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Wolfgang Karl Härdle * *2 *3 *4

* Xiamen University, China
*2 Humboldt-Universität zu Berlin, Germany
*3 Singapore Management University, Singapore
*4 Charles University, Czech Republic

This research was supported by the Deutsche
Forschungsgesellschaft through the

International Research Training Group 1792
”High Dimensional Nonstationary Time Series”.

http://irtg1792.hu-berlin.de
ISSN 2568-5619

In
te
rn
a
ti
o
n
a
l
R
es
ea

rc
h
T
ra
in
in
g
G
ro
u
p
1
7
9
2

http://irtg1792.hu-berlin.de


Combining Penalization & Adaption in High Dimension

with Application in Bond Risk Premia Forecasting

Xinjue Lia,∗, Lenka Zboňákováb, Weining Wangb
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Abstract

The predictability of a high-dimensional time series model in forecasting
with large information sets depends not only on the stability of parameters
but also depends heavily on the active covariates in the model. Since the
true empirical environment can change as time goes by, the variables that
function well at the present may become useless in the future. Combined
with the instable parameters, finding the most active covariates in the pa-
rameter time-varying situations becomes difficult. In this paper, we aim to
propose a new method, the Penalized Adaptive Method (PAM), which can
adaptively detect the parameter homogeneous intervals and simultaneously
select the active variables in sparse models. The newly developed method
is able to identify the parameters stability at one hand and meanwhile, at
the other hand, can manage of selecting the active forecasting covariates
at every different time point. Comparing with the classical models, the
method can be applied to high-dimensional cases with different sources
of parameter changes while it steadily reduces the forecast error in high-
dimensional data. In the out-of-sample bond risk premia forecasting, the
Penalized Adaptive Method can reduce the forecasting error(RMSPE and
MAPE) around 24% to 50% comparing with the other forecasting methods.
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1 Introduction

Parameter instability is widely recognized as a crucial issue in forecasting. This

instability is caused not only by time-variation of coefficients associated with pre-

dictors, but also by varying significance of the predictors themselves. Variable

selection is particularly important when the true underlying model has a sparse

representation. Ensuring high prediction accuracy requires high quality of discov-

ering the relevant variables and an ability of adjusting for time-varying coefficient

loadings. To handle such instability it is common to use only the most recent

rather than all available observations to estimate the coefficients and identify

significant predictors at each point of time.

In out-of-sample forecasting, model parameters are generally estimated using

either a recursive or rolling window estimation method. These methods are

widespread in many areas, especially in macroeconomics and finance, because

parameter variations are often encountered. However, none of them answers

the question of how to select the proper intervals in which the coefficient load-

ings can be considered to be stable. Chen and Niu (2014), Chen and Spokoiny

(2015) and Niu et al. (2017), among others, addressed this issue by applying a

data driven adaptive window choice (Polzehl and Spokoiny (2005), Polzehl and

Spokoiny (2006)) to detect the longest homogeneous intervals over the financial

and macroeconomic data samples. The method enables us to identify parame-

ter homogeneity and select large subsamples of constant coefficient loadings for

predictors, but switches to smaller sample sizes if parameter inhomogeneity is

detected. The procedure is fully data driven and parameters are tuned following

a propagation-separation approach.

As pointed out by Chen and Niu (2014) the short memory view is quite realistic

and easily understood in the context of business cycle dynamics, policy changes
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and other exogenous economic shocks. However, in this work we face another

question, where we consider the stability of the coefficient loadings and their

significance.

Considering the variable selection problem, the traditional criteria such as AIC

and BIC become infeasible due to expensive computation in high-dimensional

data (Zou and Li, 2008). One of the possibilities at hand for dealing with large

dimensions is the LASSO introduced by Tibshirani (1996) and recently applied

to a system of high-dimensional regression equations by Chernozhukov et al.

(2018). Further, Fan and Li (2001) advocate the use of other penalty functions

satisfying certain conditions so the resulting penalized likelihood estimator pos-

sesses the properties of sparsity, continuity and unbiasedness while introducing

the Smoothly Clipped Absolute Deviation (SCAD) penalty. Moreover, Fan and

Li (2001) gave a comprehensive overview of feature selection and proposed a uni-

fied penalized likelihood framework to approach the problem of variable selection.

Alternatively, the recent advances of variable selection enable us to construct ef-

ficient estimation methods. Zou and Li (2008) developed the one-step SCAD

algorithm to solve the estimation procedures based on nonconcave penalized like-

lihood problems. For the SCAD penalty it has been shown that for the appro-

priate choice of the regularization parameter the nonconcave penalized likelihood

estimates perform as well as the oracle procedure in terms of selecting the correct

subset of covariates and consistent estimation of the true nonzero coefficients.

Although both the adaptive method and penalized regression models enjoying

oracle properties increase prediction accuracy compared with traditional least

squares or maximum likelihood methods, neither of them can provide a complete

solution when dealing with variable instability. On one hand, the adaptive algo-

rithm associates nonzero coefficients to all of the predictors which may result in

a too large model. On the other hand, treating the whole sample size as a sta-
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tionary data and performing variable selection and coefficient shrinkage to fit the

model also contradicts the economic background, since it is known that there are

exogenous economic shocks and regime switches observable throughout history.

Thus, the whole sample size should not be considered as homogeneous.

It seems unwise to directly use some of the penalized regression methods to deal

with a parameter-varying macroeconomic problem. It is because predictors can

be important during particular periods of time and insignificant in others when

the economic situation changes. Therefore we propose to do the break point

detection simultaneously with the variable selection in a fully data driven way.

In this paper we derive a new method - the Penalized Adaptive Method (PAM)

- which can handle all of the previously described challenges. It provides a new

way to perform variable selection and homogeneous interval detection at the

same time, i.e. a way to capture parameter instability. With the use of PAM

one can detect the longest homogeneous intervals observable throughout the data

sample and simultaneously identify the relevant predictors which improves the

performance of the out-of-sample forecasting. In the derived approach we assume

that the local model with homogeneous parameters will hold with high probability

for the forecast horizon and can be automatically identified.

The advantages of PAM are documented by applying the method to the excess

bond risk premia modelling problem. Comparison of the in-sample and out-of-

sample fit of our proposed method with the baseline models from Cochrane and

Piazzesi (2005) and Ludvigson and Ng (2009) shows significant improvement in

terms of various model accuracy measures when applying the former.

The rest of the paper is organized as follows. In Section 2 we first describe the

SCAD penalized regression method with its one-step algorithm developed by Zou

and Li (2008) and the adaptive propagation-separation approach. Further into
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the section we then combine those two methods into the so-called PAM. In Section

3, we perform the simulation study. Section 4 deals with the application of PAM

to a real dataset consisting of excess bond returns and macrovariables observed

on the market. The theoretical results are shown in Section 2.5 and Section 5

concludes.

2 Penalized Adaptive Method

Although many economies and financial markets have been experiencing policy

shocks and business cycles such as the global recession (2008), the European debt

crisis(2010), the Brexit(2016) and the current trade war(2018), mostly used econo-

metric models are based on the assumption of time homogeneity. But, the market

and institutional changes have long been assumed to cause structural instability

and uncertainty in economic time series. Ignoring these instabilities(both from

the structural side and the variable side) can adversely affect the modelling, es-

timation and forecasting. As mentioned previously, there are several approaches

on how to model time-variation in coefficient loadings. By using the external

information about the business cycles, one can simply use rolling windows as it

was done for example in Härdle et al. (2016), where the authors modelled time

variation observable on the financial market. However, this approach has the

drawback of selecting the window size and also the variables prior to model fit-

ting and in general it stays an unsolved issue affecting the interpretability of the

statistical results.

As discussed before, both the adaptive approach and penalized SCAD regression

have their respective advantages in capturing the homogeneity in stationary or in

non-stationary time series and in dimension reduction. To combine the properties

of this two methods, we propose a new method which can detect the homogeneous
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subintervals and meanwhile automatically select the variables in high dimensional

situations.

In the following part, we develop an alternative and more robust parametric

approach to the local stability analysis that relies on a finite-sample theory of

testing a growing sequence of historical time intervals on homogeneity. We first

discuss the penalization method applied as a tool to estimate and select the

variables in a given interval I. Then we discuss the test statistics employed to

test the homogeneity of the interval I. Later, we rigorously describe the adaptive

estimation procedure, the implementations and the selection of the parameters

entering the adaptive procedure.

2.1 SCAD Penalty

We consider a linear model

yt+1 = β>t xt + εt+1 (1)

with the sample size of n and where yt+1 is the response. xt = (1, xt,1, . . . , xt,p)
>,

βt = (βt,0, βt,1, . . . , βt,p)
>. In order to simplify the economic forecasting model,

we follow Chen et al. (2010) and Chen and Niu (2014) to set the errors {εt+1}nt=1

a set of i.i.d random variables with zero mean and variance σ2
t+1. In this paper

we assume that the parameter vector βt is sparse, i.e. only some number qt,

1 ≤ qt < p, of the true coefficients are nonzero.

We are now dealing with a linear sparse model, where the active covariates are

unknown and will shift as the time goes by. At every point of time, the active

covariates have to be chosen by one of the available variable selection meth-

ods. For this purpose we are using the smoothly clipped absolute deviation

(SCAD) method introduced by Fan and Li (2001). The proposed nonconcave
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SCAD penalty yields an oracle estimator under some conditions on a shrinkage

parameter λ and this property plays a crucial role in the homogeneous subinterval

identification. However, a drawback of SCAD penalty is its nonconcavity. Fan

and Li (2001) proposed an algorithm with local quadratic approximation (LQA)

of SCAD penalty to be able to perform the shrinkage and selection as a mini-

mization problem. Zou and Li (2008) revisited the task of finding the solution

to penalized likelihood problem and developed an algorithm with local linear ap-

proximation (LLA) of the broad class of penalty functions, with SCAD among

others. In their work they showed the proposed method outperforms the LQA

approach, in a sense that it automatically adapts a sparse solution. What is more,

the computational cost is significantly reduced by using only one iteration step as

the efficiency of the algorithm is the same as for the fully iterative method. This

holds under the assumption that the initial estimators are reasonably chosen.

In general, we can simply consider a given interval I with sample size n since the

whole search and estimation can be repeated at different time points. Considering

of variable selection, we perform the penalized (quasi) likelihood estimation of the

parameter β and maximize the objective function on the given interval I,

LQ,I(β) = LI(β)− n
p∑
j=1

Pλ(|βj|), (2)

where LI(β) =
n∑
i=1

`i(β) is the non-penalized log-likelihood function with `i(·) to

be the non-penalized log-likelihood function for an observed (p+1)-tuple (yi+1, xi)

and Pλ(·) a penalty function with parameter λ > 0. The SCAD penalty is defined

as a continuous differentiable function with a derivative

P ′λ(|βj|) = λ

{
I(|βj| ≤ λ) +

(aλ− |βj|)+

(a− 1)λ
I(|βj| > λ)

}
,

for some a > 2 (a = 3.7 was suggested as a generally good choice) and λ > 0,

where by I(·) we denote an indicator function and (·)+ = max(0, ·).
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Following the LLA approach by Zou and Li (2008), the general penalty function

Pλ(|βj|) can be locally approximated by

Pλ(|βj|) ≈ Pλ(|β̃(0)
j |) + P ′λ(|β̃

(0)
j |)(|βj| − |β̃

(0)
j |)

for some βj ≈ β̃
(0)
j and β̃(0) is a non-penalized maximum likelihood estimator.

Then the estimator of the proposed procedure is defined as follows

β̃ = arg max
β

{
n∑
i=1

`i(β)− n
p∑
j=1

P ′λ(|β̃
(0)
j |)|βj|

}

Based on Zou and Li (2008), we set our objective function QI(β) on the given

interval I to be

QI(β) =
n∑
i=1

`i(β)− n
p∑
j=1

P ′λ(|β̃
(0)
j |)|βj|. (3)

We refer to the proof of convergence and oracle properties of the one-step SCAD

estimator under condition that the penalty parameter λ satisfies

√
nλ→∞ and λ→ 0. (4)

with n to be the sample size.

The choice of the parameter λ over a grid of values satisfying conditions (4)

is performed with the use of BIC modified for the penalized regression case as

follows

BICλ = log(σ̂2
λ) + q

log(n)

n
Cn, (5)

where σ̂2
λ = n−1SSEλ = n−1

∑n
i=1(yi+1 − β̂(λ)>xi)

2 and Cn is some positive con-

stant. Here we denote β̂(λ) explicitly as a function of λ in order to indicate its

dependency on the choice of the penalization parameter. Consistency of (5) in

selecting a true model was proved by Wang and Leng (2007), where they dis-

cussed diverging number of parameters and therefore proposed Cn = log{log(p)}.
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Chand (2012) discussed the choice of the constant Cn in a greater detail. For

moderate to large sample sizes with a fixed parameter dimension p he showed the

BIC performs best with Cn =
√
n/p.

2.2 Test of homogeneity

The adaptive estimation procedure crucially relies on the test of local time-

homogeneity of an interval I = [t0, T ]. The null hypothesis for I means that the

observations follow the parametric model (1) with a fixed parameter β, leading

to the quasi-MLE estimate β̃I and the corresponding fitted log-likelihood QI(β̃I).

If the observations follow the parametric model (1) with a parameter βJ for the

subinterval J = [t0, s] and with a different parameter βJc for the counterpart

J c = [s+ 1, T ], the test of homogeneity can be performed using the test statistic

TI,s:

TI,s = max
βJ ,βJc∈Θ

{QJ(βJ) +QJc(βJc)} −max
βinΘ

QI(β)

= QJ(β̃J) +QJc(β̃Jc)−QI(β̃I). (6)

Suppose that we have a growing set It,1 ⊂ It,2 ⊂ It,3 ⊂ . . . ⊂ It,K of historical

interval candidates which satisfy that for each k, the interval It,k = [t − mk +

1, t],mk = k · c, c > 0, with the right-end point t is fixed. If It,k is considered as

a homogeneous interval, then the observations follow the parametric model (1)

should have a fixed parameter on It,k. The quasi-MLE estimate β̃It,k should has

no significant difference with the quasi-MLE estimate β̃It,m of interval It,m,m =

1, . . . , k− 1. Similar to (6), the the procedure which checks every interval It,k on

homogeneity relies on the test statistic T
(k,m)
t , where m = 1, . . . , k − 1,

T
(k,m)
t = QIt,m(β̃It,m) +QIt,k\It,m(β̃It,k\It,m)−QIt,k(β̃It,k). (7)
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The considered problem of testing homogeneity of interval It,k can be stated as

H0,t : Yt ∼ P1, for t ∈ It,k

H1,t :

 Yt ∼ P1, for t ∈ It,k−1

Yt ∼ P2, for t ∈ It,k\It,k−1,
(8)

for k = 2, . . . , K and where P1,P2 are measures defined on a parametric family

P(β), i.e. P1,P2 ∈ {P(β), β ∈ Θ ⊆ Rp}.

2.3 Adaptive search for the longest homogeneous interval

The algorithm starts with fitting a local model with the quasi-MLE for the interval

It,k, k = 1, 2, . . . , K,

β̃It,k = arg max
β

QIt,k(β).

In default, the smallest interval It,1 is accepted automatically as homogeneous.

Then the adaptive procedure checks every larger interval It,k, k = 2, . . . , K on

homogeneity using the test statistics (7). If It,k has been selected as the homo-

geneous interval, then the quasi-MLE estimate β̃It,m on It,m, m = 1, 2, . . . , k − 1

should have no significant difference with the quasi-MLE estimate β̃It,k on It,k.

The selected interval Ît corresponds to the largest accepted interval It,k̂ with index

k̂ should satisfy the following conditions:

∀m ∈ {1, 2, . . . , k̂ − 1}, T (k̂,m)
t ≤ ςt,m; (9)

∃m0 ∈ {1, 2, . . . , k̂}, T (k̂+1,m0)
t ≥ ςt,m0 , (10)

where the critical values ςt,m,m = 1, . . . , K − 1 are discussed in the next sec-

tion. This procedure then leads to the adaptive estimate β̂t = β̂It,k̂ = β̃It,k̂

corresponding to the selected interval Ît = It,k̂. The complete description of

the procedure includes two steps.(A)Fixing the set-up and the parameters of the

procedure.(B)Search for the longest interval of homogeneity.
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(A) Set-up parameters

A1. Select the growing set It,1, . . . , It,K of historical interval-candidates where

It,k = [t − mk + 1, t] and each mk, which represents the length of the

interval It,k, independents of time t .

A2. Select the critical value ςt,1, . . . , ςt,K−1 in (9),(10)

(B) Adaptive search and estimation

B1. β̂It,1 = β̃It,1

B2. Test the H0,t null hypothesis of homogeneity for the interval It,k ac-

cording to the test procedures of (9),(10) and the critical values ςt,m

obtained in (A2). If H0,t is rejected, go to (B4). Otherwise proceed

with (B3).

B3. Set β̂t = β̂It,k = β̃It,k . Further, set k := k + 1. If k ≤ K, repeat (B3);

otherwise go to (B4).

B4. It,k−1 is the longest homogeneous interval, and Ît = It,k−1, β̂t = β̃It =

β̃It,k−1
. Moreover, if k ≤ K, β̂Ik = · · · = β̂IK = Ît.

The step (B) performs the search for the longest time-dependent homogeneous

interval. Initially, as assumed, It,1 is the shortest homogenous interval. If the

null hypothesis has be accepted and Ik−1 is accepted as homogeneity, one should

continues with It,k by employing test (9),(10) in step (B2). If the H0,t has be

accepted, then It,k is accepted as homogeneous in step (B3), otherwise the proce-

dure terminates in step (B4) and It,k−1 is the longest homogenous interval at time

t. The longest interval accepted as homogeneous at time t is used for estimation

in step (B4). Suppose It,k̂ is the selected homogeneous interval and note that the

selected k̂ is corresponding with the shorter homogeneous intervals It,m, m ≤ k̂,

the interval selection procedure has selected out of It,1, . . . , It,k̂ as homogeneous

intervals.
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2.4 Choice of critical values

The presented method of choosing the interval of homogeneity Î can be viewed

as multiple testing procedure. The critical values for this procedure are selected

using the general approach of testing theory: to provide a prescribed performance

of the procedure under the null hypothesis in the pure parametric situation.

This means that the procedure is trained on the data generated from the pure

parametric time-homogeneous model from step (A1). The correct choice in this

situation is to set the largest considered interval It,K to be a homogeneous interval

and a choice It,k̂ with k̂ < K can be interpreted as a false alarm. We select the

minimal critical values ensuring a small probability of such a false alarm. Suppose

It,K is the homogenous interval, then It,k, k = 1, 2, . . . , K−1 are also homogenous

intervals. Based on (B2), for T
(l,k)
t = QIt,k(β̃It,k) +QIt,l\It,k(β̃It,l\It,k)−QIt,l(β̃It,l),

l = k+1, . . . , K, there should be a set of critical values ςt,l,k, l = k+1, . . . , K satisfy

T
(l,k)
t ≤ ςt,l,k, l = k + 1, . . . , K. Since we are focusing on parameter estimation

rather than on hypothesis testing, for simplicity we can set

ςt,k = max{ςt,k+1,k, . . . , ςt,K,k}, (11)

to make sure that the null hypothesis H0,t for It,l, l = k+1, . . . , K are all accepted.

One way to select the critical values is using the multiplier bootstrap technic

which follows from Klochkov et al. (2019). Recall the notations from previ-

ous sections that the non-penalized log-likelihood function of a given interval I

with sample size n is represented as L(β) =
∑n

i=1 `i(β), i.e. `i(β) denotes the

parametric logarithmic density of the i-th observation. β̃(0) stands for the non-

penalized quasi-MLE estimate. Assume a set of i.i.d. scalar random variables ui,

i = 1, . . . , n, which satisfy E(ui) = 1, Var(ui) = 1 and E{exp(ui)} < ∞. The
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bootstrapped penalized log-likelihood function as follows

Q◦I(β) =
n∑
i=1

ui

{
`i(β)− n

p∑
j=1

P ′λ(|β̃
(0)
j |)|βj|

}
. (12)

Denoting E◦(·) = E(·|Y,X, λ), where Y = (y1, . . . , yn)>, X = (x1, . . . , xn)>, we

then can have E◦Q◦I(β) = EQI(β) and

arg max
β

E◦Q◦I(β) = arg max
β

QI(β) = β̃,

where Q◦I(β) is denoted to be the bootstrapped penalized log-likelihood func-

tion on a specific interval I and the corresponding penalized quasi-MLE of the

bootstrap world is β̃◦I = arg max
β

Q◦I(β).

In order to circumvent the problem of penalizing elements of vector β by a dif-

ferent amount in the real and the bootstrap case in a finite sample size situation,

we set the parameter λ of the SCAD method to be the same for Q(β) and Q◦(β).

Asymptotically, the parameter λ approaches zero, see (4), as needed for the oracle

properties of the SCAD estimator, and therefore the condition of equal λ’s is no

longer required.

If one wishes to approximate the distribution of the test statistic from (7), it

can be done (up to some approximation error in finite samples) by using the

bootstrapped penalized likelihood ratio, l = k + 1, . . . , K,

T
◦(l,k)
t = Q◦It,k(β̃◦It,k) +Q◦It,l\It,k(β̃◦It\It,k)

− sup
β∈Θ
{Q◦It,k(β) +Q◦It,l\It,k(β + β̃It,l\It,k − β̃It,k)}. (13)

Here the term β̃It,l\It,k−β̃It,k is devoted to compensate the biases of the estimators

β̃◦It,k and β̃◦It,l\It,k in the bootstrap world. According to Klochkov et al. (2019),

the distribution of T
◦(l,k)
t conditioned on the data mimics the distribution of the

original test T
◦(l,k)
t with high probability.
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Specifically, let 1−α ∈ (0, 1) be a determined confidence level of a testing proce-

dure. Based on (11), the approximation of a desired quantile of the distribution

of the original test statistic from (7)

ςt,k,α = max
l∈{k+1,...,K}

inf{t ≥ 0 : P(T
(l,k)
t > t) ≤ k

K
α}

can be evaluated as

ς◦t,k,α = max
l∈{k+1,...,K}

inf{t ≥ 0 : P◦(T
◦(l,k)
t > t) ≤ k

K
α}, (14)

where P◦ denotes the conditional probability given observations of {yt+1}t∈It,k ,

{xt}t∈It,k and values of λ.

At each point of time t, we implement the multiplier bootstrap into determining

quantiles of the test statistic from (7) by simulating nb sets of i.i.d. multipliers ui,

i = 1, . . . , |Ik|. For each set of multipliers, we can denote as ub,i, b = 1, . . . , nb,i =

1, . . . , |Ik|, l = k + 1, . . . , K, computing

T
b,◦(l,k)
t = Qb,◦

It,k
(β̃b,◦It,k) +Qb,◦

It,l\It,k(β̃b,◦It,l\It,k)

− sup
β∈Θ
{Qb,◦

It,k
(β) +Qb,◦

It,l\It,k(β + β̃It,l\It,k − β̃It,k)}.

Therefore, we can get an approximate distribution of T
(l,k)
t under the homoge-

neous situation and can evaluate the respective (1 − α)% quantile as in (14).

Comparing the test statistic from (7) to the defined critical value we either reject

the homogeneity hypothesis H0,t, if (9) is satisfied, for the given confidence level,

or move to the next step and prolong the subsample regarded as homogeneous.

2.5 The small modeling bias and the stability

In this section, we collect basic results describing the quality of the proposed

estimation procedure. First, we define the concept of small modeling bias and

14



discuss although the parametric assumption may not be precisely fulfilled but the

PAM process can also be used. Then we discuss certain stability properties of

the proposed method.

Without loss of generality, we discuss the quality of estimating the underlying

parameter vector β� by β̃Ik , k = 1, . . . , K based on a certain given interval set

{Ik}Kk=1 instead of {It,k}Kk=1 for all t since the discussion for every different interval

set which corresponds to a different time point will still be hold. We denote the

parameter dimension by p and the sample size by n. We also need to introduce

the stochastic part of the likelihood process: ζQIk
(β) = QIk(β)− E(QIk(β)). Set

D2
0 = −∇2

β E(QIk(β�)) and the required assumptions are the basic conditions ED0

and Lr required in Spokoiny and Zhilova (2015).

Assumption 1, Spokoiny and Zhilova (2015), condition ED0. For 1 ≤ k ≤ K,

there exist a positive-definite symmetric matrix V 2
0 and constants g > 0, ν0 > 1

such that V ar{∇βζQIk
(β�)} ≤ V 2

0 , |%| ≤ g and

sup
γ∈Rp

log E(exp{%
γ>∇βζQIk

(β�)

‖V0γ‖
}) ≤ ν2

0%
2/2.

Assumption 2, Spokoiny and Zhilova (2015), condition Lr. For 1 ≤ k ≤ K,

and for each r ≥ r0 there exists a value b(r) > 0 s.t. rb(r)→∞ for r →∞ and

∀β : ‖D0(β − β�)‖ = r, it holds

−2{E(QIk(β))− E(QIk(β�))} ≥ r2b(r),

where D2
0 = −∇2

β E(QIk(β�)).

Based on definition of β� = arg max
β

E(QIk(β)), apparently ∇β E(QIk(β�)) = 0.
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The Taylor expansion of E(QIk(β)) around β� indicate that,

−2(E(QIk(β))− E(QIk(β�))) = (β − β�)> E(
∂2QIk(β̄)

∂β∂β>
)(β − β�)

= ‖D(β̄)(β − β�)‖2

where β̄ lies between β and β�, D(β̄)2 = E(
∂2QIk

(β̄)

∂β∂β>
). Since β̃

P−→ β�, then

−2(E(QIk(β̃))− E(QIk(β�)))
P−→ r2. Define the loss function Q(m, k, β) as,

if m ≤ k,

Q(m, k, β) = QIm(β̃Im) +QIk\Im(β̃Ik\Im)−QIk(β),

if k < m, the loss function is,

Q(m, k, β) = QIk(β̃Ik) +QIm\Ik(β̃Im\Ik)−QIm(β).

where β̃I denotes the quasi-MLE on the interval I. We also define the function

G(m, k) as

G(m, k) =


Q(m, k, β̃Ik); m ≤ k,

Q(m, k, β̃Im); m > k.

By definition, the value of G(m, k) is non-negative and represents the homogene-

ity deviation of the maximum log penalized likelihood process from the shorter

interval to the longer interval. More generally speaking, G(m, k) can measure

the homogeneity difference between the interval Im and the interval Ik. Based on

G(m, k), we have the following results.

Theorem 1. In the case of SCAD penalty with the penalty parameter λ satisfies

(4) and holding the assumptions 1 and 2, for 1 ≤ m ≤ K, 1 ≤ k ≤ K,

Eβ� |Q(m, k, β�)| ≤ R, (15)

where R > 0 is a constant.
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This result gives a non-asymptotic and fixed upper bound for the risk of quasi-

MLE estimate that applies to an arbitrary sample size |I|.

2.5.1 Small modeling bias condition

Now we extend our discussion to the situation when the parametric assumption is

not precisely fulfilled but the deviation from the true model is small in a modeling

bias. To measure the distance of a parametric model from the nonparametric

process, we should introduce for every interval Ik and every parametric β ∈ Θ a

random quantity. Therefore, we define the Kullback Leibler divergence between

the nonparametric measure and the parametric measure as,

∆Ik(β) =
∑
i∈Ik

K{P(yi+1,xi), Pβ}

where yi+1 is the response variable and xi = (1, xi,1, . . . , xi,p)
> is the covariates

vector. We assume that the error terms are independent and identically dis-

tributed and denote P(yi+1,xi), Pβ corresponding to the marginal distribution of εi

with respect to (yi+1, xi) and β ∈ Θ. To characterize the parametric feature, we

define a small modeling bias (SMB) condition

∆Ik(β) ≤ ∆ (16)

which simply means that, for some β ∈ Θ, ∆Ik(β) is bounded by a small constant

with high probability. This implies that the model can be well approximated on

the interval Ik by the parametric parameter β.

Theorem 2. Let the (16) hold for some interval Ik and β ∈ Θ. Then, in the

case of SCAD penalty with the penalty parameter λ satisfies (4), we have

E log(1 +Q(m, k, β)/R) ≤ 1 + ∆, 1 ≤ m ≤ K,

where R > 0 is the parametric risk bound.
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This result shows that the estimation loss Q(m, k, β) normalized by the paramet-

ric risk R is stochastically bounded by a constant proportional to exp(∆). If ∆

is not large, exp(∆) shows the risk bound of using the parametric modeling for

approximation under the SMB condition.

2.5.2 Stability

Informally, the best parametric fit to the underlying model (1) on Ik can be

defined by minimizing the value E(∆Ik(β)) over β ∈ Θ. The oracle index k∗ can

be estimated as k∗ = arg max
k
{∆k(β) ≤ ∆} and β̃Ik∗ can be viewed as the best

estimate.

For a fixed ∆ > 0, (16) does not hold for k > k∗ and unfortunately, the underlying

∆Ik∗ is unknown. Therefore, we need to make sure that when our final adaptive

estimated k̂ overshoots the oracle k∗(k̂ > k∗), the estimate does not vary too

much.

According to the construction, the penalized adaptive procedure of testing a

growing sequence of historical time intervals on homogeneity described above

provides a stable performance by following the parametric model (1).

Theorem 3. In the case of overshooting k̂ > k∗, the estimate is accurate enough

in the sense that

Q(Ik∗ , Ik̂\k∗ , β̃Ik̂) = QIk∗ (β̃Ik∗ ) +QIk̂\Ik∗ (β̃Ik̂\Ik∗ )−QIk̂
(β̃Ik̂)

≤ ςk∗ .

This result provides the prescribed performance that when overshooting k̂ > k∗,

the final estimate will not destroy the risk bond. Moreover, Theorem 4 also

implies similar performance below.
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Theorem 4. Let the (16) and hold the assumptions 1 and 2, 1 ≤ m ≤ K, then

in the case of SCAD penalty with the penalty parameter λ satisfies (4),

E log(1 +
Q(m, k∗, β)

R
) ≤ ∆ + 1 (17)

E log(1 +
G(k∗, k̂)

R
) ≤ ∆ + 3 + log(1 + ςk∗/R). (18)

Due to Theorem 4, even for the further steps of the penalized adaptive algorithm

with k̂ > k∗ the homogeneity difference G(k∗, k̂) between Ik̂ and Ik∗ which is

unknown can not be too large. The penalized adaptive estimate β̂ belongs with

a high probability to the confidence set of the oracle estimate β̃Ik∗ .

Next, we move to discuss on which condition, when k̂ < k∗, the proposed pe-

nalized adaptive estimate can mimic the oracle estimate or the final adaptive

estimate provides the same (in order) accuracy as the oracle estimate on the ba-

sis of available data using the sequential test of homogeneity. Let us propose the

last assumption in the paper.

Assumption 3. Suppose the final adaptive procedures stop at k̂, then there is a

constant ρ > 0, satisfy

Eβ�(d(k̂, k)) ≤ ρR, (19)

where

d(k̂, k) =


Q(k̂, k, β̂Ik); k̂ ≤ k,

Q(k̂, k, β̂Ik̂); k̂ > k.

Similar to G(k̂, k), d(k̂, k) is also a measure which represents the homogeneity

difference between the interval Ik and the final adaptively selected interval Ik̂.

According to the penalized adaptive estimation procedure, we can always select

a set of critical values ς1, . . . , ςK which can satisfy Assumption 3.
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It follows, if k̂ ≤ k, then

Eβ�(Q(k̂, k, β̂Ik))

= Eβ�(QIk(β̃Ik) +QIk\Ik̂(β̃Ik\Ik̂)−QIk(β̂Ik))

= Eβ�(QIk(β̃Ik) +QIk\Ik̂(β̃Ik\Ik̂)−QIk(β̃Ik) +QIk(β̃Ik)−QIk(β̂Ik))

≤ 3R+ Eβ�(QIk(β̃Ik)−QIk(β̂Ik))

and when ςk → ∞, k = 1, . . . , K, β̂Ik → β̃Ik , therefore Eβ�(Q(k̂, k, β̂Ik)) is

bounded corresponding to R.

If k̂ > k,then

Eβ�(Q(k̂, k, β̂Ik̂))

= Eβ�(QIk(β̃Ik) +QIk̂\Ik(β̃Ik̂\Ik)−QIk̂
(β̂Ik))

= Eβ�(QIk(β̃Ik) +QIk̂\Ik(β̃Ik̂\Ik)−QIk̂
(β̃Ik̂))

≤ 3R.

Combine the discussions for both situations, apparently, there exist ς1, . . . , ςK

which can satisfy (19).

Theorem 5. Let β ∈ Θ and ∆ > 0 to be such that E(∆Ik∗ (β)) ≤ ∆ for some

k∗ ≤ K. If the Assumption 3 is hold, then in the case of SCAD penalty with the

penalty parameter λ satisfies (4),

E log(1 +
d(k̂, k∗)

R
) ≤ ∆ + ρ. (20)

Under the SMB condition E(∆Ik∗ (β)) ≤ ∆ and Assumption 3, Theorem 5 docu-

ments that the penalized adaptive estimate does not induce larger (in order) errors

into estimation than the oracle estimate. As prescribed, based on assumption 3,

the final adaptive estimate claims the same accuracy with the oracle estimate.
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3 Simulation Study

In the following part, we perform two simulation studies regarding the use of

multiplier bootstrap in critical value selection. In this two simulations, we set

three different homogeneous scenarios and in each scenario the active variables

are different from the other scenarios. The main point of this simulation study

is to show that the newly developed method in this paper can successfully detect

the longest homogeneous interval and at the same time can manage of selecting

the correct variables.

For the multiplier bootstrap procedure, we propose to use either ui ∼ Exp(1),

ui ∼ Pois(1) or ui having a bounded distribution on interval [0, 4] with a pdf

f(ui) =


3

14
if 0 ≤ ui ≤ 1;

1

12
1 < ui ≤ 4.

(21)

In the simulation studies we consider a linear model Y = Xβ+ε with a number of

observations n and a number of parameters p from which only q < p are nonzero.

Set matrix X is taken from a p-dimensional normal distribution as follows

{Xi}ni=1 ∼ Np(0,Σ),

with elements {σij}pi,j=1 of the covariance matrix Σ satisfying σij = 0.5|i−j|. Error

terms εi are simulated as i.i.d. from N(0, 1). We consider n = 500 to assess

performance for k = 10 with mk = 50 · k. Number of parameters p is set to be

p = 10.

In the first simulation, there are tow different parameter homogeneity shifting

points which locate at t = 51, t = 101 and indicate that there are three different

homogenous scenarios.
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The first set of parameter β is list as

Scenarios
1 2 3

1 ≤ t < 50 51 ≤ t < 100 101 ≤ t ≤ 500
β (1,1,1,1,1,0,0,0,0,0) (1,1,1,0,0,0,0,0,0,0) (1,1,1,1,1,0,0,0,0,0)

Table 1: The homogeneity shifting points locate at t=51 and t=101.

In the second simulation, there are also three different homogenous scenarios with

tow different parameter homogeneity shifting points which locate at t = 101 and

t = 151. The second set of parameter β is listed as

Scenarios
1 2 3

1 ≤ t < 100 101 ≤ t < 150 151 ≤ t < 500
β (1,1,1,1,1,0,0,0,0,0) (1,1,1,0,0,0,0,0,0,0) (1,1,1,1,1,0,0,0,0,0)

Table 2: The homogeneity shifting points locate at t=101 and t=151.

For each of the setting we simulated 1000 times and for each time we simulated ui

from the three aforementioned distributions in order to obtain an approximation

of the distribution of the penalized likelihood ratio.

For the choice of the penalization parameter λ we defined BIC as in (5) with

Cn = max(1,
√
n/p). This was specified according to suggestions from Chand

(2012).

Results of the first simulation are given in Table 3 and Table 4. In Table 3

one can see the percentage of correctly identifying the homogeneity of a interval

which corresponds to a certain parameter homogeneity shifting point. In the

simulation, there are two parameter homogeneity shifting points, the homogeneity

shifting point a and the homogeneity shifting point b. The first homogeneity

shifting point a corresponds to t = 51. With the high probability of correctly

identifying the homogeneity shifting point a, the PAM method can, with high

probability, correctly identify the homogeneity of the interval 1 ≤ t < 50. The last

homogeneity shifting point b corresponds to t = 101. With the high probability

of correctly identifying the last homogeneity shifting point, the PAM method can
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also identify the homogeneity of the intervals: 51 ≤ t < 100 and 101 ≤ t < 500

with high probability.

In Table 4, one can see the percentage of correctly selecting the active variables in

a certain scenario. In the simulation, there are three scenarios, since there is no

parameter inhomogeneity in the first scenario, PAM performs similar in variable

selection compared to the normal SCAD method. Therefore, we are focusing

only on the second and the third scenarios in which there are not only shift in

parameters, but also there are changes in active variables. Based on Table 4, PAM

method have high probability of correctly selecting the active variables when the

situation come across with changes both in active variables and in parameters.

Results of the second simulation are given in Table 5 and Table 6. In simulation

two, the first parameter homogeneity shifting point located at t = 101 rather

than at t = 51 and the second parameter homogeneity shifting point located at

t = 151 rather than at t = 101. In this situation, the PAM method can also, with

high probability, correctly identify the homogeneity of the intervals: 1 ≤ t < 100,

101 ≤ t < 150 and 151 ≤ t < 500.

In Table 6, similar to simulation one, we are also showing the percentage of

correctly selecting the active variables in a certain scenario by using PAM. Based

on Table 6, we can conclude that the PAM method can correctly select the active

variables in the situation of parameter shifting with high probability.

4 Excess Bond Premia Modelling

In this section we use the previous results and apply PAM to the excess bond

premia modelling problem. Motivation for this application comes mainly from

Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009), where they used
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linear model with macro factors in order to forecast bond risk premium, which was

regarded, by the expectation hypothesis, as unforecastable in the past. Cochrane

and Piazzesi (2005) reconsidered the model of Fama and Bliss (1987), who proved

that the expectation hypothesis does not hold and compared it to their newly

proposed factor model which was shown to outperform the preceding one.

However, all of the previous authors considered the coefficient loadings in their

models to be homogeneous throughout the whole sample size and if not, they

assumed the factor models compensate for the non-stationarity (Ludvigson and

Ng, 2009). Our aim is to introduce possible time-varying coefficient loadings into

the modelling and also propose a different dimension reduction which will not

come from factor models, but rather from a penalized regression. The advantage

of the latter lies in direct association of the modelled bond risk premia with actual

macroeconomic variables, which simplifies model interpretation.

As for the notation, we closely follow Cochrane and Piazzesi (2005) throughout

the chapter. Let us denote the log bond prices by p
(m)
t = log price of m-year

discount bond at time t. Then the log yield is determined by

y
(m)
t = − 1

m
p

(m)
t .

Further, log forward rate for loans between time t+m− 1 and t+m specified at

time t is

f
(m)
t = p

(m−1)
t − p(m)

t

and the log holding period return from buying a m-year bond at time t and selling

it at time t+ 1 as a (m− 1)-year bond is denoted by

r
(m)
t+1 = p

(m−1)
t+1 − p(m)

t .
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Finally, for the excess log returns we write

rx
(m)
t+1 = r

(m)
t+1 − y

(1)
t , for m = 2, 3, 4, 5.

Cochrane and Piazzesi (2005) started with considering linear regressions with

excess log returns for all maturities as dependent variables and all of the related

forward rates as predictors, i.e.

rx
(m)
t+1 = β

(m)
0 + β

(m)
1 y

(1)
t + β

(m)
2 f

(2)
t + . . .+ β

(m)
5 f

(5)
t + ε

(m)
t+1, (22)

for m = 2, 3, 4, 5. Further they specified a single factor for modelling expected

excess returns for all k as follows

rx
(m)
t+1 = bm(γ0 + γ1y

(1)
t + γ2f

(2)
t + . . .+ γ5f

(5)
t ) + ε

(m)
t+1, (23)

where vector γ = (γ0, . . . , γ5)> is the same for all m = 2, 3, 4, 5 and bm satisfies

1
4

∑5
m=2 bk = 1 in order to allow for a separate identification of the given set of

parameters.

In what follows we deviate from the cited work in the sense that we consider

inclusion of macro variables, what was shown to improve the model fit and its

forecasting performance, see Ludvigson and Ng (2009). This serves our purpose,

since with PAM we can include a large number of covariates and reduce the

dimension of the model afterwards.

The factor model of Ludvigson and Ng (2009) is defined by the following

rx
(m)
t+1 = α>Ft + β>Zt + εt+1, (24)

where Ft is an (r× 1) vector of latent common factors, α a corresponding vector

of factor loadings, Zt is a (s×1) vector of directly observable covariates and βt its

associated parameter vector. For their empirical study, they chose the number of
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estimated factors r = 8 and considered two models, one with the single forward

factor of Cochrane and Piazzesi (2005) included and one without. According to

a minimized BIC criterion the subset of either five, for the first case, or six, for

the latter case, common factors was selected. The description of their estimation

method is omitted here and can be found in the original work of Ludvigson and

Ng (2009). Later in the section we take all of the models (22), (23) and (24),

both with five and six factors, as baselines with which we compare the forecasting

performance of PAM.

For our proposed model we use the raw data of Jurado et al. (2015), where we

select a subset of collected macro variables and for the sake of comparison with the

models of Ludvigson and Ng (2009) we follow their transformation suggestions

and apply them to the raw dataset. The selected predictors can be classified

into three groups, which capture the situation on the bond market, the stock

market or describe the macroeconomic environment. Complete list of the used

macro variables and their transformations can be found in Table 7. In addition to

the macroeconomic variables, we also use log yield and log forward rates defined

previously as explanatory variables. Altogether the predictors yield a dimension

of p = 36. The time span over which the sample of covariates was taken is January

1960 to December 2010 and the observations of bond risk premia as dependent

variables were taken from January 1961 to December 2011.

Let us now specify the proposed model. For each m = 2, 3, 4, 5 we assume

rx
(m)
t+1 = β

(m)
0t + β

(m)>
1t ft + β

(m)>
2t Mt + ε

(m)
t+1,

where ft = (y
(1)
t , f

(2)
t , . . . , f

(5)
t )> and vector Mt defines all of the macro variables

from Table 7. Please note that in our model we allow for time-variation of the

vector of parameters βt.
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For our empirical study, we take {Ik}5
k=1 and consider the increments between

two adjacent subintervals to be 4 years, i.e. mk = 48 ·k, k = 1, . . . , 5, for monthly

observations. This comes from the fact, that business cycles as defined by The

National Bureau of Economic Research (NBER) last on average around 5.5 years,

therefore reducing this span and assuming it as homogeneous sample is regarded

as a reasonable choice. Moreover, from the ADNS model of Chen and Niu (2014),

where they focused on the short term explanation of the macroeconomic situation,

one can see that the average length of the stable subsample is around 2.5-3.5

years. The specified length of the subintervals and their increments should also

yield better coverage probabilities of the multiplier bootstrap based confidence

regions for the estimated parameters.

As mentioned previously, in our study we compare the performance of PAM with

formerly described models of Cochrane and Piazzesi (2005) and Ludvigson and

Ng (2009). Authors of both works considered the time span ranging from January

1964 to December 2003, which might have influenced their results. Replicating

the forward factor from Cochrane and Piazzesi (2005) and the reasoning behind

using it, we come to a conclusion that time-variation of coefficients in this type

of real data cannot be omitted. The ‘tent-shape’ characteristic of the parameters

corresponding to yields and forward rates no longer holds if one considers a longer

time span, as can be seen in Figure 1. Moreover, the line shapes differ across

the maturities of considered bonds. Therefore, in order to thoroughly analyse

and compare the performance of the stated baseline models and PAM, we use

both lengths of the data, January 1964 to December 2003 and January 1961 to

December 2011.

Firstly, we compare the fitting performance of the used methods. As measures

of the model accuracy we compute the root mean squared error (RMSE), the

mean absolute error (MAE), R2 and R2
adj for 1-year excess log returns of 2-, 3-, 4-
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and 5-year bonds as dependent variables. For calculation of adjusted R2 we use

the number of covariates or factors as number of parameters in case of baseline

models and average number of nonzero coefficients over the whole time range in

case of PAM model. For the calibration of critical values, we use 1 000 multipliers

with the Pois(1) distribution, since in the simulation section they yielded the best

coverage probability results in the small sample case. For the homogeneity testing

the confidence level of 95 % was applied.

The fitting procedure summary can be found in Table 8, where we use abbrevi-

ations CP, CP1F, LN5F and LN6F for models (22), (23) and (24), respectively,

with five or six factors used in the latter case. Here we omit the single factor

representation of five and six factor models of Ludvigson and Ng (2009) since, as

shown by the authors, they yield very similar results to those where each factor

is considered as a separate covariate. Graphical comparison for the case of 2-year

bond excess returns is presented in Figures 2 and 3.

As can be seen from Table 8, the PAM method performs the best in terms of

used fitting performance measures. On average it reduces the RMSE and MSE

to one fourth of the RMSE and MSE of the models used by Cochrane and Piazzesi

(2005) and Ludvigson and Ng (2009). The coefficient of determination R2 and

its adjusted value R2
adj attain values as high as 98 %, what greatly outperforms

the baseline models. This performance largely owes to the possibility of time

variation in coefficients throughout the whole time span of the data and use of

many covariates without grouping them into common factors.

For the shorter time span (from January 1964 to December 2003) the average

length of homogeneous time intervals is 4.4, 6.7, 6.7, 5.7 for the 2-, 3-, 4- and

5-year bond excess returns, respectively. This is in agreement with the findings

of Chen and Niu (2014), where a short memory view of the yield curve modelling
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has been promoted.

For the 2-year bond excess returns, the homogeneous intervals were shortest, i.e.

the change point was found between all of the time intervals apart from the time

spans between the years of 1980-83 and 1984-87. The average number of selected

covariates was 11.5, with minimum 3 and maximum 19. In all of the sub-samples,

the 2-year forward rate f
(2)
t and spread between Moody’s Baa corporate bond

yield and Federal Funds interest rate were chosen as explanatory variables. From

the rest of the possible covariates, the ones with acronyms sfygt1, sfygt5, and

sfyaaac were chosen in more than 80 % of the sub-samples, and thus, modelling

the development of 2-year bond excess returns mainly by spread between Moody’s

corporate bond yield or US Treasury Bills interest rates and Federal Funds interest

rate.

The model for 3-year bond excess returns yields average significant parameter

dimension of 13.8 with a minimum of 9 and maximum of 21. Number of change

points detected is 5 and the covariates selected in more than 80 % of cases are

f
(2)
t , f

(3)
t , fygt5, sfygm6, sfygt1, sfygt5, sfygt10 and sfyaaac. Hence, the discussed

model chooses similar covariates to those for the 2-year bond excess returns with

a use of different maturities, which can be understood as the effect of longer time

to maturity of the dependent variable.

The results for 4- and 5-year bond excess returns are very similar to the previous

ones with an average number of chosen covariates 14.5 in both of the cases. The

set of chosen macro variables in most of the sub-samples was very similar to the

models above. However, the pattern of chosen forward rates broke down in case

of the 5-year bond excess returns, where the yield y
(1)
t together with the forward

rates f
(2)
t , f

(3)
t were chosen in more than 80 % of the sub-samples. In case of

4-year bond excess return these were the forward rates f
(2)
t and f

(4)
t .
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Investigation of the longer time period spanning between January 1961 and De-

cember 2011 yields very similar results to those reported above and thus we omit

its lengthy description.

Comparison of our model fitted by the PAM method to the baseline models

(22), (23) and (24) can be summarized in a few highlights. First of all, our

findings align with the assertion of Cochrane and Piazzesi (2005) by selecting

forward rates as the significant explanatory variables in most of the sub-samples

and hence proving their power in modelling the development of bond risk excess

premia. However, we can see, that the most significant are the forward rates over

the periods which are included in the maturity of the specified bond, in contrast

to the single factor including all of the forward rates. Second, the conclusions of

Ludvigson and Ng (2009) are also present in our model, since the specific macro

variables are almost always included in the homogeneous models providing us

with a better fit compared to the single forward factor model of Cochrane and

Piazzesi (2005). Last, but not least, allowing the coefficient loadings to vary over

time we capture the unstable situation over the markets, where the stationarity

assumption is violated.

As the target of our interest lies rather in forecasting than in in-sample fitting

performance of PAM, we move our focus on prediction over a one-year horizon

ahead. We use the data sample over a period from January 1961 to December

2011 and we make an out-of-sample forecast with a starting point December

2000. For the model fitting we use all of the observed data prior to January

2001 and predict excess bond returns over a one-year horizon, i.e. we predict

the values corresponding to December 2001. Then we recursively adjust the

fitted models to the sample including January 2001 and predict over next year

(January 2002), etc. For the evaluation of forecasting accuracy we use root mean

squared prediction error (RMSPE) and mean absolute prediction error (MAPE)
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as suitable measures. For the calibration of PAM, we again use 1 000 multipliers

generated from the Pois(1) distribution and choose 99 % as a confidence level for

the homogeneity testing. Table 9 collects all of the results for the three compared

methods. Graphical output can be seen in Figure 4.

From Table 9 it is visible that the PAM method outperforms all of the models

(22), (23) and (24) when one deals with forecasting of excess bond returns over

a 1-year period ahead. It achieves the best forecasting performance in terms of

RMSPE and MAPE, reducing it by 24 - 50 % depending on the baseline model

chosen. This effect owes to the possibility of time variation of coefficient loadings,

which can capture the instability over the financial markets. Particularly in the

forecasting period used in this section, where the global financial crisis of the

years 2008 - 2009 is included. In Figure 4 the abrupt rise of the observed values

of excess bond premia for all of the investigated maturities related to the period

of the early 2000s after the Dotcom Bubble and the years of the global financial

crisis is detectable.

This is a natural behaviour of the market since the investors have to be compen-

sated for the risk with higher bond risk premia. Looking at the Figure 4 one can

see that whereas the model of Cochrane and Piazzesi (2005) fails to capture the

parameter inhomogeneity completely, the six-factor model of Ludvigson and Ng

(2009) and PAM react to the development of the curve.

According to the Federal Reserve announcements, the Federal Reserve started

buying billions of mortgage-backed securities in late 2008, and by June 2010, the

amount of bank debt, mortgage-backed securities, and Treasury notes reached

its peak of 2.1 trillion USD. This kind of stimulation pushed the economy to

grow and shifted the expectations of the market, the bond risk premia stopped

increasing and had a decreasing trend at the early stage of 2009. We can see
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that PAM manages to forecast this period more promptly than the investigated

alternative methods.

Concluding from Figure 4 we can say that PAM captures the upward and down-

ward turns of the excess bond returns more efficiently than the alternatives used

for comparison, since its core assumption is the non-stationary of the modelled

data. Indeed, the average lengths of the homogeneous intervals used for the 1-

year ahead prediction are 4.8, 5.0, 5.4 and 5.3 years for the 2-, 3-, 4- and 5-year

bond excess returns, respectively, which is in a large contrast to the whole sample

size of the Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009) methods.

The covariates, which are mostly used for the 1-year ahead prediction of the re-

spective excess bond returns are the ones, which were used for the in-sample fit,

what is a natural result.

With the foregoing summary of the PAM performance at hand, we conclude that

our proposed method provides a useful tool for modelling time variation of the

coefficient loadings especially when dealing with forecasting of non-stationary and

possibly high-dimensional models.

5 Concluding Remarks

In the present paper we proposed a novel approach for dealing with a challenging

statistical inference arising with the occurrence of big data. The introduced

Penalized Adaptive Method (PAM) can capture the non-stationarity and conduct

effective model reduction simultaneously.

The performance of PAM was argued theoretically as well as practically, where

simulation methods were implemented. For the real data application we chose

the problem of excess bond risk premium modelling and its forecastability, where
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we compared PAM with a several baseline models based on the work of Cochrane

and Piazzesi (2005) and Ludvigson and Ng (2009). These authors developed

a technique, which is useful from the practitioner’s point of view because of its

simplicity and good interpretability. However, these models omit two impor-

tant aspects of modeling the variations which include the variable-variation and

parameter-variation.

It is well known that the expectations in the market together with the government

policies can shift the whole economic trend. Therefore, a new method which is

not only capable of providing higher forecasting accuracy but also able to identify

the macro-covariates useful in determining the bond excess returns will certainly

have strong economic implications. Our proposed Penalized Adaptive Method fits

perfectly in the gap between methods dealing with nonstationarity and methods

of variable selection.

It is intuitive that the expectations and the government policies are changing in

different periods of economic cycles and hence cause the time-variation of the

economic fundamentals. By using PAM, which is designed to identify significant

variables and detect homogeneous intervals simultaneously, the simplicity and

interpretability of the model is preserved whereas its fit and forecasting ability

can be largely outperformed as seen from its in-sample and out-of-sample per-

formance. Mainly, it reduces the root mean squared prediction error and mean

absolute prediction error by up to 50 % of the models using whole data sample for

the model fitting. This improvement comes at a cost of a more computationally

intensive method, but its gains should be of interest for any type of users.

The proposed PAM method is fully data-driven and therefore can be applied

to variety of problems which include the high dimensional economic situations

occurring in the real world.
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Appendix

Since QI(βI) = LI(βI)−|I|
∑p

j=1 Pλ(|β̃
(0)
I,j |)|βI,j|, if we want to discuss the moment

bounds for Q(m, k, β�), where β� is the true underlying parameter, we can firstly

refer to the moment bounds for the likelihood ratio process obtained by Lemma

2.7 in Spokoiny et al. (2013).

Lemma 1.(Spokoiny et al. (2013), Lemma 2.7) Holding the assumptions 3 and

7 and define the positive loss function |LI(β̃I , β�)|r, r > 0, then,

Eβ� |LI(β̃I , β�)|r < Rr,

where LI(·) is the no-penalized likelihood function of the given interval I, L(β̃, β�) =

L(β̃)− L(β�).

Theorem 1. In the case of SCAD penalty with the penalty parameter λ satisfies

(4)and holding the assumptions 1 and 2, for 1 ≤ m ≤ K,

Eβ� |Q(m, k, β�)| ≤ R, (25)

where R > 0 is a constant.

Proof of Theorem 1.

Eβ� |QIk−1
(β̃Ik−1

) +QIk\Ik−1
(β̃Ik\Ik−1

)−QIk(β�)|
≤ Eβ� |QIk−1

(β̃Ik−1
)−QIk−1

(β�)|+ Eβ� |QIk\Ik−1
(β̃Ik\Ik−1

)−QIk\Ik−1
(β�)|

= H1 +H2,

where,

H1 = Eβ� |QIk−1
(β̃Ik−1

)−QIk−1
(β�)|

H2 = Eβ� |QIk\Ik−1
(β̃Ik\Ik−1

)−QIk\Ik−1
(β�)|
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The term of H1 can be expanded into the following,

H1 ≤ Eβ� |LIk−1
(β̃Ik−1

)− LIk−1
(β�)|

+ Eβ� ||Ik−1|
p∑
j=1

(P ′λ(|β̃
(0)
j |)|β̃Ik−1,j| − P ′λ(|β̃

(0)
j |)|β�j |)|.

According to SCAD penalty,

P ′λ(|βj|) = λ

{
I(|βj| ≤ λ) +

(aλ− |βj|)+

(a− 1)λ
I(|βj| > λ)

}
,

we can see that, if β̃
(0)
j ≥ aλ then P ′λ(|β̃

(0)
j |) = 0. Because, β̃

(0)
j is fixed and when

β̃
(0)
j 6= 0, λ→ 0, there exist N > 0, satisfy that |Ik−1| > N , P ′λ(|β̃

(0)
j |) = 0.

If |Ik−1| > N ,Eβ� ||Ik−1|
∑p

j=1(P ′λ(|β̃
(0)
j |)|β̃Ik−1,j| − P ′λ(|β̃

(0)
j |)|β�j |)| = 0, therefore,

H1 = Eβ� |QIk−1
(β̃Ik−1

)−QIk−1
(β�)| is bounded according to Lemma 1.

If |Ik−1| ≤ N ,then apparently, Eβ� ||Ik−1|
∑p

j=1(P ′λ(|β̃
(0)
j |)|β̃Ik−1,j|−P ′λ(|β̃

(0)
j |)|β�j |)|

is bounded.

Therefore, H1 is bounded. For the same reason, H2 is also bounded.

Lemma 2. Let P, P0, be two measures s.t. E log(dP/dP0) ≤ ∆ < ∞, and for

any random variable z, with E(z) <∞, we have E log(1 + z) ≤ ∆ + E0(z).

Proof of Lemma 2. f(x) = xy−x log(x)+x attains maximum at the point x = ey,
thus f(x) ≤ f(ey), and we have xy ≤ x log(x) − x + ey. Let x = dP/dP0 and
y = log(1 + z),

E0 dP/dP0 log(1 + z) = E(log(1 + z))

≤ E0(dP/dP0 log(dP/dP0)− dP/dP0 + 1 + z)

≤ ∆ + E0(z)

Theorem 2. Let the (16) hold for some interval Ik and β ∈ Θ. Then, in the

case of SCAD penalty with the penalty parameter λ satisfies (4), we have

E log(1 +Q(m, k, β)/R) ≤ 1 + ∆, 1 ≤ m ≤ K,

where R > 0 is the parametric risk bound.
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Proof of Theorem 2. Based on Theorem 1 and Lemma 2,

E log(1 +
Q(m, k, β)

R
) ≤ ∆ + Eβ(

Q(m, k, β)

R
)

≤ ∆ + 1.

Theorem 3. In the case of overshooting k̂ > k∗, the estimate is accurate enough

in the sense that,

Q(Ik∗ , Ik̂\k∗ , β̃Ik̂) ≤ ςk∗ .

Proof of Theorem 3. The result directly follows the adaptive procedure that,

Q(Ik∗ , Ik̂\k∗ , β̃Ik̂) = QIk∗ (β̃Ik∗ ) +QIk̂\Ik∗ (β̃Ik̂\Ik∗ )−QIk̂
(β̃Ik̂)

≤ ςk∗ .

Theorem 4. Let the (16) and holding the assumptions 1 and 2, then in the case

of SCAD penalty with the penalty parameter λ satisfies (4),

E log(1 +
Q(m, k∗, β)

R
) ≤ ∆ + 1

E log(1 +
G(k∗, k̂)

R
) ≤ ∆ + 3 + log(1 + ςk∗/R).

Proof of Theorem 4. According to Theorem 1 and Lemma 2,

E log(1 +
Q(m, k∗, β)

R
) ≤ ∆ + Eβ(

Q(m, k∗, β)

R
)

≤ ∆ + 1.

Recall that

G(k∗, k̂) =

{
Q(k∗, k̂, β̃Ik∗ ) k̂ ≤ k∗

Q(k∗, k̂, β̃Ik̂) k∗ < k̂
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Based on Lemma 2, we have,

E log(1 +
G(k∗, k̂)

R
) = E log(1 +

G(k∗, k̂)

R
)1(k̂ ≤ k∗)

+ E log(1 +
G(k∗, k̂)

R
)1(k∗ < k̂)

≤ ∆ + Eβ�(
|QIk̂

(β̃Ik̂)−QIk̂
(β�)|+ |QIk∗\Ik̂(β̃Ik∗\Ik̂)−QIk∗\Ik̂(β�)|

R
)

+ Eβ�(
|QIk∗ (β̃Ik∗ )−QIk∗ (β

�)|
R

) + log(1 + ςk∗/R)

≤ ∆ + 3 + log(1 + ςk∗/R)

Theorem 5. Let β ∈ Θ and ∆ > 0 to be such that E(∆Ik∗ (β)) ≤ ∆ for some

k∗ ≤ K. If the Assumption 3 is hold, then in the case of SCAD penalty with the

penalty parameter λ satisfies (4),

E log(1 +
d(k̂, k∗)

R
) ≤ ∆ + ρ. (26)

Proof of Theorem 5. Based on Lemma 2,

E log(1 +
d(k̂, k∗)

R
) ≤ ∆ + Eβ�(

d(k̂, k∗)

R
)

≤ ∆ + ρ.
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Härdle, W. K. and Mammen, E. (1993). Comparing Nonparametric versus Para-

metric Regression Fits, Annals of Statistics 21(4): 1926–1947.
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Figure 1: Regression coefficients of 1-year excess log returns on forward rates for
011964-122003 (left) and for 011961-122011 (right). Solid, dotted, dashed and
dot-dashed lines denote 2-, 3-, 4- and 5-year maturity of the bond, respectively.
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Figure 2: Fitted CP1F, LN6F and PAM models (dashed) with observed val-
ues of 2-year bond excess log returns (solid) for the time period 011964-

122003. CPAinsample
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Figure 3: Fitted CP1F, LN6F and PAM models (dashed) with observed val-
ues of 2-year bond excess log returns (solid) for the time period 011961-

122011. CPAinsample
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Figure 4: Predicted values of CP1F (red), LN6F (blue) and PAM (green) models
(dashed) with observed values of k-year bond excess log returns, k = 2, 3, 4, 5,

(solid) for the time period 122001-122011. CPAoutsample
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ui
Point a Point b
t=51 t=101

Exp(1) 0.9360 0.8761
Pois(1) 0.9340 0.8724
Bounded 0.9460 0.8949

Table 3: Percentage of correctly identifying the parameter homogeneity shifting

points (point a and point b) with α = 0.05, ui
iid∼ bounded from (21), ui

iid∼ Exp(1)

and ui
iid∼ Pois(1), mk = 50, M = 10.

ui
Scenario 2 Scenario 3

51 ≤ t < 100 101 ≤ t ≤ 500
Exp(1) 0.9161 0.9122
Pois(1) 0.9150 0.9104
Bounded 0.9266 0.9266

Table 4: Percentage of correctly fitting in variable selection with α = 0.05, ui
iid∼

bounded from (21), ui
iid∼ Exp(1) and ui

iid∼ Pois(1), mk = 50, M = 10.

ui
Point a Point b
t=101 t=151

Exp(1) 0.9860 0.9223
Pois(1) 0.9860 0.9209
Bounded 0.9840 0.9309

Table 5: Percentage of correctly identifying the parameter homogeneity shifting

points (point a and point b) with α = 0.05, ui
iid∼ bounded from (21), ui

iid∼ Exp(1)

and ui
iid∼ Pois(1), mk = 50, M = 10.

ui
Scenario 2 Scenario 3

101 ≤ t < 150 151 ≤ t ≤ 500
Exp(1) 0.9674 0.9666
Pois(1) 0.9672 0.9666
Bounded 0.9654 0.9650

Table 6: Percentage of correctly fitting in variable selection with α = 0.05,

ui
iid∼ bounded from (21), ui

iid∼ Exp(1) and ui
iid∼ Pois(1), mk = 50, M =

10. CPAsimulations
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Number Description Notation Transform
1. Personal Income a0m52 ∆ log
2. Real Consumption a0m224 r ∆ log
3. Industrial Production Index (Total) ips10 ∆ log
4. NAPM Production Index (Percent) pmp –
5. Civilian Labor Force: Employed, Total lhem ∆ log
6. Unemployment Rate: All workers, 16 years & over (Percent) lhur ∆
7. NAPM Employment Index (Percent) pmemp –
8. Money Stock M1 fm1 ∆2 log
9. Money Stock M2 fm2 ∆2 log
10. Money Stock M3 fm3 ∆2 log
11. S&P500 Common Stock Price Index: Composite fspcom ∆ log
12. Interest Rate: Federal Funds (% p.a.) fyff ∆
13. Commercial Paper Rate cp90 ∆
14. Interest Rate: US Treasury Bill, Sec Mkt, 3-m (% p.a.) fygm3 ∆
15. Interest Rate: US Treasury Bill, Sec Mkt, 3-m (% p.a.) fygm6 ∆
16. Interest Rate: US Treasury Const Maturities, 1-y (% p.a.) fygt1 ∆
17. Interest Rate: US Treasury Const Maturities, 5-y (% p.a.) fygt5 ∆
18. Interest Rate: US Treasury Const Maturities, 10-y (% p.a.) fygt10 ∆
19. Bond Yield: Moody’s Aaa Corporate (% p.a.) fyaaac ∆
20. Bond Yield: Moody’s Baa Corporate (% p.a.) fybaac ∆
21. cp90 - fyff Spread scp90 –
22. fygm3 - fyff Spread sfygm3 –
23. fygm6 - fyff Spread sfygm6 –
24. fygt1 - fyff Spread sfygt1 –
25. fygt5 - fyff Spread sfygt5 –
26. fygt10 - fyff Spread sfygt10 –
27. fyaaac - fyff Spread sfyaaac –
28. fybaac- fyff Spread sfybaac –
29. Spot Market Price Index: all commodities psccom ∆2 log
30. NAPM Commodity Prices Index (Percent) pmcp –
31. CPI-U: All items punew ∆2 log

Table 7: List of macroeconomic variables from Ludvigson and Ng (2009), with
the same notation and transformations. Note that ∆ denotes the first difference
of the series and ∆ log and ∆2 log denote the first and second differences of the
logarithm of the series, respectively.
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Jan 1964 - Dec 2003 Jan1961 - Dec 2011

RMSE MAE R2 R2
adj RMSE MAE R2 R2

adj

rx
(2)
t+1

CP 0.007 0.005 0.322 0.315 0.007 0.005 0.215 0.208
CP1F 0.007 0.005 0.318 0.316 0.007 0.005 0.204 0.203
LN5F 0.007 0.005 0.365 0.357 0.006 0.004 0.377 0.371
LN6F 0.005 0.004 0.579 0.574 0.005 0.004 0.501 0.496
PAM 0.001 0.001 0.980 0.979 0.001 0.001 0.979 0.979

rx
(3)
t+1

CP 0.012 0.010 0.340 0.333 0.012 0.010 0.224 0.217
CP1F 0.012 0.010 0.338 0.336 0.012 0.010 0.220 0.219
LN5F 0.012 0.009 0.385 0.377 0.011 0.008 0.383 0.377
LN6F 0.010 0.008 0.532 0.526 0.010 0.008 0.463 0.458
PAM 0.003 0.002 0.970 0.970 0.002 0.002 0.970 0.970

rx
(4)
t+1

CP 0.017 0.013 0.370 0.363 0.017 0.013 0.253 0.247
CP1F 0.017 0.013 0.369 0.368 0.017 0.013 0.251 0.250
LN5F 0.016 0.013 0.414 0.407 0.015 0.012 0.401 0.395
LN6F 0.015 0.012 0.486 0.479 0.015 0.011 0.420 0.414
PAM 0.004 0.003 0.968 0.967 0.003 0.003 0.967 0.966

rx
(5)
t+1

CP 0.021 0.016 0.344 0.337 0.021 0.016 0.231 0.225
CP1F 0.021 0.016 0.344 0.343 0.021 0.016 0.229 0.228
LN5F 0.020 0.016 0.386 0.378 0.019 0.015 0.368 0.362
LN6F 0.019 0.015 0.461 0.454 0.018 0.014 0.398 0.392
PAM 0.005 0.003 0.965 0.964 0.005 0.003 0.962 0.961

Table 8: RMSE and MAE of fitted PAM, Cochrane and Piazzesi (2005) and
Ludvigson and Ng (2009) models. Model with the smallest values of RMSE and

MAE and greatest values of R2 and R2
adj is marked in bold. CPAoutsample
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RMSPE MAPE
RMSPEPAM

RMSPE

MAPEPAM

MAPE

rx
(2)
t+1

CP 0.008 0.007 0.50 0.43
CP1F 0.008 0.006 0.50 0.50
LN5F 0.008 0.006 0.50 0.50
LN6F 0.006 0.005 0.67 0.60
PAM 0.004 0.003 – –

rx
(3)
t+1

CP 0.015 0.013 0.47 0.46
CP1F 0.015 0.013 0.47 0.46
LN5F 0.015 0.013 0.47 0.46
LN6F 0.012 0.010 0.58 0.60
PAM 0.007 0.006 – –

rx
(4)
t+1

CP 0.021 0.017 0.57 0.59
CP1F 0.021 0.018 0.57 0.56
LN5F 0.021 0.018 0.57 0.56
LN6F 0.017 0.013 0.71 0.77
PAM 0.012 0.010 – –

rx
(5)
t+1

CP 0.025 0.021 0.64 0.62
CP1F 0.026 0.021 0.62 0.62
LN5F 0.026 0.022 0.62 0.59
LN6F 0.021 0.017 0.76 0.76
PAM 0.016 0.013 – –

Table 9: Forecasting performance of PAM, Cochrane and Piazzesi (2005) and
Ludvigson and Ng (2009) models. Model with the smallest values of RMSPE

and MAPE is marked in bold. CPAoutsample
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Renault, June 2019.

017 ”Portmanteau Test and Simultaneous Inference for Serial Covariances” by Han Xiao,
Wei Biao Wu, July 2019.

018 ”Phenotypic convergence of cryptocurrencies” by Daniel Traian Pele, Niels Wes-
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022 ”A Machine Learning Approach Towards Startup Success Prediction” by Cemre
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