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Abstract

Cryptocurrencies are becoming an attractive asset class and are the focus of recent
quantitative research. The joint dynamics of the cryptocurrency market yields infor-
mation on network risk. Utilizing the adaptive LASSO approach, we build a dynamic
network of cryptocurrencies and model the latent communities with a dynamic stochas-
tic blockmodel. We develop a dynamic covariate-assisted spectral clustering method
to uniformly estimate the latent group membership of cryptocurrencies consistently.
We show that return inter-predictability and crypto characteristics, including hashing
algorithms and proof types, jointly determine the crypto market segmentation. Based
on this classification result, it is natural to employ eigenvector centrality to identify a
cryptocurrency’s idiosyncratic risk. An asset pricing analysis finds that a cross-sectional
portfolio with a higher centrality earns a higher risk premium. Further tests confirm
that centrality serves as a risk factor well and delivers valuable information content on
cryptocurrency markets.
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1 Introduction

The invention of Bitcoin (Nakamoto, 2008) spurred the creation of many cryptocurrencies

(cryptos hereafter) commonly known as Altcoins. As of December 31, 2018, more than 1500

cryptos are actively traded worldwide, with a market capitalization of more than 200 billion

USD. The growing number of Altcoins led investors to investigate interrelationships between

Altcoins to make a profit. Unlike stocks that we can group into di↵erent industries by GIC

or SIC, there are no stringent criteria to classify cryptos. By virtue of network analysis,

we develop a covariate-assisted spectral clustering (CASC) method that accommodates

important network features such as connection sparsity, degree heterogeneity, and relation

asymmetry, to study the interrelationships between cryptos systematically. We thereby

provide a novel angle to study the market segmentation problem of cryptos and other

financial instruments.

The crypto market is distinct from the equity market in various aspects, which hinders

the application of traditional classification methodology. Given that both cryptos and stocks

are traded at high frequency, return information is particularly important as it serves as

timely information to understand the dynamics of the market structure. According to

market e�ciency, the covariance between the prices of speculative assets cannot exceed the

covariance between their fundamental information. Consequently, in the equity market,

return co-movement is frequently adopted to project the fundamental similarity between

stocks. However, excess return co-movement has been widely documented in the literature

(see, e.g., Kumar and Lee, 2006; Boyer, 2011) and it is more significant in the crypto market

given the strong behavioral bias of market participants and high information uncertainty

of its future cash flows. Inspired by Hoberg and Phillips (2016), who ameliorate industry

classification by studying a set of dynamic industry structures generated from product

di↵erentiation and competition, we use crypto’s contract information to help identify the

fundamental similarities between cryptos. In particular, we extract the most fundamental

characteristics of each mining contract, that is, the cryptographic algorithm and proof

types, as additional input for clustering analysis. As we expected, our method shows

superior classification accuracy over state-of-the-art methods available in the literature. In

particular, cryptos in the same group show stronger return co-movement than the cross-

group return co-movement across all empirical settings. Moreover, within-group cryptos

show stronger connections in algorithms and proof types than cross-group cryptos do.
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To understand the economic meaning of the latent group structure, we conduct several

tests to verify the asset pricing implication of the grouping results. Acemoglu et al. (2012)

proposed a theoretical framework to model spillover e↵ects through sector-level shocks. The

model suggests that if the linkages in the inter-sectoral network are su�ciently asymmet-

ric, then sectoral shocks might not cancel out through diversification, but aggregate into

macroeconomic fluctuations. Ahern (2013) further pointed out that the stocks with higher

incoming linkages tend to receive more shocks from linked stocks and thus require a higher

risk premium. Motivated by these results, we construct a cross-sectional portfolio by sort-

ing on group centrality and show that high-centrality cryptos require a higher risk premium

than the low-centrality ones. Next, we investigate whether other factors such as liquidity

(Amihud and Mendelson, 1986), investor attention (Liu and Tsyvinski, 2018), and macro

uncertainty (Baker et al., 2016) could possibly explain this augmented risk premium. Our

results suggest that the return predictability of centrality survives after controlling for all

of these factors. Hence, it provides an important empirical implication for both academic

studies and participants in the crypto market.

This paper develops statistical theory for dynamic networks and thereby makes several

important contributions to classical finance as well as FinTech. First, we o↵er a network

angle to study the crypto market by connecting cryptos according to their inter-predictive

relationship estimated by adaptive LASSO. Second, we provide a new set of quantitative

tools to study crypto market segmentation that can be applied to a wide variety of assets.

Specifically, we extend the static spectral clustering methods (Binkiewicz et al., 2017; Zhang

et al., 2018, among others,) to identify communities in dynamic networks with both time-

evolving membership and node covariates. To make full use of the relevant information, we

address the challenges of the features of the real data, namely, time dependency, degree het-

erogeneity, sparsity, and node covariates. Our proposed community detection method can

resolve the aforementioned data issues. The methodology we present can also be extended

to cover more asset-specific characteristics to achieve higher classification accuracy.

In addition, we deepen the understanding of the crypto market in terms of both market

segmentation and portfolio management. Intensive research in this area considers asset

pricing inferences from di↵erent angles, but there is limited work that shows the economic

link between crypto fundamentals and its performance. Härdle et al. (2019) suggest crypto

dynamics as an extraordinary research opportunity for academia and provide some insights
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into the mechanics of this market. Härdle and Trimborn (2015) construct the CRIX (the-

crix.de), a market index consisting of a selection of cryptos representative of the whole

crypto market. Given the low liquidity in the current Altcoin market compared to tradi-

tional assets, Trimborn et al. (2019) propose a Liquidity Bounded Risk-return Optimization

(LIBRO) approach that accounts for liquidity issues by studying the Markowitz framework

under liquidity constraints. Chen et al. (2018) propose an option pricing technique for cryp-

tos based on a stochastic volatility model with correlated jumps. Lee et al. (2018) compare

cryptos with traditional asset classes and find that cryptos provide additional diversifica-

tion to mainstream assets, hence improving the portfolio performance. Petukhina et al.

(2018) characterize the e↵ects of adding cryptos to the set of traditional eligible assets in

portfolio management and find that cryptos can significantly improve the risk-return profile

of mainstream asset portfolios. Our results provide new insights into the fundamentals of

the crypto market structure by dividing them into di↵erent groups. We find that cryptos’

fundamentals have very di↵erent features from those of traditional assets, and these features

indeed a↵ect a crypto’s price evolution.

The remainder of the paper is organized as follows. In section 2, we introduce the model

and method to estimate the dynamic group structure and demonstrate the e↵ectiveness of

our method via simulation. In section 3, we employ our method to identify the latent

group structure of cryptos and provide its economic interpretation. Then, in section 4, we

check the time series and cross-sectional return predictability and demonstrate its portfolio

implications. We conclude in section 5. All proofs and technical details are provided in the

supplement. R codes to implement the algorithms are available at QuantNet (quantlet.de)

by searching the keyword “CASC.”

2 Models and Methodology

In the equity market, network structures are powerful in revealing risk percolations in as-

sets such as firms, industries, and financial instruments (Cohen and Frazzini, 2008; Aobdia

et al., 2014; Acemoglu et al., 2015; Chen et al., 2019, see, e.g.,). The latest study, Herskovic

(2018), constructs a sector level network based on the Bureau of Economic Analysis (BEA)

Input-Output Accounts. Here, we borrow the network idea to model the interdependencies

in between cryptos, such as technological similarities and return co-movements. However,
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just applying a network view on cryptos will not give us any insights into the dominant

elements of the market. We therefore represent the adjacency matrices stochastically via a

block structure to identify the latent communities. To build such a stochastic blockmodel

with time-varying communities, we need to establish a more advanced methodology to iden-

tify group memberships. Based on adaptive LASSO in a 60-day rolling window, we generate

a time series of adjacency matrices. By imposing an assumption on the switch in group

memberships, we can uniformly identify communities consistently. We base our numeri-

cal implementation of this procedure on spectral clustering. Binkiewicz et al. (2017) show

that the classification accuracy of the spectral clustering method can be improved by intro-

ducing covariate assistance. Here, we present an extension of the static covariate-assisted

spectral clustering (CASC) algorithm to deal with the dynamic stochastic blockmodel and

co-blockmodel. The theoretical justification and simulations also demonstrate the consis-

tency of this method.

2.1 Dynamic network model with covariates

2.1.1 Undirected network

Consider a dynamic network defined as a sequence of random undirected graphs with

N nodes, GN,t, t = 1, · · · , T , on the vertex set VN = {v1, v2, · · · , vN}, which does not

change over horizons. For each period, we model the unipartite network structure with

the spectral-contextualized degree-corrected stochastic blockmodel (SC-DCBM) introduced

by Zhang et al. (2018). Specifically, we generate the adjacency matrices At by

At(i, j) =

8
>>>>><

>>>>>:

Bernoulli{Pt(i, j)}, if i < j

0, if i = j

At(j, i), if i > j

(1)

where Pt(i, j) = Pr{At(i, j) = 1}. To reflect the group structure, the probabilities of a

connection Pt(i, j) at period t are blocked. In particular, denote zi,t as the group label of

node i at time t; then, if zi,t = k and zj,t = k0, then Pt(i, j) = Bt(zi,t, zj,t) = Bt(k, k0).

Hence, for any t = 1, · · · , T , we can obtain the population adjacency matrix

At
def
= E(At) = ZtBtZ

>
t , (2)
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where Zt 2 {0, 1}N⇥K is the clustering matrix such that there is only one 1 in each row

and at least one 1 in each column.

Since the conventional stochastic blockmodel presumes that each node in the same group

should have the same expected degrees, following Karrer and Newman (2011), we introduce

the degree parameters  = ( 1, · · · , N ) to capture the degree heterogeneity of the groups.

In particular, the edge probability between node i and j at time t is

Pt(i, j) =  i jBt(zi,t, zj,t), (3)

with the identifiability restriction

X

i2Gk

 i = 1, 8k 2 {1, 2, · · · ,K}. (4)

where Gk is the set of nodes that belongs to the kth group. Denote Diag( ) by  . The

population adjacency matrices for the dynamic SC-DCBM is then:

At =  ZtBtZ
>
t  , (5)

Define the regularized graph Laplacian as

L⌧,t = D�1/2
⌧,t AtD

�1/2
⌧,t , (6)

where D⌧,t = Dt + ⌧tI and Dt is a diagonal matrix with Dt(i, i) =
PN

j=1At(i, j). As

Chaudhuri et al. (2012) shows, regularization improves the spectral clustering performance,

especially for sparse networks. We fix ⌧t as the value of average node degree, that is,

⌧t = N�1PN
i=1Dt(i, i).

Recent developments suggest that using node features or covariates can greatly improve

classification accuracy. For example, Binkiewicz et al. (2017) add the covariance XX>,

with X 2 [�J, J ]R being the node covariate matrix, to the regularized graph Laplacian

and perform the spectral clustering on the static similarity matrix. We extend the static

similarity matrix to cover the dynamic case below:

St = L⌧,t + ↵tC. (7)
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where C = XX> and ↵t 2 [0,1) is a tuning parameter that controls the informational

balance between L⌧,t and X in the leading eigenspace of St. As a generalization of the

model, Zhang et al. (2018) refines this by replacing C with Cw = XWX>, where W is

some weight matrix. Finally, we substitute C with the new covariate-assisted component

Cw
t = XWtX>, and the population similarity matrix now becomes

St = L⌧,t + ↵tC
w
t , (8)

where L⌧,t = D
�1/2
⌧,t AtD

�1/2
⌧,t and C

w
t = XWtX .

The setup in (8) addresses several extensions of existing methods. First, Wt creates

a time-varying interaction between di↵erent covariates. For instance, we may think of

di↵erent refined algorithms that stem from the same origins. Such inheritance relationships

will potentially lead to an interaction between the cryptos. In addition, over time, some

algorithms may become more popular while the others may near extinction. Thus, this

interaction would also change over time. These interactions are not included in C.

Second, we can easily select covariates by setting certain elements of Wt to zero. This

is necessary as it helps us to model the evolution of technologies. At some point in time,

some cryptographic technology may be eliminated due to upgrades or cracking. Therefore,

Wt o↵ers us the flexibility to exclude covariates, which we cannot do easily with C.

Lastly, the role of C is to link similarity in covariates to a high probability of node

connection. However, this is questionable in crypto networks. Due to the open source

nature of the blockchain, crypto developers can easily copy and paste the source code

and launch a new coin without any costs. Consequently, we observe a high degree of

homogeneity in the crypto market. However, this homogeneity does not necessarily result

in a co-movement of prices: some cryptos are negatively correlated. In this case, we may set

Wt(i, i) to be negative and Cw
t will eventually bring the cryptos with di↵erent technologies

closer in the similarity matrix.

2.1.2 Directed network

To model the dynamic block structure in a directed network, we employ the dyanmic

spectral-contextualized degree-corrected stochastic co-blockmodel (SC-DCcBM). For a di-
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rected network, the adjacency matrix At is not necessarily symmetric; that is,

At(i, j) =

8
><

>:

Bernoulli{Pt(i, j)}, if i 6= j

0, if i = j
(9)

Similarly, define the regularized graph Laplacian L⌧,t 2
N⇥N for the directed network as

L⌧,t = D�1/2
R,t AtD

�1/2
C,t , (10)

where DR,t and DC,t are diagonal matrices with DR,t(i, i) =
PN

j=1At(i, j) + ⌧R,t and

DC,t(i, i) =
PN

j=1At(j, i) + ⌧C,t, where ⌧R,t and ⌧C,t are set to be the average row and

column degrees at each period, respectively.

We now include the node covariates by constructing a similarity matrix from regularized

graph Laplacian L⌧,t and covariate matrix X in the same way as in an undirected network;

that is, for each t = 1, · · · , T ,

St = L⌧,t + ↵tXWtX
> = D�1/2

R,t AtD
�1/2
C,t + ↵tXWtX

>, (11)

where ↵t 2 [0,1) is the tuning parameter. Then, let ZR,t 2 {0, 1}NR⇥KR and ZC,t 2

{0, 1}NC⇥KC , such that there is only one 1 in each row and at least one 1 in each column.

Let the block probability matrix in each period be Bt 2 [0, 1]KR⇥KC with rank K =

min{KR,KC}. Then, the population adjacency matrix is

At = E(At) = ZR,tBtZ
>
C,t, (12)

and the population regularized graph Laplacian is

L⌧,t = D
�1/2
R,t AtD

�1/2
C,t . (13)

Therefore, the population similarity matrix is

St = L⌧,t + ↵tXWtX
>. (14)

By construction, we know DR,t(i, i) =
PN

j=1
(t)
{i!j}+⌧R,t, which controls for the number
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of the parents of node j, and DC,t(i, i) =
PN

i=1
(t)
{j!i} + ⌧C,t, which controls the number

of the o↵spring of node j. To analyze the asymmetric adjacency matrix At caused by

directional information, Rohe et al. (2016) propose using the singular value decomposition

instead of eigen-decomposition for the regularized graph Laplacian. The intuition behind

this methodology is to use both the eigenvectors of L>
⌧,tL⌧,t and L⌧,tL>

⌧,t, which contains

information about “the number of common parents” and “the number of common o↵spring”;

that is, for each t = 1, · · · , T ,

(L>
⌧,tL⌧,t)ab =

NX

i=1

L⌧,t(i, a)L⌧,t(i, b) =
1p

DC,t(a, a)DC,t(b, b)

NX

i=1

(t)
{i!a and i!b}
DR,t(i, i)

,

(L⌧,tL
>
⌧,t)ab =

NX

i=1

L⌧,t(a, i)L⌧,t(b, i) =
1p

DR,t(a, a)DR,t(b, b)

NX

i=1

(t)
{a!i and b!i}
DC,t(i, i)

.

2.2 Dynamic CASC

To set up a dynamic CASC, we face two major di�culties: (i) definingWt and (ii) estimating

the similarity matrix with dynamic network information. For the first issue, we follow

Zhang et al. (2018) by setting Wt = X>L⌧,tX, which measures the correlation between

covariates along the graph. For the second issue, we follow Pensky and Zhang (2017)

by constructing the estimator of St with a discrete kernel to bring in historical network

information. Klochkov et al. (2019) present a similar idea. Specifically, we first pick an

integer r � 0, obtain two sets of integers

Fr = {�r, · · · , 0}, Dr = {T � r + 1, · · · , T},

and assume that |Wr,l(i)|  Wmax, where Wmax is independent of r and i, and satisfies

1

|Fr|

X

i2Fr

ikWr,l(i) =

8
><

>:

1, if k = 0,

0, if k = 1, 2, · · · , l.
(15)

Obviously, the Wr,l is a discretized version of the continuous boundary kernel that

weighs only the historical observations. This kernel assigns more recent similarity matrices

higher scores. To choose an optimal bandwidth r, Pensky and Zhang (2017) propose an

adaptive estimation procedure using Lepski et al. (1997)’s method. Here, we also employ
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their method and construct the estimator for edge connection matrices:

bSt,r =
1

|Fr|

X

i2Fr

Wr,l(i)St+i. (16)

Once we obtain bSt,r, we create an eigen-decomposition of bSt,r = bUt
b⇤t
bU>
t for each t =

1, 2, · · · , T . As Lei and Rinaldo (2015) discuss, the matrix bUt may now have more than

K distinct rows due to the degree correction, whereas the rows of bUt still only point to at

most K directions. Therefore, we apply the spherical clustering algorithm to find a cluster

structure among the rows of the normalized matrix bU+
t with bU+

t (i, ⇤) = bUt(i, ⇤)/kbUt(i, ⇤)k.

More specifically, we consider the following spherical k-means spectral clustering:

��� bZ+
t
bYt � bU+

t

���
2

F
 (1 + ") min

Z+
t 2MN+,K

Yt2RK⇥K

���Z+
t Yt � bU+

t

���
2

F
(17)

where Yt is some rotation matrix. In the last step, we extend bZ+
t to obtain bZt by adding

N �N+ canonical unit row vectors at the end. bZt is the estimate of Zt from this method.

We summarize the algorithm in detail below.

Algorithm 1: CASC in the Dynamic SC-DCBM
Input : Adjacency matrices At for t = 1, · · · , T ;

Covariates matrix X;
Number of communities K;
Approximation parameter ".

Output: Membership matrices Zt for any t = 1, · · · , T .

1 Calculate regularized graph Laplacian L⌧,t and weight matrix Wt.

2 Estimate St by bSt,r as in (16).

3 Let bUt 2 RN⇥K be a matrix representing the first K eigenvectors of bSt,r.

4 Let N+ be the number of nonzero rows of bUt. Then, obtain bU+
2 RN+⇥K

consisting of normalized nonzero rows of bUt; that is, bU+
t (i, ⇤) = bUt(i, ⇤)/

���bUt(i, ⇤)
���

for i such that
���bUt(i, ⇤)

��� > 0.

5 Apply the (1 + ")-approximate k-means algorithm to the row vectors of bU+
t to

obtain bZ+
t 2 MN+,K .

6 Extend bZ+
t to obtain bZt by arbitrarily adding N �N+ canonical unit row vectors

at the end, such as bZt(i) = (1, 0, · · · , 0) for i such that
���bUt(i, ⇤)

��� = 0.

7 Output bZt.

Similar to the dynamic SC-DCBM case, we estimate the block structure of the dy-
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namic SC-DCcBM by analyzing the normalized singular vectors on both sides. Then, using

the spherical k-means analysis, we can also obtain the clustering matrices. The spectral

clustering algorithm for the dynamic SC-DCcBM is below.

Algorithm 2: CASC in the Dynamic SC-DCcBM
Input : Adjacency matrices At for t = 1, · · · , T ;

Covariates matrix X;
Number of row clusters KR and number of column clusters KC ;
Approximation parameter ".

Output: Membership matrices of rows and columns ZR,t and ZC,t for t = 1, · · · , T .

1 Calculate regularized graph Laplacian L⌧,t.

2 Estimate St by bSt,r as in (16).

3 Compute the singular value decomposition of bSt,r = Ut⌃tV >
t for t = 1, · · · , T .

4 Extract the first K columns of Ut and Vt that correspond to the K largest singular
values in ⌃t, where K = min{KR,KC}. Denote the resulting matrices
UK
t 2

N⇥K and V K
t 2

N⇥K .

5 Let NR
+ be the number of nonzero rows of UK

t ; then, obtain UK
t+ 2

NR
+⇥K

consisting of normalized nonzero rows of UK
t+; that is,

UK
t+(i, ⇤) = UK

t (i, ⇤)/
��UK

t (i, ⇤)
�� for i such that

��UK
t (i, ⇤)

�� > 0.
6 Similarly, let NC

+ be the number of nonzero rows of V K
t ; then, obtain

V K
t+ 2

NC
+⇥K consisting of normalized nonzero rows of V K

t+ ; that is,
V K
t+(i, ⇤) = V K

t (i, ⇤)/
��V K

t (i, ⇤)
�� for i such that

��V K
t (i, ⇤)

�� > 0.
7 Apply the (1 + ")-approximate k-means algorithm to cluster the rows (columns) of

bSt into KR (KC) clusters by treating each row of UK
t+ (V K

t+) as a point in K to

obtain bZ+
R,t (

bZ+
C,t).

8 Extend bZ+
R,t (

bZ+
C,t) to obtain bZR,t ( bZC,t) by arbitrarily adding N �NR

+ (N �NC
+ )

canonical unit row vectors at the end, such as bZR,t(i) = (1, 0, · · · , 0)

( bZC,t(i) = (1, 0, · · · , 0)) for i such that kUt(i, ⇤)k = 0 (kVt(i, ⇤)k = 0).

9 Output bZR,t and bZC,t.

2.3 Uniform consistency

2.3.1 Undirected case

In the subsequent analysis, we illustrate that the dynamic CASC is uniformly consistent

over time for both undirected and directed networks. We first make some assumptions on

the graph that generates the dynamic network. The major assumption we need here is

assortativity, which ensures that the nodes within the same cluster are more likely to share

an edge than nodes in two di↵erent clusters.
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Assumption 1. The dynamic network is composed of a series of assortative graphs that

are generated under the stochastic blockmodel with covariates whose block probability matrix

Bt is positive definite for all t = 1, · · · , T .

Intuitively, the more frequent the group membership changes, the less stable the network

will be. Consequently, it becomes harder to make use of the information from the historical

and future network structures to detect the communities in the present network structure.

In Assumption 2, we restrict the maximum number of nodes that switch memberships (s)

to some finite number. Based on this assumption, the proportion of nodes that switch their

memberships shrinks to 0 as the size of the network grows to infinity. Additionally, we can

easily bound the dynamic behavior of clustering matrices (Zt+r � Zt) by noting that there

are at most rs nonzero rows in the di↵erenced matrix.

Assumption 2. At most, s < 1 number of nodes can switch their memberships between

any consecutive time instances.

Assumption 3. For 1  k  k0  K, there exists a function f(·; k, k0) such that Bt(k, k0) =

f(&t; k, k0) and f(·; k, k0) 2 ⌃(�, L), where ⌃(�, L) is a Hölder class of functions f(·) on

[0, 1] such that f(·) are ` times di↵erentiable and

|f (`)(x)� f (`)(x0)|  L|x� x0|��`, for any x, x0 2 [0, 1], (18)

with ` being the largest integer smaller than �.

Assumption 3 states that neither the connection probabilities nor the cluster member-

ships change drastically over the horizons. Lastly, to guarantee the performance of our

clustering method, we impose some conditions to regularize the behavior of the covariate

matrix and the eigenvalues of the similarity matrices.

Assumption 4. Let �1,t � �2,t � · · · � �K,t > 0 be the K largest eigenvalues of St for

each t = 1, · · · , T . In addition, assume that

� = inf
t
{min

i
D⌧,t(i, i)} > 3 log(8NT/✏) and ↵max = sup

t
↵t 

a

NRJ2⇠
,

with

a =

s
3 log(8NT/✏)

�
and ⇠ = max(�2kL⌧kF

p
log(TR),�2kL⌧k log(TR), NRJ2/�),
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where � = maxi,j kXij � Xijk�2, L⌧ = supt L⌧,t.

To establish the consistency of the CASC for the dynamic SC-DCBM, we need to

determine the upper bounds for the misclustering rates. Following Binkiewicz et al. (2017),

we denote Ci,t and Ci,t as the cluster centroids of the ith node at time t generated using

k-means clustering on the sample eigenvector Ut and the population Ut, respectively. Then,

we define the set of mis-clustered nodes at each period as

Mt =
n
i:
���Ci,tO

>
t � Ci,t

��� >
���Ci,tO

>
t � Cj,t

���, for any j 6= i
o
, (19)

where Ot is a rotation matrix that minimizes kUtO
>
t � UtkF for each t = 1, · · · , T .

The misclustering error in Mt has two sources: the estimation error of St using the

discrete kernel estimator and from spectral clustering. In Theorem 1, we provide the

uniform upper bound of the misclustering rate for the undirected and directed networks

separately.

Theorem 1. Let clustering proceed according to Algorithm 1 based on the estimator bSt,r

of St. Let Zt 2 MN,K and Pmax = maxi,t(Z>
t Zt)ii denote the size of the largest block over

the horizons. Then, under Assumptions 1-4, the misclustering rate satisfies

sup
t

|Mt|

N


c1(")KW 2
max

m2
zN�2K,max

⇢
(6 + cw)

b

�1/2
+

2K

�
(
p
2Pmaxrs+ 2Pmax) +

NL

� · l!

⇣ r

T

⌘��2

.

with a probability of at least 1 � ✏, where c1(") = 29(2 + ")2, b =
p

3 log(8NT/✏), and

�K,max = maxt{�K,t} with �K,t being the Kth largest absolute eigenvalue of St.

2.3.2 Directed case

Analogous to the undirected case, we modify Assumption 4 to accommodate the stochastic

co-blockmodel setup.

Assumption 4’. Let �1,t � �2,t � · · · � �K,t > 0 be the K = minKR,KC largest singular

values of St for each t = 1, · · · , T . In addition, assume that

�0 = inf
t
{min{min

i
DR,t(i, i),min

i
DC,t(i, i)}} > 3 log(16NT/✏)

13



and

↵max = sup
t
↵t 

a

NRJ2⇠
,

with a =
q

3 log(16NT/✏)
�0

and ⇠ = max(�2kL⌧kF

p
log(TR),�2kL⌧k log(TR), NRJ2/�0), where

� = maxi,j kXij � Xijk�2, L⌧ = supt L⌧,t.

Following Rohe et al. (2016), we define the “R-mis-clustered” and “C-mis-clustered”

vertices as

Mp
t =

n
i:
���Cp

i,t � C
p
i,tO

p
t

��� >
���Cp

i,t � C
p
j,tO

p
t

���, for any j 6= i
o
, p 2 {R,C}, (20)

where Cp
i,t and C

p
i,t for p 2 {R,C} are the cluster centroids of the ith node at time t generated

using the k-means clustering on the left/right singular vectors and the population left/right

singular vectors, respectively.

Theorem 2. Assuming KR  KC , let ZR,t 2 MN,KR , ZC,t 2 MN,KC , and Pmax =

max{maxi,t(Z>
R,tZR,t)ii,maxi,t(Z>

C,tZC,t)ii} denote the size of the largest block over the hori-

zons. Then, under Assumptions 1-3 and 4’, the misclustering rate satisfies

sup
t

��MR
t

��
N


c2(")KW 2

max

m2
rN�2K,max

⇢
(6 + c0w)

b0

�01/2
+

2KC

�0
(
p

2Pmaxrs+ 2Pmax) +
NL

�0 · `!

⇣ r

T

⌘��2

,

sup
t

��MC
t

��
N


c3(")KW 2

max

m2
cN�2c�

2
K,max

⇢
(6 + c0w)

b0

�01/2
+

2KC

�0
(
p
2Pmaxrs+ 2Pmax) +

NL

�0 · `!

⇣ r

T

⌘��2

,

with a probability of at least 1 � ✏, where c2(") = 26(2 + ")2, c3(") = 27(2 + ")2, b0 =
p

3 log(16NT/✏), �c are defined in supplement equation (44), and �K,max = maxt{�K,t}

with �K,t being the Kth largest absolute singular value of St.

2.4 Choice of tuning parameters

Obviously, we must choose the tuning parameters r, ↵, and K carefully. For the choice of r,

we first need to determine the upper bound of the variance proportion of the estimation error

k bSt,r � Stk, which is k bSt,r � St,rk. In the following lemma, we derive a sharp probabilistic

upper bound on k bSt,r � St,rk using the device provided in Lei and Rinaldo (2015).

Lemma 1. Let d = rNkStk1 and ⌘ 2 (0, 1). Then,

k bSt,r � St,rk  (1� ⌘)�2Wmax

p
d

r _ 1
,
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with probability 1� ✏, where ✏ = N

⇣
3

16kStk1
�2 log

⇣
7
⌘

⌘⌘

.

From Lemma 1 and the proofs of the previous theorems, we can see that k bSt,r �St,rk is

decreasing, while kSt,r � Stk is increasing in r. Therefore, there exists an optimal r⇤ that

achieves the best bias-variance balance; that is,

r⇤ = arg min
0rT/2

 
(1� ⌘)�2Wmax

p
d

r _ 1
+ kSt,r � Stk

!
. (21)

Then, we can apply Lepski’s method (Lepski et al., 1997) to construct the adaptive esti-

mator for r⇤. Without loss of generality, we choose ⌘ = 1/2. The, we define the adaptive

estimator as

br = max

(
0  r  T/2 :

��� bSt,r �
bSt,⇢

���  4Wmax

s
NkStk1
⇢ _ 1

, for any ⇢ < r

)
. (22)

Next, for the choice of ↵t, we select ↵t to achieve a balance between L⌧,t and Cw
t :

↵t =
�K(L⌧,t)� �K+1(L⌧,t)

�1(Cw
t )

. (23)

Lastly, to determine K, we have several choices. Wang and Bickel (2017) implement

a pseudo likelihood approach to choose the number of clusters in a stochastic blockmodel

without covariates. Chen and Lei (2017) propose a network cross-validation procedure to

estimate the number of clusters by utilizing adjacency information. Li et al. (2016) refine

the network cross-validation approach by proposing an edge sampling algorithm. In our

case, we apply the network cross-validation approach directly by inputting the similarity

matrix instead of the adjacency matrix because the covariate matrix Cw
t behaves just like an

adjacency matrix when we use dummy variables to indicate di↵erent technology attributes.

Therefore, the network cross-validation applies to the similarity matrix in our study.

2.5 Monte Carlo simulations

In this section, we carry out several simulation studies using our algorithm and existing

clustering methods under di↵erent model setups. Our benchmark algorithms for undi-

rected networks are the dynamic degree-corrected spectral clustering for the sum of the

squared adjacency matrix (DSC-DC) by Bhattacharyya and Chatterjee (2018) and the dy-
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namic spectral clustering method (DSC-PZ) by Pensky and Zhang (2017). For the directed

networks, as we do not have a fair competitor for a dynamic model, we choose several al-

gorithms designed for a static model. In particular, we compete with the degree-corrected

DI-SIM (DI-SIM-DC) by Rohe et al. (2016) and the covariate-assisted DI-SIM (CA-DI-

SIM-St) method by Zhang et al. (2018) for the adjacency matrix in each period.

First, we set the block probability matrix Bt as

Bt =
t

T

2

6664

0.9 0.6 0.3

0.6 0.3 0.4

0.3 0.4 0.8

3

7775
, with 1  t  T.

and set the order of the polynomials for kernel construction at L = 4 for all simulations. In

the next step, for the undirected network, we simulate the first period’s clustering matrix

Z1 by randomly choosing one entry in each row and assign it to 1 to generate clustering

matrices (Zt). Then, for t = 2, · · · , T , we fix the last N � s rows of Zt�1 and re-assign 1s in

the first s rows of Z1 to mimic the group membership change behaviors. Similarly, for the

directed network, we generate each period’s row/column clustering matrix (ZR,t or ZC,t)

in the same way, separately. Lastly, we assume that the number of communities K = 3 (or

KR and KC for directed network) is known throughout the simulations. The time-invariant

node covariates are R = blog(N)c dimensional with values X ⇠ U(0, 10). We replicate all

experiments 100 times and the misclustering rate we report is the temporal average of the

misclustering rates; that is, T�1PT
t=1 |Mt|/N (or T�1PT

t=1 |MR
t |/N and T�1PT

t=1 |MC
t |/N

for the directed network).

We first examine the clustering performance with a growing network size. The number of

vertices in the network varies from 10 to 100 with step size 5. The time span is T = 10. We

summarize the results in Figure 1. Evidently, as the size of the undirected network becomes

larger (panel (a)), the misclustering rates of the CASC-DC decrease sharply and dominate

DSC-PZ in all cases. DSC-DC only performs as well as CASC-DC when the network is

large, while CASC-DC retains an acceptable misclustering rate in small networks. It also

shows that although using the covariate per se for clustering (DSC-Cw) is unsatisfactory,

we can still add covariates to the adjacency matrix for better grouping.

Next, we check the relative performance for a growing maximal number of group mem-

bership changes. Here, we fix the total number of vertices at 100 and we vary the group
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Figure 1: This figure reports the misclustering rate of di↵erent spectral clustering algorithms for
networks with a growing number of vertices. Panel (a) reports the results for undirected networks,
while Panels (b) and (c) report the results for directed networks. CASC-DC represents Algorithm
1. DSC-DC denotes the dynamic spectral clustering in Bhattacharyya and Chatterjee (2018). DSC-
PZ denotes the dynamic spectral clustering methods in Pensky and Zhang (2017). DSC-Cw is the
spectral clustering based on only covariates. CA-DI-SIM-Dym represents Algorithm 2. DI-SIM-DC
is the degree-corrected DI-SIM in Rohe et al. (2016) and CA-DI-SIM-Stc is the static covariate-
assisted DI-SIM method in Zhang et al. (2018). In all cases, the number of nodes varies from 10
to 100, and the number of membership changes is fixed at s = N1/2. The horizon T = 10 and all
simulations are repeated 100 times.
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membership changes for each period, s, in {0, N/50, N/25, N/20, N/10, N/5, N/4, N/2, N}.

The total number of horizons is T = 10. We summarize the results in Figure 2. Obviously,

our methods are sensitive to the total number of group membership changes. In other

words, the more unstable the group membership is, the higher the misclustering rate will

be. Despite the result, our method still achieves the lowest misclustering rate amongst all

methods when the group memberships are relatively stable (s  N/2).
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Figure 2: This figure reports the misclustering rate of di↵erent spectral clustering algorithms for
networks with a growing number of membership changes. Panel (a) reports the results for undirected
networks, while Panels (b) and (c) report the results directed networks. CASC-DC represents
Algorithm 1. DSC-DC denotes the dynamic spectral clustering in Bhattacharyya and Chatterjee
(2018). DSC-PZ denotes the dynamic spectral clustering methods in Pensky and Zhang (2017).
DSC-Cw is the spectral clustering based on only covariates. CA-DI-SIM-Dym represents Algorithm
2. DI-SIM-DC is the degree-corrected DI-SIM in Rohe et al. (2016) and CA-DI-SIM-Stc is the static
covariate-assisted DI-SIM method in Zhang et al. (2018). In all cases, the network size is fixed at 100,
and the number of membership changes varies in {0, N/50, N/25, N/20, N/10, N/5, N/4, N/2, N}.
The horizon is T = 10 and all simulations are repeated 100 times.

18



3 Crypto Networks and Clusters

In this section, we illustrate how we construct a dynamic network structure using crypto

returns and its contract information. Specifically, we first form a return-based network

using the inter-predictive relations between cryptos. In addition, we add linkages between

the cryptos that adopt similar cryptography techniques. We then perform clustering with

our new algorithm.

3.1 Data and variables

We collected data on the historical daily prices, trading volumes, and contract attributes

of the top 200 cryptos by market capitalization from an interactive platform (Cryptocom-

pare.com) with free API access. After excluding cryptos with incomplete contract informa-

tion, we obtain a sample of 199 cryptos. The sample covers August 31, 2015 to March 31,

2018, and we used an in-sample period for community detection from August 31, 2015 to

December 31, 2017and an out-of-sample period of three months (2018-01-01 to March 31,

2018) for return predictability tests and portfolio construction. In term of the time-invariant

attributes, we mainly collected algorithm and proof types from each crypto’s contract:

Algorithm, which is short for the hashing algorithm, plays a central role in determining

the security of the crypto. For each crypto, there is a hash function in mining; for example,

Bitcoin (BTC) uses double SHA-256 and Litecoin (LTC) uses Scrypt. As security is one

of the most important features of cryptos, the hashing algorithm naturally–in terms of

trust–determines the intrinsic value of a crypto. In the example above, the Scrypt system

was used with cryptos to improve upon the SHA256 protocol. The SHA256 preceded the

Scrypt system and was the basis for BTC. Specifically, Scrypt was employed as a solution

to prevent specialized hardware from brute-force e↵orts to out-mine others. Thus, Scrypt-

based Altcoins require more computing e↵ort per unit, on average, than the equivalent coin

using SHA256. The relative di�culty of the algorithm confers a relative value.

Proof Types, or proof system/protocol, is an economic measure to deter denial of service

attacks and other service abuses such as spam on a network by requiring some work from

the service requester, usually the equivalent to processing time by a computer. For each

crypto, at least one of the protocols will be chosen as a transaction verification method; for

example, BTC and Ethereum (ETH) currently use the Proof-of-Work (PoW), and Diamond
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(DMD) and Blackcoin use the Proof-of-Stake (PoS). PoW-based cryptos such as BTC use

mining–the solving of computationally intensive puzzles–to validate transactions and create

new blocks. In PoS-based cryptos, the creator of the next block is chosen through various

combinations of random selection and wealth (in terms of crypto) or age (i.e., the stake).

In summary, the proof protocol determines the reliability, security, and e↵ectiveness of the

transactions.

3.2 Crypto network construction

To study how risk or information propagates through the network, we construct it from

the interrelations between the crypto returns. More precisely, we focus on one crypto and

regresses its returns on the other cryptos’ lagged returns in a 60-day estimation window.

We employ adaptive LASSO (Zou, 2006) to estimate the regression coe�cient; that is,

b̂⇤i = argmin

8
<

:

������
rsi,t+1 � ↵i �

X

j 6=i

bi,jr
s
j,t

������

2

+ �i
X

j 6=i

ŵi,j |bi,j |

9
=

; , (24)

where rsj,t is the standardized return for crypto j, b̂⇤i = (b̂⇤i,1, · · · , b̂
⇤
i,N )> is the adaptive

LASSO estimate, �i are non-negative regularization parameters, and ŵi,j are the weights

corresponding to |bi,j | for j = 1, · · · , N in the penalty term. Conventionally, one defines

ŵi,j = 1/|b̂olsi,j |
� with some � > 0. The LASSO technique yields an active set that has

“parental” influence on the focal crypto. Thus, we obtain an adjacency matrix for each

period, At, t = 1, · · · , T .

In Figure 3, we visualize a subgroup of 20 cryptos on selected dates to illustrate the

structural features revealed by (24). The node color indicates the estimated group mem-

bership and the node size denotes its degree centrality from the receiver’s perspective.

Evidently, the predictive relations between cryptos are highly asymmetrical (rare double-

sided arrows). Acemoglu et al. (2012) also observe this feature, which will later help us

argue that sectoral shocks might not cancel out through diversification, but aggregate into

a systematic fluctuation. Therefore, determining the centered cryptos and the group struc-

ture is crucial for understanding how information or shocks propagate in the crypto market.

As Figure 3 shows, the return-inferred network is time-varying and sparse in general.

Taking subfigures (a) and (d) as an example, the interrelation between BTC and DMD
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Figure 3: This figure presents the return-based network structure on selected dates in
January 2018. We selected 20 cryptos, including BTC, ETH, LTC and other top cryp-
tos by market capitalization as of December 31, 2017 within each group estimated by
dynamic CASC. We obtained the connections from the predictive regression rsi,t+1 =

↵i +
PN�1

j=1,j 6=i bi,jr
s
j,t + ✏i,t, where rsi,t is the standardized daily return on crypto i and

N is the total number of cryptos. Adaptive LASSO is employed to estimate the regression
above and only the cryptos selected by adaptive LASSO will be linked to crypto i.
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vanishes on January 1, 2018, and the connections on 2018-01-01 are sparser than those on

January 15, 2018 are. This observation requires a more refined clustering and the use of

node attributions. To demonstrate how node attribution assists classification, we replot

the network with the same cryptos in Figure 3 and link the cryptos that share at least one

fundamental characteristic to obtain Figure 4. Both LTC and DOGE adopt the Scrypt

algorithm; hence, these two cryptos are fundamentally connected.

Clearly, due to the limited choices of algorithms and other attributes, the cryptos are

more likely to connect with each other when using attribute commonality to form linkages.

However, using contract information alone is enough to identify the group structure, as

crypto returns carry information on investors’ beliefs, which is particularly important for

the crypto market. In addition, the relationship between a crypto’s fundamental character-

istics to its value is more complicated than is a firm’s fundamental to its equity. It is possible

that a new algorithm does not add any valuable features to the existing algorithms. In fact,

many developers simply copy and paste the blockchain source code with minor modifica-

tions on the parameters to launch a new coin for speculative purposes through an initial

coin o↵ering (ICO). Although these Altcoins may show little di↵erences between their fun-

damental characteristics, their abilities to generate future cash flows vary considerably. A

good example is IXCoin, the first BTC clonecoin. While IXCoin copied every detail from

Bitcoin, IXCoin was unable to replicate the success of BTC. The developers stopped work-

ing on IXCoin for months after its ICO. This example shows that a clonecoin could be more

risky than its protocoin for speculation reasons. www.deadcoins.com provides other similar

cases.

To address the issues raised above fully, we combine the return-based network and

the contract-based network using a similarity matrix. Figure 5 illustrates the combined

network for selected dates. Compared to the network based on a single information set,

the combined network is denser and the degrees of the cryptos are distributed more evenly.

Consequently, the similarity matrix will most likely improve classification accuracy.

3.3 Clusters in crypto networks

The combined network structure and application of the CASC created four groups. Table

2 summarizes the grouping results for one example. The table indicates that as of 2017-

12-31, the largest cryptos (BTC, ETH, and LTC) in terms of market capitalization are not
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(c) Combined Fundamentals

Figure 4: This figure depicts the contract-based network structure. We link two cryptos if
they share the same fundamental technology, that is, algorithm and proof types. Node size
denotes the degree centrality of the crypto.
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Figure 5: This figure depicts the dynamic combined network structure based on a similarity
matrix, which combines return information and contract information simultaneously. The
color of the node labels indicates the group estimated by dynamic CASC and the node size
denotes the degree centrality of the crypto.

24



necessarily categorized into the same group. Take LTC and BTC as an example. Although

their return patterns are closely related, the fundamental attributes between them are

rather di↵erent: BTC employs SHA256 while LTC uses Scrypt. As a comparison, we also

show the grouping results for the same 20 cryptos under DISIM from Rohe et al. (2016) in

Table 2.

Table 1: Representative Cryptos of Groups Estimated by the Dynamic CASC.

Group ID Group 1 Group 2 Group 3 Group 4

Cryptocurrencies

BBR BLITZ BTS BTCD
BTC DGB DOGE BTM
CLAM LSK ETH DMD
GNT NMR FCT STEEM
OMNI SC LTC STRAT

Table 2: Representative Cryptos of Groups Estimated by DISIM from Rohe et al. (2016).

Group ID Group 1 Group 2 Group 3 Group 4

Cryptocurrencies

BBR BTC BLITZ BTCD
LSK DGB STEEM CLAM

DOGE LTC SC GNT
ETH NMR BTS
OMNI DMD
BTM STRAT

To illustrate the performance of our method, we check the di↵erences between the

within- and cross-group connections of each group, defined as

Within-Group Connectioni =
# of Degrees of Coins within Group i

4Ni
,

Cross-Group Connectioni =
# of Degrees of Coins between Group i and other Groups

4N̄i
,

where Ni is the number of cryptos in group i and N̄i is the number of cryptos not in group

i. Intuitively, if the clustering method correctly classifies all cryptos, then the within-group

connections should be stronger than the cross-group connections; that is, the di↵erence

between them should be positive. Table 3 summarizes the within- and cross-group connec-

tions of di↵erent information sets based on DISIM from Rohe et al. (2016) and dynamic

CASC, respectively. Panel A reports the average return-based connection over the sample

period. Panels B and C report the algorithm-inferred connections and proof-types-inferred
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connections, respectively. The di↵erences between the within- and cross-group connection

(W-C di↵erence) are reported in the last column of each panel.

Table 3: Within- and Cross-group Connections using DISIM and Dynamic CASC

Panel A reports the average return-based connection across the sample period. Panels B and C report

the algorithm-inferred connections and proof-type-inferred connections, respectively. Statistical significanc

indicated by 1% 5% 10% for the positive signs and 1% 5% 10% for the negative signs.

Panel A: Return Panel B: Algorithm Panel C: Proof Types
Within Cross Di↵. Within Cross Di↵. Within Cross Di↵.

DISIM by Rohe et al. (2016)
Group 1 0.033 0.051 �0.018 0.252 0.204 0.048 0.251 0.229 0.021
Group 2 0.084 0.074 0.010 0.216 0.198 0.018 0.277 0.238 0.039
Group 3 0.086 0.075 0.011 0.215 0.196 0.019 0.279 0.238 0.041
Group 4 0.084 0.073 0.011 0.216 0.197 0.019 0.278 0.238 0.040
Overall 0.072 0.068 0.004 0.225 0.199 0.026 0.271 0.236 0.035
Dynamic CASC

Group 1 0.029 0.026 0.003 0.232 0.202 0.030 0.266 0.232 0.033
Group 2 0.029 0.025 0.004 0.243 0.203 0.041 0.272 0.232 0.040
Group 3 0.031 0.025 0.005 0.240 0.202 0.038 0.274 0.233 0.041
Group 4 0.031 0.026 0.006 0.240 0.202 0.038 0.273 0.233 0.040
Overall 0.030 0.025 0.005 0.239 0.202 0.037 0.271 0.233 0.039

Evidently, the dynamic CASC method has superior classification e�ciency than DISIM

does given that it delivers higher overall di↵erences in both return-inferred connections

and contract-inferred connections. For example, the overall W-C di↵erence of DISIM is

0.004, 0.026, and 0.035, while that of dynamic CASC is 0.005, 0.037, and 0.039, respec-

tively. Indeed, dynamic CASC utilizes fundamental information better in the sense that

the contract-inferred network structure (Panels B and C) generates a higher W-C di↵er-

ence without discounting the grouping information from the return-inferred network. These

facts indicate that fundamental information introduces an extra dimension of commonality

for classifying cryptos, and improves the information extraction from return dynamics by

emphasizing the return co-movement induced by fundamental commonality.

4 Asset Pricing Inference

In this section, we apply the classifications we obtained to asset pricing. We first study

whether the group structure achieves good risk diversification. Then, we sort the cryptos

into 4 quartiles according to eigenvector centrality and construct a portfolio that goes long

on the high-centrality cryptos and short on the low-centrality cryptos. Lastly, we conduct
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several robustness tests to exclude alternative explanations of the centrality measure.

4.1 Risk diversification

Risk diversification is one of the most important issues in portfolio management. Portfolio

managers seek to achieve a target return with the smallest variance possible. Therefore, it

is crucial to invest in di↵erent assets or equity sectors that are not highly correlated with

each other. We calculate the correlation coe�cients of cryptos within the same group and

those of the cryptos across groups. Table 4 summarizes the results.

Table 4: Within- and Cross-group Cryptos’ Average Return Correlations by Dynamic
CASC.

This table reports the within- and cross-group average return correlation based on dynamic CASC.

Each trading day, we balance the portfolio according to the clustering results and calculate the within-

and cross-group correlations. The number in brackets below are the t-statistics, which are adjusted by the

Newey-West lags(4) method. Statistical significance is indicated by 1% 5% 10% for the positive signs

and 1% 5% 10% for the negative signs. The sample period spans from August 31, 2015 to March 31,

2018.

Within Group Cross Group Di↵.
Group 1 0.169 0.154 0.014

(7.626) (7.423) (6.856)
Group 2 0.179 0.154 0.021

(8.077) (7.423) (6.077)
Group 3 0.181 0.157 0.021

(8.191) (7.506) (10.374)
Group 4 0.188 0.157 0.027

(8.114) (7.416) (5.607)
Overall 0.188 0.157 0.021

(7.697) (7.381) (6.331)

In Table 4, we compare the average pair-wise correlations between two groups. For

the within-group portfolio, we randomly pick 10 cryptos from the same group, and for the

cross-group portfolio, we randomly pick 5 cryptos in one group and pick the remaining 5

cryptos from other groups. Then, for each trading day, we balance the portfolio according

to the clustering results and calculate the within- and cross-group correlations. Table 4

demonstrates that the correlations between cryptos within the same group are on average

significantly higher than those across groups are. Indeed, the average correlation coe�cient

within a group is 0.18, while it is 0.15 across groups. In economic terms, this result indicates

a 17% reduction in return co-movement when investing in cross-group cryptos. The dif-

ference is statistically significant at the 1% level with a Newey-West adjusted t-statistic of
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6.33. The result suggests that investment practitioners can find attractive upside and diver-

sification possibility through allocating portfolio weights on cryptos from di↵erent groups.

As buying all cryptos is costly, the findings provide portfolio managers the opportunity to

select group representatives with a significant diversification e↵ect.

4.2 Centrality and crypto return

One major advantage of jointly modelling cryptos with a dynamic network is its convenience

for studying how risk and trading information propagates from one crypto to another.

Acemoglu et al. (2012) propose a theoretical model to explain the spillover e↵ects through

sector-level shocks. The model suggests that if the linkages in the inter-sectoral network are

su�ciently asymmetric, then sectoral shocks might not cancel out through diversification,

but aggregate into macroeconomic fluctuations. Ahern (2013) also finds that idiosyncratic

shocks could travel between linked stocks following the direction of the linkages. Therefore,

stocks with more “receive linkages” tend to bear more risks in the network and thus require

a higher risk premium. Similarly, we would expect that cryptos in a more central position

in the network require a higher risk premium.

Centrality, as the key measure describing the importance of the nodes in the network,

best proxies the concentration of risks or trading information. There are several measures of

centrality, such as degree, closeness, betweenness, and eigenvector centrality. Among them,

eigenvector centrality is the most appropriate measure for an asymmetric network for two

reasons. First, shocks that transmit across the crypto market do not have final recipients

and are unlikely to follow the shortest path between nodes. Therefore, we cannot use

closeness and betweenness centrality to describe market shocks as they implicitly assume

that tra�c follows geodesic paths (Borgatti, 2005). Second, cross-asset shocks are likely

to have feedback e↵ects evidenced by the two-way connections between paired cryptos in

Figure 3. Thus, using degree centrality tends to overestimate the importance of cryptos with

more asymmetric linkages. Eigenvector centrality is calculated via the principal eigenvector

of the network’s adjacency matrix (Bonacich, 1972). Nodes are more central if they are

connected to other nodes that are themselves more central. Figure 6 plots the average

return of each group portfolio, labelled as high-, median- (2 groups in the middle), and

low-centrality groups. Based on the thoughts on portfolio performance above, we find that

the group with a higher centrality wins the horse race.
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Figure 6: This figure depicts the cumulative portfolio return of the high-, median-, and
low-centrality groups. Centrality is based on the similarity matrix, which combines re-
turn information and contract information simultaneously. The sample period spans from
August 31, 2015 to March 31, 2018.
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Next, we formally test this discovery by studying cross-sectional portfolio returns. We

first sort cryptos into quartile portfolios based on the eigenvector centrality calculated from

the similarity matrix on each trading day. We then look at each portfolio’s average future

returns. Next, we test the statistical significance of the di↵erence in average future return

between the high and low portfolios. To show the informativeness of our centrality measure,

we construct the portfolio for several formation periods, ranging from day t + 1 to t + 7

days. Table 5 reports the results.

Table 5: Average Future Returns of the Cross-sectional Portfolios by Centrality Sorting.

This table reports the average future return for quartile portfolios sorted by the centrality measure.

Each trading day, we balance the portfolio according to the centrality score of the previous trading day and

calculate the average portfolio returns for both short and long legs. Statistical significance is indicated by

1% 5% 10% for the positive signs and 1% 5% 10% for the negative signs. The t-statistics

in parentheses are computed based on standard errors with a Newey-West lags(4) adjustment. The sample

period spans from August 31, 2015 to March 31, 2018.

Centrality Rett+1 Rett+2 Rett+3 Rett+4 Rett+5 Rett+6 Rett+7

Low 0.00% 0.00% -0.03% -0.01% 0.03% 0.02% 0.06%
2 0.15% 0.18% 0.18% 0.19% 0.16% 0.18% 0.16%
3 0.34% 0.34% 0.28% 0.36% 0.38% 0.28% 0.29%
High 0.40% 0.36% 0.48% 0.38% 0.34% 0.42% 0.39%
High - Low 0.40% 0.36% 0.51% 0.39% 0.32% 0.40% 0.33%
t-statistic (3.53) (3.10) (4.24) (3.33) (2.74) (3.44) (2.85)

In line with the observations from Figure 6, the cryptos with a higher quartile of central-

ity receive a higher portfolio return. Particularly, the average portfolio return is 39.78 bps

for the highest-centrality group, while it is -0.01 bps for the lowest-centrality group. The

di↵erence is statistically significant at the 1% level. We find similar results across di↵er-

ent portfolio formation periods. The result provides strong evidence that an informational

channel, such as risk and liquidity, should be applied to interpret the eigenvector centrality

measure.

4.3 Alternative Interpretation

We showed that the centrality measure is economically meaningful as a risk factor. However,

it does not rule out other explanations. We therefore conduct several tests to seek other

possibilities to link the centrality measure to economic theory. In particular, we test if limit-

to-arbitrage, investor attention, and macroeconomic uncertainty can deliver meaningful

explanatory power of the anomaly.
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The first typical explanation for asset return anomaly is the limit-to-arbitrage. Ac-

cording to Shleifer and Vishny (1997), sophisticated investors would quickly eliminate any

return predictability arising from anomalies in a liquid market without impediments to

arbitrage. Therefore, when cryptos are illiquid, an arbitrage opportunity is more likely to

exist between central and non-central cryptos. As a formal test, we proxy liquidity with

trading volume and first sort the cryptos into two groups (high and low) according to their

previous day’s trading volume. Then, for each group, we sort cryptos by their eigenvector

centrality as in the previous sections, and report the corresponding portfolio returns in the

first two columns of Table 6.

We find that the centrality portfolio return (High–Low) remains significantly positive for

both high- and low-volume cryptos. For example, in the low-volume group, the portfolio

return is 5 bps for the low-centrality group, while it increases to 28 bps for the high-

centrality group. The significantly positive portfolio returns in both groups indicate that

the limit-to-arbitrage does not fully explain the centrality measure.

The recent study of Liu and Tsyvinski (2018) provides an alternative explanation. The

authors find that investor attention is a powerful predictor of crypto returns. Barber

and Odean (2008) point out that excess attention usually drives investors to overreact to

information and thus causes mispricing. Guo et al. (2018) show that investor attention

could spill over along the network linkages. Hence, cryptos in a high-investor-attention

period are more likely to be mispriced. Following Liu and Tsyvinski (2018), we proxy

investor attention by constructing the deviation of Google searches for the word “crypto”

on a given day compared to the average of those in the preceding four weeks. We split the

sample into two periods (high and low) and test for the existence of the anomaly in each

period. We summarize the results in the middle columns of Table 6.

In general, the proposed centrality measure—under both high- and low-attention periods—

is a better choice. The e↵ect seems to be stronger in high-attention periods. For example,

the centrality portfolio achieves a 0.45% daily return during a high-attention period, while

it retains a 0.35% return, if not higher, for the low-attention period. However, we can ob-

serve that the results are not fully explained by investor attention, as our centrality measure

shows significant cross-sectional return predictability.

Last, observing that government policy and crypto price movement has a strong syn-

chronization (Demir et al., 2018), we must check whether the centrality measure relates
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to underlying economic uncertainty. Naturally, when macroeconomic conditions become

uncertain, investing in a certain asset is more risky and investors will require a higher risk

premium (Brogaard and Detzel, 2015). We employ Baker et al. (2016) policy uncertainty

index, which is constructed from three types of underlying components: media news; the

Congressional Budget O�ce (CBO), which compiles lists of temporary federal tax code pro-

visions; and the Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasters.

Similarly, we divide the sample into two parts, high- and low-uncertainty periods, and test

the existence of abnormal returns in each period. The last two columns of Table 6 report

the results.

Evidently, the centrality portfolio return remains significantly positive under both high-

and low-economic-uncertainty periods. Specifically, in a high-period, the portfolio return is

1 bps for the low-centrality group and 49 bps for the high-centrality group, which reveals

a di↵erence of 48 bps with a Newey-West adjusted t-statistic of 2.71. The results are a

bit weaker in the low-uncertainty period, but the overall pattern remains. In this case, the

centrality measure cannot be fully explained by economic uncertainty.

In summary, the proposed centrality measure is not driven by the pricing factors listed

above. Although we did not exhaust all possibilities, the facts suggest that the centrality

measure serves well as an idiosyncratic risk factor to predict future crypto returns.

Table 6: Portfolio Returns: Trading Volume, Investor Attention, and Macro Uncertainty

This table reports the quartile portfolio returns sorted by the centrality measure for cryptos with

high and low trading volume, in high- and low-investor-attention periods, or under high- and low-macro-

uncertainty circumstances. Statistical significance is indicated by 1% 5% 10% for the positive signs

and 1% 5% 10% for the negative signs. t-statistics in parentheses are computed based on standard

errors with Newey-West lags(4) adjustment. The sample period spans from August 31, 2015 to March 31,

2018.

Centrality
Trading Volume Investor Attention Macro Uncertainty

Low High Low High Low High
Low 0.05% -0.04% 0.04% 0.01% 0.01% 0.01%
2 0.16% 0.27% 0.11% 0.21% 0.02% 0.26%
3 0.38% 0.12% 0.46% 0.32% 0.22% 0.54%
High 0.56% 0.28% 0.39% 0.46% 0.32% 0.49%
High - Low 0.51% 0.33% 0.35% 0.45% 0.31% 0.48%
t-statistic (3.62) (2.73) (2.27) (3.06) (2.23) (2.71)
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5 Conclusion

This study examined the market segmentation problem in the crypto market. To solve the

problem, we constructed a dynamic network of cryptos using return inter-predictive rela-

tionship and proposed a dynamic CASC method to make full use of the dynamic linkage

information, as well as the node attributions, to improve classification accuracy. Based on

the fitted crypto network and in the spirit of Ahern (2013), we proposed using eigenvec-

tor centrality as the idiosyncratic risk factor for predicting future returns. We find that

the cross-sectional portfolio constructed from eigenvector centrality sorting can deliver a

persistent 40 bps daily return.
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Supplementary Appendix to “A Dynamic
Network Perspective on Cryptocurrencies”

March 26, 2019

This appendix provides the proofs of some technical lemmas used in the above paper.

The notations that have been frequently used in the proofs are as follows: [n]
def
=

{1, 2, · · · , n} for any positive integer n, Mm,n be the set of all m⇥ n matrices which have

exactly one 1 and n�1 0’s in each row. Rm⇥n
denotes the set of all m⇥n real matrices. k ·k

is used to denote Euclidean `2-norm for vectors in Rm⇥1
and the spectral norm for matrices

on Rm⇥n
. k · k1 denotes the largest element of the matrix in absolute value. k · kF is the

Frobenius norm on Rm⇥n
, namely kMkF

def
=

p
tr(M>M). k · k�2 is the sub-Gaussian norm

such that for any random variable x, there is kxk�2

def
= sup�1 

�1/2
(E |x|)1/. 1m,n 2 Rm⇥n

consists of all 1’s, ◆n denotes the column vector with n elements of all 1’s. A denotes the

indicator function of the event A.

1 Preliminary Lemmas

Lemma 1. Suppose At and X are the adjacency matrix and the node covariate matrices
sampled from the SC-DCBM/SC-DCcBM. Recall Wt and Wt are empirical and population
weight matrices. Then, we have

sup
t

kWt �Wtk1 = Op(⇠),

where ⇠ = max(�
2
kL⌧kF

p
log(TR), �

2
kL⌧k log(TR), NRJ

2
/�) and � = inft{mini D⌧,t(i, i)}.

Proof. Define It = XL⌧,tX . Then we have

sup
t

kWt �Wtk1  sup
t

kWt � Itk1 + sup
t

kIt �Wtk1.

For the first part, define L⌧ = supt L⌧,t and ⇣ = max(�
2
kL⌧kF

p
log(TR), �

2
kL⌧k log(TR)),

then by Hansen-Wright inequality (c.f., Theorem 1.1 of Rudelson and Vershynin (2013)),

1



we have

Pr(sup
t

kX
>
L⌧,tX � X

>
L⌧,tXk > ⇣) 

TX

t=1

Pr(kX
>
L⌧X � X

>
L⌧Xk > ⇣)

 2T exp

⇢
�cmin

✓
⇣
2

�4kL⌧k
2
F

,
⇣

�2kL⌧k

◆�

= O(1/R).

Next, denote Ct = D
�1/2
⌧,t AtD

�1/2
⌧,t , then we can decompose the second part into two

parts:

sup
t

kIt�Wtk1 = sup
t

kX (L⌧,t�L⌧,t)Xk1  sup
t

kX (L⌧,t�Ct)Xk1+sup
t

kX (Ct�L⌧,t)Xk1.

Then, for part one, we have

sup
t

kX (L⌧,t � Ct)Xk1 = sup
t

max
s,r

�����
X

i,j

XisXjr
At(i, j)p

D⌧,t(i, i)D⌧,t(j, j)

 p
D⌧,t(i, i)D⌧,t(j, j)p
D⌧,t(i, i)D⌧,t(j, j)

� 1

!�����


1

�
max
s,r

X

i,j

|XisXjr| sup
t

⇢
max

✓����
D⌧,t(i, i)

D⌧,t(i, i)
� 1

���� ,
����
D⌧,t(j, j)

D⌧,t(j, j)
� 1

����

◆�

= max
s,r

X

i,j

|XisXjr|Op(�
�3/2

log(TR))

= Op

✓
NRJ

2

�
3/2

log(TR)

◆
,

where the second to the last equality comes from the following proof. For any i 2

{1, · · · , N} and & = �
�1/2

log(TR), from Bernstein inequality,

Pr

✓
sup
t

����
D⌧,t(i, i)

D⌧,t(i, i)
� 1

���� > &

◆


TX

t=1

Pr

✓����
D⌧,t(i, i)

D⌧,t(i, i)
� 1

���� > &

◆

 2T exp

⇢
�
&
2
D⌧,t(i, i)

2 +
2
3&

�

 2T exp

⇢
�

&
2
�

2 +
2
3&

�

= O(1/R).

For part two, similarly, we have

sup
t

kX (Ct � L⌧,t)Xk1 = sup
t

max
s,r

�����
X

i,j

XisXjr
At(i, j)�At(i, j)p
D⌧,t(i, i)D⌧,t(j, j)

�����

 max
s,r

�����
X

i,j

XisXjr

����� supt
max
i,j

�����
At(i, j)�At(i, j)p
D⌧,t(i, i)D⌧,t(j, j)

�����

= Op

✓
NRJ

2

�

◆
.
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Note that & ! 0 as �, R ! 1, we then know

sup
t

kIt �Wtk1 = Op

✓
NRJ

2

�

◆
.

Thus, by union bounds, we obtain

sup
t

kWt �Wtk1 = Op

✓
⇣ +

NRJ
2

�

◆
= Op(⇠).

Lemma 2. Under Assumption 4, for any ✏ > 0, we have

sup
t

kSt � Stk  (4 + cw)

⇢
3 log(8NT/✏)

�

�1/2

, (1)

with probability at least 1� ✏.

Proof. Note by triangular inequality, we have

sup
t

kSt � Stk  sup
t

��↵tXWtX
>
� ↵tXWtX

>�� (2)

+ sup
t

���D�1/2
⌧,t AtD

�1/2
⌧,t �D

�1/2
⌧,t AtD

�1/2
⌧,t

��� (3)

+ sup
t

���D�1/2
⌧,t AtD

�1/2
⌧,t �D

�1/2
⌧,t AtD

�1/2
⌧,t

��� . (4)

For equation (2), we have,

sup
t

��↵tXWtX
>
� ↵tXWtX

>�� = sup
t

��↵tX(Wt �Wt)X
>��+ sup

t

��↵tXWtX
>
� ↵tXWtX

>��

 ↵maxNRJ
2
sup
t

kWt �Wtk+ 2↵maxNRJ
2
sup
t

kWtk

= Op(↵maxNRJ
2
⇠).

So, by Assumption 4 we know, for large enough N , with probability at least 1� ✏/2,

sup
t

��↵tXWtX
>
� ↵tXWtX

>��  cwa

For equation (3), let Yt(i, j) = D
�1/2
⌧,t [(At(i, j) � pt(i, j))Eij]D

�1/2
⌧,t with Eij 2 RN⇥N

being

the matrix with 1 in ij and ji’th positions and 0 everywhere else. Then we know

sup
t

kYt(i, j)k  sup
t

q
D⌧,t(i, i)D⌧,t(j, j) 

1

�
, v

2
= sup

t
k

X
E(Y 2

t (i, j))k 
1

�
.

3



So, denote a =

⇢
3 log(8NT/✏)

�

�1/2

, which is smaller than 1 by assumption, and by matrix

Bernstein inequality, we have

Pr(sup
t

kD
�1/2
⌧,t [At(i, j)�At(i, j)]D

�1/2
⌧,t k > a)



TX

t=1

Pr(kD
�1/2
⌧,t [At(i, j)�At(i, j)]D

�1/2
⌧,t k > a)

 2NT exp

✓
�

a
2

2/� + 2a/3�

◆

 2NT exp

✓
�
3 log(8NT/✏)

3

◆

= ✏/4.

Hence, with probability at least 1� ✏/4,

sup
t

kD
�1/2
⌧,t AtD

�1/2
⌧,t �D

�1/2
⌧,t AtD

�1/2
⌧,t k  a (5)

Lastly, for equation (4), by Qin and Rohe (2013) and setting � = aD⌧,t(i, i) we have

Pr(|D⌧,t(i, i)�D⌧,t(i, i)| � �)  exp

⇢
�

�
2

2D⌧,t(i, i)

�
+ exp

⇢
�

�
2

2D⌧,t(i, i) +
2
3�

�

 2 exp

⇢
�

�
2

2D⌧,t(i, i) +
2
3�

�

= 2 exp

⇢
�
a
2
D⌧,t(i, i)

2 +
2
3a

�

 2 exp

⇢
� log(8NT/✏)⇥

D⌧,t(i, i)

�

�


✏

4NT
.

Further note that

Pr

✓
sup
t

kD
�1/2
⌧,t D

1/2
⌧,t � Ik � a

◆


TX

t=1

Pr

⇣
kD

�1/2
⌧,t D

1/2
⌧,t � Ik � a

⌘



TX

t=1

Pr

✓
max

i

����
D⌧,t(i, i)

D⌧,t(i, i)
� 1

���� � a

◆



TX

t=1

NX

i=1

Pr (|D⌧,t(i, i)�D⌧,t(i, i)| � aD⌧,t(i, i))

 NT ⇥
✏

4NT

= ✏/4.
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Therefore, with probability at least 1� ✏/4, we have

sup
t
kD

�1/2
⌧,t AtD

�1/2
⌧,t �D

�1/2
⌧,t AtD

�1/2
⌧,t k

= sup
t

kL⌧,t �D
�1/2
⌧,t D

1/2
⌧,t L⌧,tD

1/2
⌧,t D

�1/2
⌧,t k

= sup
t

k(I �D
�1/2
⌧,t D

1/2
⌧,t )L⌧,tD

1/2
⌧,t D

�1/2
⌧,t + L⌧,t(I �D

1/2
⌧,t D

�1/2
⌧,t )k

 sup
t

kD
�1/2
⌧,t D

1/2
⌧,t � Ik sup

t
kD

�1/2
⌧,t D

1/2
⌧,t k+ sup

t
kD

�1/2
⌧,t D

1/2
⌧,t � Ik

 a
2
+ 2a

where the second last inequality comes from the fact that supt kL⌧,tk  1.

Therefore, joining the results for these three equations, we have, with probability at

least 1� ✏,

sup
t

kSt � Stk  a
2
+ 3a+ cwa  (4 + cw)a = (4 + cw)

⇢
3 log(8NT/✏)

�

�1/2

. (6)

Lemma 3. Under the dynamic SC-DCBM with K blocks, define �⌧,t 2 RN⇥K with columns
containing the top K eigenvectors of St. Then, under Assumption 4, there exists an orthog-
onal matrix Ut depending on ⌧t for each t = 1, · · · , T , such that for any i, j = 1, · · · , N ,

�⌧,t =  
1/2
⌧,t Zt(Z

>
t  ⌧,tZt)

�1/2
Ut and �

⇤
⌧,t(i, ⇤) = �

⇤
⌧,t(j, ⇤) () Zt(i, ⇤) = Zt(j, ⇤),

where � ⇤
⌧,t(i, ⇤) = �⌧,t(i, ⇤)/k�⌧,t(i, ⇤)k.

Proof. Denote DB,t as a diagonal matrix with entries DB,t(i, i) =
PK

j=1 Bt(i, j), and  ⌧,t =

Diag( ⌧,t) with  ⌧,t(i) =  t
Dt(i,i)
D⌧,t(i,i)

. Then, Under the dynamic SC-DCBM, we have the

decomposition below

L⌧,t = D
�1/2
⌧,t AtD

�1/2
⌧,t =  

1/2
⌧,t ZtBL,tZ

>
t  

1/2
⌧,t ,

where BL,t = D
�1/2
B,t BtD

�1/2
B,t .

Define Mt such that X = E(X) =  
1/2
⌧,t ZtMt, and ⌦t = BL,t + ↵tMtWtM

>
t , then we

know

St =  
1/2
⌧,t Zt⌦tZ

>
t  

1/2
⌧,t . (7)

Now, denote Y⌧,t = Z
>
t  ⌧,tZt, and let H⌧,t = Y

1/2
⌧,t ⌦tY

1/2
⌧,t . Then, by eigen-decomposition,

we have H⌧,t = Ut⇤tU
>
t . Define �⌧,t =  

1/2
⌧,t ZtY

�1/2
⌧,t Ut, then

�
>
⌧,t�⌧,t = U

>
t Y

�1/2
⌧,t Z

>
t  

1/2
⌧,t  

1/2
⌧,t ZtY

�1/2
⌧,t Ut

= U
>
t Y

�1/2
⌧,t Y⌧,tY

�1/2
⌧,t Ut

= U
>
t Ut = I,

5



and we have

St�⌧,t = ( 
1/2
⌧,t Zt⌦tZ

>
t  

1/2
⌧,t ) 

1/2
⌧,t Zt(Z

>
t  ⌧,tZt)

�1/2
Ut

=  
1/2
⌧,t Zt⌦tY

1/2
⌧,t Ut

=

n
 

1/2
⌧,t ZtY

�1/2
⌧,t

⇣
Y

1/2
⌧,t ⌦tY

1/2
⌧,t

⌘o
Ut

=  
1/2
⌧,t ZtY

�1/2
⌧,t (Ut⇤tU

>
t )Ut

= �⌧,t⇤t.

Following Qin and Rohe (2013), it is obvious that

�
⇤
⌧,t(i, ⇤) =

�⌧,t(i, ⇤)

k�⌧,t(i, ⇤)k
= Zi,tUt.

Then, by directly applying the Lemma 1 in Binkiewicz et al. (2017), we complete the

proof.

Lemma 4. Under Assumption 4’, for any ✏ > 0, we have

sup
t

ksym (St � St)k  �max{3 log(16NT/✏)}
1/2

, (8)

with probability at least 1� ✏

Proof. By triangular inequality, we have

sup
t

ksym (St � St)k  sup
t

��sym
�
↵tXWtX

>
� ↵tXWtX

>��� (9)

+ sup
t

���sym
⇣
D

�1/2
R,t AtD

�1/2
C,t �D

�1/2
R,t AtD

�1/2
C,t

⌘��� (10)

+ sup
t

���sym
⇣
D

�1/2
R,t AtD

�1/2
C,t �D

�1/2
R,t AtD

�1/2
C,t

⌘��� . (11)

For equation (9), by similar results in proof of Lemma 2, the spectral norm of the

symmetrized ↵tXWtX
>
� ↵tXWtX

>
is bounded by

sup
t

��sym
�
↵tXWtX

>
� ↵tXWtX

>���

= ↵max sup
t

��sym
�
X(Wt �Wt)X

>���+ ↵max sup
t

��sym
�
XWtX

>
� XWtX

>���

 ↵maxNRJ
2
sup
t

ksym (Wt �Wt) k+ 2↵maxNRJ
2
sup
t

ksym (Wt) k

= Op(↵maxNRJ
2
⇠).

So, by Assumption 4’, we know that for large enough N , with probability at least 1� ✏/2,

sup
t

��sym
�
↵tXWtX

>
� ↵tXWtX

>���  c
0
wa.
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For equation (10), by Assumption 4’ and matrix Bernstein inequality, we know under

assumption �
0
> 3 log(16NT/✏), a < 1. Therefore, similar to proof of Lemma 2, we have

Pr

✓
sup
t

���sym
⇣
D

�1/2
R,t AtD

�1/2
C,t �D

�1/2
R,t AtD

�1/2
C,t

⌘��� > a

◆



TX

t=1

Pr

⇣���sym
⇣
D

�1/2
R,t AtD

�1/2
C,t �D

�1/2
R,t AtD

�1/2
C,t

⌘��� > a

⌘

 4NT exp

✓
�
3 log(16NT/✏)/�

0

2/�
0
+ 2a/(3�

0
)

◆

 4NT exp (� log(16NT/✏))

= ✏/4.

Lastly, for equation (11), by Rohe et al. (2016), we know with probability at least

1� ✏/2,

sup
t

���sym
⇣
D

�1/2
R,t AtD

�1/2
C,t �D

�1/2
R,t AtD

�1/2
C,t

⌘���

= sup
t

���sym
⇣
L⌧,t �D

�1/2
⌧,t D

1/2
⌧,t L⌧,tD

1/2
⌧,t D

�1/2
⌧,t

⌘���

= sup
t

���sym
⇣
(I �D

�1/2
⌧,t D

1/2
⌧,t )L⌧,tD

1/2
⌧,t D

�1/2
⌧,t + L⌧,t(I �D

1/2
⌧,t D

�1/2
⌧,t )

⌘���

 sup
t

���sym
⇣
D

�1/2
⌧,t D

1/2
⌧,t � I

⌘��� sup
t

���sym
⇣
D

�1/2
⌧,t D

1/2
⌧,t

⌘���+ sup
t

���sym
⇣
D

�1/2
⌧,t D

1/2
⌧,t � I

⌘���

 a
2
+ 2a

Therefore, combine the results above, we obtain the upper bound for ksym (St � St)k,

i.e., with probability at least 1� ✏,

sup
t

ksym (St � St)k  a
2
+ 3a+ c

0
wa  (4 + c

0
w)a = (4 + c

0
w)

⇢
3 log(16N/✏)

�
0

�1/2

. (12)

Lemma 5. Under the dynamic SC-DCcBM with KR row blocks and KC column blocks,
define �R,t 2

N⇥KR with columns containing the top KR left singular vectors of St and
�C,t 2

N⇥KC with columns containing the top KC right singular vectors of St. Then,
under Assumption 4’, there exist orthogonal matrices UR,t and UC,t depending on ⌧t for
each t = 1, · · · , T , such that for any i, j = 1, · · · , N ,

�p,t =  
p
⌧,t

1/2
Zp,t(Z

>
p,t 

p
⌧,t

1/2
Zp,t)

�1/2
Up,t

and
�

⇤
p,t(i, ⇤) = �

⇤
p,t(j, ⇤) () Zp,t(i, ⇤) = Zp,t(j, ⇤).

where � ⇤
p,t(i, ⇤) = �p,t(i, ⇤)/k�p,t(i, ⇤)k with p 2 {R,C}.

7



Proof. Define D
R
B,t and D

C
B,t are diagonal matrices with entries D

R
B,t(i, i) =

PK
j=1 Bt(i, j)

and D
C
B,t(i, i) =

PK
j Bt(j, i), and  

p
⌧,t = Diag( 

p
⌧,t) with  

p
⌧,t(i) =  

p
i

Dp,t(i, i)

Dp,t(i, i) + ⌧p,t
for

p 2 {R,C}. Then under dynamic SC-DCcBM, we have the decomposition below,

L⌧,t = D
�1/2
R,t AtD

�1/2
C,t =  

R
⌧,t

1/2
ZR,tBL,tZ

>
C,t 

C
⌧,t

1/2
,

where BL,t =
�
D

R
B,t

��1/2
Bt

�
D

C
B,t

��1/2
.

Define MR,t and MC,t such that X = E(X) =  
R
⌧,t

1/2
ZR,tMR,t =  

C
⌧,t

1/2
ZC,tMC,t, and

⌦t = BL,t + ↵tMR,tWtM
>
C,t, then we know

St =  
R
⌧,t

1/2
ZR,t⌦tZ

>
C,t 

C
⌧,t

1/2
. (13)

Now, denote YR,t = Z
>
R,t 

R
⌧,tZR,t and YC,t = Z

>
C,t 

C
⌧,tZC,t, and let H⌧,t = Y

1/2
R,t ⌦tY

1/2
C,t .

Then, by singular value decomposition, we haveH⌧,t = UR,t⇤tU
>
C,t. Define �R,t =  

R
⌧,t

1/2
ZR,tY

�1/2
R,t UR,t

and �C,t =  
C
⌧,t

1/2
ZC,tY

�1/2
C,t UC,t, then, for p 2 {R,C},

�
>
p,t�p,t = U

>
p,tY

�1/2
p,t Z

>
p,t 

p
⌧,t

1/2
 

p
⌧,t

1/2
Zp,tY

�1/2
p,t Up,t

= U
>
p,tY

�1/2
p,t Yp,tY

�1/2
p,t Up,t

= U
>
p,tUp,t = I,

and we have

�R,t⇤t�C,t =  
R
⌧,t

1/2
ZR,tY

�1/2
R,t UR,t⇤tU

>
C,tY

�1/2
C,t Z

>
C,t 

C
⌧,t

1/2

=  
R
⌧,t

1/2
ZR,tY

�1/2
R,t H⌧,tY

�1/2
C,t Z

>
C,t 

C
⌧,t

1/2

=  
R
⌧,t

1/2
ZR,tY

�1/2
R,t

⇣
Y

1/2
R,t ⌦tY

1/2
C,t

⌘
Y

�1/2
C,t Z

>
C,t 

C
⌧,t

1/2

=  
R
⌧,t

1/2
ZR,t⌦tZ

>
C,t 

C
⌧,t

1/2
= St

Following Rohe et al. (2016), it is obvious that

�
⇤
p,t(i, ⇤) =

�p,t(i, ⇤)

k�p,t(i, ⇤)k
= Zp,t(i, ⇤)Up,t, for p 2 {R,C},

which completes the proof.

2 Proof of Theorem 1

Proof. By Binkiewicz et al. (2017) and the solution of (1+")-approximate k-means method,

we know for each period t = 1, 2, · · · , T , we have

|Mt|

N


2(2 + ")
2

m2
zN

kUt � UtOtk
2
F (14)
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and

kUt � UtOtkF 
8K

1/2

�K,t

��� bSt,r � St

��� , (15)

wheremz
def
= mini,t{min{k�⌧,t(i, ⇤)k, k�⌧,t(i, ⇤)k}} with �⌧,t and �⌧,t being defined in Lemma

3.

Then, we have

sup
t

|Mt|

N


2
9
(2 + ")

2
K

m2
zN�

2
K,max

sup
t

��� bSt,r � St

���
2

. (16)

Then, for St, we have the following representation:

St = D
�1/2
⌧,t  ZtBtZ

>
t  D

�1/2
⌧,t + ↵tXWtX

>
, (17)

To figure out the upper bound of the estimation error, we have to evaluate the error

bound supt

��� bSt,r � St

���. Define

St,r =
1

|Fr|

X

i2Fr

Wr,l(i)St+i, (18)

then by triangle inequality, we have

�(r) = sup
t

��� bSt,r � St

���  sup
t

��� bSt,r � St,r

���+ sup
t

kSt,r � Stk = �1(r) +�2(r). (19)

For �1(r), by Lemma 2, we have

�1(r) =
1

|Fr|

X

i2Fr

Wr,l(i) sup
t

kSt+i � St+ik


1

|Fr|

X

i2Fr

Wr,l(i)

(
(4 + cw)


3 log(8NT/✏)

�

�1/2)

 Wmax(4 + cw)

⇢
3 log(8NT/✏)

�

�1/2

. (20)

For �2(r), we have the following decomposition

�2(r) = sup
t

kSt,r � Stk  sup
t

���St,r �
eSt,r

���+ sup
t

��� eSt,r � St

��� = �21(r) +�22(r), (21)

where

eSt,r =
1

|Fr|

X

i2Fr

Wr,l(i)

⇣
D

�1/2
⌧,t  ZtBt+iZ

>
t  D

�1/2
⌧,t + ↵t+iXWt+iX

>
⌘
. (22)

Then for �21, we have

�21(r)  Wmax
1

|Fr|

X

i2Fr

sup
t

���D�1/2
⌧,t+i Zt+iBt+iZ

>
t+i D

�1/2
⌧,t+i �D

�1/2
⌧,t  ZtBt+iZ

>
t  D

�1/2
⌧,t

���

 Wmax
1

|Fr|

X

i2Fr

sup
t

n⇣���D�1/2
⌧,t+i Zt+i

���+
���D�1/2

⌧,t  Zt

���
⌘
kBt+ik

���D�1/2
⌧,t+i Zt+i �D

�1/2
⌧,t  Zt

���
o

 Wmax
1

|Fr|

X

i2Fr

sup
t

n⇣���D�1/2
⌧,t

��� kZt+ik+

���D�1/2
⌧,t

��� kZtk

⌘
kBt+ik

���D�1/2
⌧,t+i Zt+i �D

�1/2
⌧,t  Zt

���
o
,
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where the last inequality comes from the fact that k k = maxi

��p i

��  1.

Then, observe that supt

���D�1/2
⌧,t

���  �
�1/2

, supt kZtk  P
1/2
max, supt kBtk  K, we then

have

sup
t

n���D�1/2
⌧,t

��� kZt+ik+

���D�1/2
⌧,t

��� kZtk

o
 2�

�1/2
P

1/2
max. (23)

Further, note that

sup
t

���D�1/2
⌧,t+i Zt+i �D

�1/2
⌧,t  Zt

��� (24)

 sup
t

n���D�1/2
⌧,t+i Zt+i �D

�1/2
⌧,t+i Zt

���+
���D�1/2

⌧,t+i Zt �D
�1/2
⌧,t  Zt

���
o

 sup
t

n���D�1/2
⌧,t+i

��� k k kZt+i � Ztk+

⇣���D�1/2
⌧,t+i

��� k k+
���D�1/2

⌧,t

��� k k
⌘
kZtk

o



s
2|r|s

�
+

s
4Pmax

�
.

Then, combine the results above with the assumption � > 3 log(8NT/✏) in Lemma 2, we

have

�21(r) 
2WmaxK

�
(

p
2Pmaxrs+ 2Pmax). (25)

Lastly, for �22(r), for notational simplicity, denote Y⌧,t
def
= D

�1/2
⌧,t  Zt. Then, apply the

results in Pensky and Zhang (2017) and proof of Lemma 2, we obtain

�22(r) = sup
t

��� eSt,r � St

���

=
1

|Fr|

X

i2Fr

Wr,l(i) sup
t

�
Y⌧,t kBt+i � BtkY

>
⌧,t +

��↵t+iXWt+iX
>
� ↵tXWtX

>���

 sup
t

(
max

1j0N

NX

j=1

��(Y⌧,tQr,tY
>
⌧,t)(j, j

0
)
��
)

+ 2↵maxWmaxNRJ
2
sup
t

kWtk

 sup
t

8
<

:max
k,k0

|Qr,t| max
1j0N

KX

k=1

KX

k0=1

2

4
X

j2Gt,k

Y⌧,t(j, k)

3

5Y⌧,t(j
0
, k

0
)

9
=

;+ 2Wmax

⇢
3 log(8NT/✏)

�

�1/2


NLWmax

� · l!

⇣
r

T

⌘�
+ 2Wmax

⇢
3 log(8NT/✏)

�

�1/2

(26)

where the second last inequality comes from Assumption 4 and the last inequality come

from the fact that maxi  i  1.

Now, combine the results provided by equation (16), (20), (25), and (26), we derive the

upper bound for misclustering rate of dynamic DCBM: with probability at least 1� ✏,

sup
t

|Mt|

N


c1(")KW
2
max

m2
zN�

2
K,max

⇢
(6 + cw)

b

�
1/2

+
2K

�
(

p
2Pmaxrs+ 2Pmax) +

NL

� · l!

⇣
r

T

⌘��2

.

where b =

p
3 log(8NT/✏), �K,max = maxt{�K,t} and c1(") = 2

9
(2 + ")

2
.

10



3 Proof of Lemma 1

Proof. Firstly, by Lemma B.1 in Supplementary material of Lei and Rinaldo (2015), fix

⌘ 2 (0, 1), we have

��� bSt,r � St,r

���  (1� ⌘)
�2

sup
x,y2T

���x>
( bSt,r � St,r)y

��� , (27)

where T = {x = (x1, · · · , xN) 2
N
, kxk = 1,

p
Nxi/⌘ 2 , 8i}. Then, let d = rNkStk1

with r � 1, we can split the pairs (xi, yj) into light pairs

L = L (x, y)
def
= {(i, j) : |xiyj| 

p

d/N},

and into heavy pairs

L̄ = L̄ (x, y)
def
= {(i, j) : |xiyj| >

p

d/N}.

For the light pair, first denote

uij = xiyj {|xiyj |
p
d/N} + xjyi {|xjyi|

p
d/N},

then we have

X

(i,j)2L (x,y)

xiyj(
bSt,r(i, j)� St,r(i, j))

=
1

|Fr|

X

1ijN

X

k2Fr

uijWr,`(k) [St+k(i, j)� St+k(i, j)] .

Denote wij = |Fr|
�1
P

k2Fr
Wr,`(k) [St+k(i, j)� St+k(i, j)] and ⇠ij = wijuij, then we

have |wij|  WmaxkStk1, and by Pensky and Zhang (2017), it is known that ⇠ij is a

independent random variable with zero mean and absolute values bounded by |⇠ij| 

2Wmax

p
rkStk

3
1/N , using the fact that |uij|  2

p
d/N .

Now, applying Bernstein inequality, for any c > 0, we have

Pr

 
sup
x,y2T

�����
X

1ijN

⇠ij

����� �
c
p
d

r

!

 2 exp

0

BB@�

c
2
d

2r

P
1ijN

�
⇠
2
ij

�
+

2Wmax

3

r
rkStk

3
1

N
⇥

c
p
d

r

1

CCA

 2 exp

0

BB@�

c
2
d

2r
⇣P

1ijN u
2
ij

⌘
W 2

maxkStk
2
1 +

2Wmax

3

r
rkStk

3
1

N
⇥

c
p
d

r

1

CCA

 2 exp

✓
�

3c
2
N

12W 2
maxkStk1 + 4cWmaxkStk1

◆
.
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Then, by a standard volume argument, we have the cardinality of T  exp(N log(7/⌘)),

and this ensures

Pr

0

@ sup
x,y2T

������

X

(i,j)2L (x,y)

xiyj(
bSt,r(i, j)� St,r(i, j))

������
�

c
p
d

r

1

A

 exp

⇢
�

✓
3c

2

12W 2
maxkStk1 + 4cWmaxkStk1

� 2 log

✓
7

⌘

◆◆
N

�
. (28)

For the heavy pairs, we know

������

X

(i,j)2L̄ (x,y)

xiyj(
bSt,r(i, j)� St,r(i, j))

������

=

������
1

|Fr|

X

(i,j)2L̄ (x,y)

xiyj

X

k2Fr

Wr,`(k)(St+k(i, j)� St+k(i, j))

������



������
1

|Fr|

X

(i,j)2L̄ (x,y)

x
2
i y

2
j

|xiyj|

X

k2Fr

Wr,`(k)(St+k(i, j)� St+k(i, j))

������


N
p
d
WmaxkStk1

X

(i,j)2L̄ (x,y)

x
2
i y

2
j

=
Wmax

r

p

d

X

(i,j)2L̄ (x,y)

x
2
i y

2
j


Wmax

r

p

d.

Therefore, choosing c = Wmax in equation (28), we have

Pr

 
sup
x,y2T

�����
X

1ijN

xiyj(
bSt,r(i, j)� St,r(i, j))

����� 
Wmax

p
d

r

!
� 1� ✏ (29)

where ✏ = N

⇣
3

16kStk1
�2 log(

7
⌘ )

⌘

.

In the end, by equation (27) and (29), we obtain, with probability 1� ✏,

��� bSt,r � St,r

���  (1� ⌘)
�2

sup
x,y2T

���x>
( bSt,r � St,r)y

���  (1� ⌘)
�2Wmax

p
d

r
.

4 Proof of Theorem 2

Proof. In this proof, we deal with the clustering of left singular vector and the right singular

vectors separately.
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(1) Clustering for ZR,t. First, by Rohe et al. (2016) and solution of (1 + ")-approximate

k-means clustering, for each period t = 1, · · · , T , we have

��MR
t

��
N


8(2 + ")

2

m2
rN

kUt � UtOtk
2
F , (30)

where denote mr
def
= mini,t{min{k�R,t(i, ⇤)k, k�R,t(i, ⇤)k}}, and by improved version of

Davis-Kahn theorem from Lei and Rinaldo (2015), we have

kUt � UtOtkF 
2
p
2KR

�KR,t
ksym (St,r � St)k , (31)

as KR  KC .

Then, base on equation (30) and (31), we have

sup
t

��MR
t

��
N


2
6
(2 + ")

2
KR

m2
rN�

2
KR,max

sup
t

ksym (St,r � St)k
2
. (32)

Then, for St, we have the following representation:

St = D
�1/2
R,t  

R
ZR,tBtZ

>
C,t 

C
D

�1/2
C,t + ↵tXWtX

>
, (33)

where  
p
= Diag( 

p
) with p 2 {R,C}. Then, by definition of St,r

def
= |Fr|

�1
P

i2Fr
Wr,`(i)St+i,

we have the decomposition

�(r) = sup
t

���sym
⇣
bSt,r � St

⌘���  sup
t

���sym
⇣
bSt,r � St,r

⌘���+sup
t

ksym (St,r � St)k = �1(r)+�2(r).

(34)

Now, we evaluate �1(r) and �2(r) respectively. For �1(r), by Lemma 4, we have

sup
t

���sym
⇣
bSt,r � St,r

⌘��� =
1

|Fr|

X

i2Fr

Wr,`(i) sup
t

ksym (St+i � St+i)k (35)

 Wmax(4 + c
0
w)

⇢
3 log(16N/✏)

�
0

�1/2

.

For �2(r), we first define

eSt,r =
1

|Fr|

X

i2Fr

Wr,`(i)
�
YR,tBt+iY

>
C,t + ↵t+iXWt+iX

�
. (36)

where YR,t
def
= D

�1/2
R,t  

R
ZR,t and YC,t

def
= D

�1/2
C,t  

C
ZC,t.

Then, we decompose �2(r) as

sup
t

ksym (St,r � St)k  sup
t

���sym
⇣
St,r �

eSt,r

⌘���+sup
t

���sym
⇣
eSt,r � St

⌘��� = �21(r)+�22(r).

(37)
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For notation simplicity, we define Yp,t
def
= D

�1/2
p,t  

p
Zp,t for p 2 {R,C}, and the block diagonal

matrix Yt such that

Yt
def
=


YR,t 0N⇥KC

0N⇥KR YC,t

�
. (38)

Note that

���sym
⇣
St,r �

eSt,r

⌘���  Wmax max
|i|r

��sym
�
YR,t+iBt+iY

>
C,t+i � YR,tBt+iY

>
C,t

���

= Wmax max
|i|r

��Yt+isym(Bt+i)Y
>
t+i � Ytsym(Bt+i)Y

>
t

��

 Wmax max
|i|r

(kYt+ik+ kYtk) ksym(Bt+i)k kYt+i � Ytk ,

and ksym(Bt+i)k  KC and k 
p
k  1 for p 2 {R,C}, we then have

kYtk = max{kD
�1/2
R,t  

R
ZR,tk, kD

�1/2
C,t  

C
ZC,tk}

 max{kD
�1/2
R,t kk 

R
kkZR,tk, kD

�1/2
C,t kk 

C
kkZC,tk}

 �
0�1/2

P
1/2
max,

and

kYt+i � Ytk = max {kYR,t+i � YR,tk , kYC,t+i � YC,tk}

 max

n���D�1/2
R,t+iZR,t+i �D

�1/2
R,t ZC,t

��� ,
���D�1/2

C,t+iZC,t+i �D
�1/2
C,t ZC,t

���
o



s
2|r|s

�
0 +

s
4Pmax

�
0 ,

where the last inequality comes from the same derivation as equation (24).

Therefore, we have

�21(r) = sup
t

���sym
⇣
St,r �

eSt,r

⌘��� (39)

 Wmax ⇥ (2�
0�1/2

P
1/2
max)⇥KC ⇥

 s
2|r|s

�
0 +

s
4Pmax

�
0

!

=
2WmaxKC

�
0

⇣p
2Pmaxrs+ 2Pmax

⌘
.

Lastly, for �22(r), define

Zt
def
=

"
 

R
⌧,t

1/2
ZR,t 0N⇥KC

0N⇥KR  
C
⌧,t

1/2
ZC,t

#
. (40)
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Then, by Assumption 4’, we have

�22(r) = sup
t

���sym
⇣
eSt,r � St

⌘���


1

|Fr|

X

i2Fr

Wr,`(i) sup
t

���sym
�
YR,t(Bt+i � Bt)Y

>
C,t

���+ ksym (↵t+iXWt+iX � ↵tXWtX )k
�


1

|Fr,j|

X

i2Fr,j

W
j
r,`(i)

��Ytsym(Bt+i � Bt)Y
>
t

��+ 2↵maxWmaxNRJ
2
sup
t

ksym(Wt)k

 �
(1)
22 + 2Wmax

⇢
3 log(16N/✏)

�
0

�1/2

.

For �
(1)
22 , apply the same argument in previous proof for ScBM, we know

�
(1)
22  max

k,k0
|Qr,t(k, k

0
)| max

1j02N

KR+KCX

k=1

KR+KCX

k0=1

2

4
X

j2Gt,k

Yt(j, k)

3

5Yt(j
0
, k

0
)

 Wmax
NL

�
0
· `!

⇣
r

T

⌘�
. (41)

Therefore, combine equation (32), (34), (35), (39), and (41), we obtain
��MR

t

��
N


c2(")KRW

2
max

m2
rN�

2
KR,max

⇢
(6 + c

0
w)

b
0

�
01/2 +

2KC

�
0 (

p
2Pmaxrs+ 2Pmax) +

NL

�
0
· `!

⇣
r

T

⌘��2

,

where c2(") = 2
6
(2 + ")

2
, b

0
= {3 log(16NT/✏)}

1/2
and �KR,max = maxt{�KR,t}.

(2) Clustering for ZC,t.
As shown in equation (13), the population regularized graph Laplacian of dynamic

DCcBM has following decomposition

St =  
R
⌧,t

1/2
ZR,t⌦tZ

>
C,t 

C
⌧,t

1/2
(42)

Then, let YR,t = Z
>
R,t 

R
⌧,tZR,t and YC,t = Z

>
C,t 

C
⌧,tZC,t, and

H⌧,t = Y
1/2
R,t ⌦tY

1/2
C,t . (43)

Now, following Rohe et al. (2016), we can define

�c
def
= min

t
{min

i 6=j
kHt(⇤, i)�Ht(⇤, j)k}, (44)

and thus ��MC
t

��
N


16(2 + ")

2

m2
cN�

2
c

kUt � UtOtk
2
F . (45)

where mc
def
= mini,t{min{k�C,t(i, ⇤)k, k�C,t(i, ⇤)k}}.

Now, combining equation (45) with equations (31), (34), (35), (39), and (41), we obtain

sup
t

��MC
t

��
N


c3(")KRW

2
max

m2
cN�

2
c�

2
KR,max

⇢
(6 + c

0
w)

b
0

�
01/2 +

2KC

�
0 (

p
2Pmaxrs+ 2Pmax) +

NL

�
0
· `!

⇣
r

T

⌘��2

where c3(") = 2
7
(2 + ")

2
, b

0
= {3 log(16N/✏)}

1/2
and �KR,max = maxt{�KR,t}.
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