-

puted. Second, the principal component decomposition of the curves and the

forecast of their scores is done via a vector auto-regressive model. However,

one of the main restriction of such an approach is the assumption of the

weak-dependent data.

The proposed DSFM model for expectile curves provides us with the easy

method of forecasting. Since the matrix of coefficients Ĉ is estimated once

and the space basis is already predefined as well, one only needs to forecast

the time basis. The basis consists of a set of functions, of which each can be

12
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Figure 1: Chinese temperature data for year 2009 (grey) with its smoothed
expectile curve (black). Predictions of expectile curve for level τ = 0.8 by
DSFM model (green), VAR model (red) and ARIMA model (blue).

DYTEC temperature

simply prolonged for the value in time N + 1. For each i = 1, . . . , J denote

the values of prolonged basis function as Ũi = (Ui(1), . . . , Ui(N), Ui(N + 1))

and the new updated prolonged time basis as Ũ = (Ũ1, . . . , ŨJ) . We obtain

the forecast as:

êN+1(t) = (AŨ)> (BΨ) = Ũ>ĈΨ.

With the aim to demonstrate the model we applied the proposed DSFM-

model to Chinese temperature data sets. The daily observations for a specific

station No.1. from 1957 to 2008 were used for the estimation of the model

and matrix Ĉ. Consequently the model with prolonged time basis was used

for the prediction of an expectile curve for the upcoming year 2009. We

used two other benchmark approaches to compare the quality of our fore-

cast. First model, VAR-model, uses the principal components of the pre-

computed expectiles curves from years 1957-2008 and forecasts their scores

via VAR(4) model. The second model takes into consideration the possible
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non-stationarity and thus uses the ARIMA model to forecast the score of each

component separately. Figure 1 shows the data for year 2009, together with

the expectile curve for fixed level τ = 0.8. The DSFM-forecast (green) better

predicts the expectile curve then VAR-model (red) or ARIMA-model (blue),

which are constructed by forecasting the scores of principal components.

6 Application to Wind speed data

As a second application we use our DSFM-model for the modeling expectile

curves of the wind speed of hurricanes in a hurricane season across the North

Atlantic basin over the period 1965-2011. As earlier, the observed data has

the form Xn(ti), where the times ti are here separated by six hours, and

the index n stands for year. The value Xn(ti) is the wind speed in knots (1

kn = 0.5144 m/s). The data is accessible at the website of Unisys Weather

Information, UNISYS (2015). We focus only on the hurricane-period from

July till October, thus having T = 400 observations for every year n =

1962, . . . , 2011, i.e. N = 50. We treat time 0 ≤ t ≤ T within a year as

continuous, and the observed curves as functional data.

Motivated by the work of Burdejova et al. (2017), who tested the hy-

pothesis of linear trend for hurricanes we model the hurricane data with

our DSFM-model and focus primarily on the estimation of coefficients for

different trend curves in time basis.

6.1 The choice of time basis U

For the periodicity we use also 10 fourier basis functions with period N = 50

and a constant function. Since we are mainly interested not only in linear

trend, but also add quadratic and logarithmic function to the basis, so we

set as before:

u12(t) =
log t

log T
, u13(t) =

t2

T 2
, u14(t) =

t

T,
.
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Figure 2: Graphical representation of Ĉ for hurricane data and level τ = 0.5
(left) and τ = 0.8 (right). The rows correspond to the last three time basis
functions, i.e. logarithmic, quadratic and linear. The columns correspond to
the space basis, i.e. 20 principal components.

data load hurricanes
DYTEC hurricanes

6.2 The choice of space basis Ψ

In order to model the specific structure within the yearly period we use the

principal components. We set first 20 components as the space basis Ψ , since

they explain 90% of the variance.

6.3 The estimates of matrix Ĉ

The proposed algorithm is performed for two different τ = 0.5 and τ = 0.8.

The estimations of matrices are shown in Figure 2, for τ = 0.5 left and

τ = 0.8 right. Two conclusions are obvious from the estimations:

1. The coefficient related to the linear trend for all principal component

are not as much significant as the coefficients for quadratic and even

logarithmic trend.

2. The linear trends has similar pattern for both τ -levels. But this does

not hold true for other two trends, whose coefficients related to all

principal components differ with respect to τ , especially for logarithmic

trend.
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One could conclude that in case of the historical observation of hurricanes,

the question of testing models incorporating other than linear trend is lying

in the interest of future research.

7 Conclusion

In this paper we propose the dynamic semi-parametric factor model for a joint

estimation of expectile curves. For that purpose we utilized a non-parametric

series expansion for both factors and their (time-developing) scores. We have

provided the convergent algorithm for its estimation that is based on the idea

of itterative least squares. The presented model is thus an utile extension of

commonly known factor model for the mean, where L2 norm is used.

This novel approach provides us with several advantages. One can eas-

ily directly estimate the extreme curves from the data without any need of

pre-computing the expecile curves separately. Moreover, the method may

be applied for a non-stationary data as well. Any dynamics, hidden intra-

dependencies, trend or patterns of such tail event curves can be easily cap-

tured with the proper choice of time basis.

We have demonstrated the good estimation properties in a simulation

study for different set-ups of error term and different expectile τ -levels as

well. A method was applied to the Chinese temperature data set of average

daily temperatures over years in order to show its easy usability not only

for modelling but mainly for forecasting, where it performs as good as any

traditional approaches used for the prediction of this type of functional data.

The second application to the wind speed data of hurricanes shows not only

the importance of considering various trends but also pointed out the fact of

diverse factor structure for different τ -levels.
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Park, B. U., E. Mammen, W. Härdle, and S. Borak (2009): “Time

series modelling with semiparametric factor dynamics,” Journal of the

American Statistical Association, 104, 284–298.

Ramsay, J. and B. Silverman (2005): Functional data analysis, Springer,

New York.

Schnabel, S. K. and P. H. Eilers (2009): “Optimal expectile smooth-

ing,” Computational Statistics & Data Analysis, 53, 4168 – 4177.
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