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aHumboldt-Universität zu Berlin, Germany
bWang Yanan Institute for Studies in Economics, Xiamen University, China.

Sim Kee Boon Institute for Financial Economics, Singapore Management University.
Faculty of Mathematics and Physics, Charles University, Czech Republic.

National Chiao Tung University, Taiwan.

Abstract

This paper sheds light on the dynamics of the cryptocurrency (CC) sector. By
modeling its dynamics via a stochastic volatility with correlated jumps (SVCJ)
model in combination with several rolling windows, it is possible to capture
the extreme ups and downs of the CC market and to understand its dynamics.
Through this approach, we obtain time series for each parameter of the model.
Even though parameter estimates change over time and depend on the window
size, several recurring patterns are observable which are robust to changes of
the window size and supported by clustering of parameter estimates: during
bullish periods, volatility stabilizes at low levels and the size and volatility of
jumps in mean decreases. In bearish periods though, volatility increases and
takes longer to return to its long-run trend. Furthermore, jumps in mean and
jumps in volatility are independent. With the rise of the CC market in 2017, a
level shift of the volatility of volatility occurred. All codes are available on
Quantlet.com
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1. Introduction

The rise of the cryptocurrency (CC) sector opens up just as many oppor-

tunities as it raises questions. In particular, the functioning of its dynamics

is not yet understood: first attempts to characterize this sector by standard

time series methods were not successful (cf. Chen et al. (2016)). Especially the

the non-stationary nature, frequent jumps, heavy tails and high volatility pose

challenges for researchers. This paper attempts to characterize the dynamics

of the CC market by modeling them via a stochastic volatility with correlated

jumps (SVCJ) model in combination with several rolling windows. Thereby we

obtain time series for each parameter. These time series reveal several recurring

patterns, which can be interpreted as stylized facts.

There exists a large literature that analyzes sub-areas of the CC sector.

Several indices track its dynamics (e.g. Trimborn and Härdle (2018), Elend-

ner (2018), Rivin and Scevola (2018)) and several characteristics have been

identified: Zhang et al. (2018) report heavy tails of the return distributions of

CCs, the cointegration relationships of the top CCs by market capitalization is

highlighted by Keilbar and Zhang (2021) and the high volatility compared to

classical assets is emphasized by Härdle et al. (2020), just to name a few.

However, understanding the big picture is still a challenge. A first analysis of

the whole sector has been conducted by Chen et al. (2016). By using standard

time series methods, they could not capture the heavy tails of the return dis-

tributions of the CC sector. Hou et al. (2020) instead show that a model with

stochstic volatility and correlated jumps (SVCJ) can meet the challenges of ex-

plaining the dynamics of such a non-stationary market. This paper takes up

and extends their method by a rolling window approach to broaden the view on

the CC sector and to shed light on its dynamics. The SVCJ model, introduced

by Duffie et al. (2000), assumes a stochastic movement of the index returns

as well as a stochastic movement of their volatility. Also, co-jumps of prices

and volatility are considered. We shift several rolling windows of differing sizes
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through the data, and at each time step, we estimate the parameters of the

SVCJ model in a frequentist manner. Thereby we obtain time series for each

parameter, which allow to characterize the dynamics of the CC sector.

In general, parameter estimates are time-varying and sensitive to the window

size. However, several recurring patterns are observable that are robust to

changes in window size and are supported by k-means clustering of the param-

eter estimates: First, volatility remains at a low level during bullish CC market

movements and rises in times of bearish markets. Besides, when volatility is

already on a high level, it needs longer to return to its long-run trend. Second,

in times of bullish markets, the size of jumps in mean return decreases, and its

volatility stabilizes as well at low levels. Third, a level shift of the volatility of

volatility parameter occurred simultaneously to the rise of the CC market at

the turn of the year 2017/18.

The remainder of this paper is structured as follows: Section 2 introduces

the CRIX, a CC index that is used as a representative of the CC sector in

the following analysis. Section 3.1 explains the methodology and estimation

approach and Section 3.2 presents the estimation results and their robustness

checks. Section 3.4 reveals the dependencies among parameter estimates by k-

means clustering and thereby identifies several stylized facts on the CC market

dynamics. All codes are available on Quantlet.com

2. Data

2.1. The CRIX - a CRyptocurrency IndeX

To analyze the dynamics of a market segment, one needs a good mapping of

it. In the case of the CC market, there exist several indices that track its dy-

namics. Among them, the CRIX (developed at the Blockchain Research Center

at Humboldt University Berlin by Trimborn and Härdle (2018)) is convincing

because it optimally solves the fundamental trade-off faced by any index, an

accurate representation of the market at a sparse number of constituents. By
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adjusting the number of constituents dynamically, the CRIX ensures high ac-

curacy in reflecting the CC market dynamics.

CRIXt =

∑
i PitQi0∑
i Pi0Qi0

where Pit refers to the price of constituent i at time t, and Qi0 the amount

of constituent i at time point 0. At each rebalancing date (every 3 months),

the optimal number of constituents is determined by an iterative algorithm: the

distance between the log-return of the total market (= all available CCs) and

the log-returns of several CC portfolios, consisting of i = 1, 2, 3, ... CCs (sorted

from top to down by market capitalization), is computed. The portfolio with

the optimal number of CCs is then determined by the AIC: it minimizes the

distance of the portfolio to the total market, but penalizes for an increasing

number of CCs. Thereby the previously mentioned trade-off (accuracy vs. a

sparse number of constituents) is solved optimally.

The period of analysis is restricted to 2015-2020. Index data is obtained from

thecrix.de.

Figure 1: CRIX, a CRyptocurrency IndeX. 01-2015 to 07-2020. Data source: thecrix.de

3. Methodology

Chen et al. (2016) have shown that standard econometric time series meth-

ods like ARIMA-GARCH processes cannot capture the dynamics of the non-
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stationary CC market. Figure 2 displays the fitted residuals of their ARIMA(2,0,2)-

GARCH(1,1) model to the CRIX. Hou et al. (2020) however caught the dynam-

ics of the CC market very accurately by using an SVCJ model. The right plot

of Figure 2 compares the fitted residuals to the standard normal distribution

and confirms the appropriateness of the model.

Figure 2: Left: QQ-plot of the fitted residuals of the ARIMA-GARCH process to the CRIX

by Chen et al. (2016) using CRIX index data. Right: the residuals of the SVCJ model by

Hou et al. (2020).

The following analysis combines the SVCJ model framework of Perez (2018)

and a rolling window approach to examine the dynamics and robustness of the

CC market. Thereby, time series estimates for each parameter are obtained

and some dependencies among them are identified. To start with, a short de-

scription of the SVCJ model and its estimation procedure will be given, Section

3.2 presents time series for each parameter and a discussion of their behavior.

Section 3.4 illustrates the interdependencies among parameters by visualizing

them with k-means clustering.

3.1. SVCJ - Model and Estimation Approach

The SVCJ model, introduced by Duffie et al. (2000) adds a jump process to

the stochastic volatility model of Heston (1993). In this setting, the mean index

value is modeled by a geometric Wiener process, extended by a jump process:
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d log (St) = µdt+
√
VtdW

s
t + Zyt dNt (1)

where St denotes the index value, µ the trend or drift, Vt the volatility, W s
t

a Wiener process and Nt is a pure jump process with a constant mean-jump

arrival rate λ, such that P (dNt = 1) = λdt. The random jump size Zyt follows

a normal distribution (cf. Equation 3a).

Additionally, the variance is modeled as a stochastic process, allowing for devi-

ations from its long-run trend as described by Cox et al. (2005) and extended

by a jump process

dVt = κ (θ − Vt) dt+ σv
√
VtdW

v
t + Zvt dNt (2)

where κ refers to the speed of convergence of the volatility towards its

trend θ, σv denotes the volatility of the volatility parameter and W v
t is a Wiener

process that is correlated to W s
t at rate ρ, Cov (dW s

t , dW
v
t ) = ρdt. The SVCJ

model differs from the previously mentioned Cox-Ingersoll-Ross model by allow-

ing for correlation between the jump size of the mean trend and the jump size

of the volatility:

Zyt | Zvt ∼ N
(
µy + ρjZ

v
t , σ

2
y

)
(3a)

Zvt ∼ Exp (µv) (3b)

where Exp denotes the exponential distribution, which ensures that jumps

in volatility are positive.

Bayesian Estimation Procedure

The estimation procedure follows a Bayesian approach: we are interested in

the distribution of the parameters Θ and covariates X given the CRIX index

data Y .
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p(Θ, X | Y ) ∝ p(Y | Θ, X)p(X | Θ)p(Θ)

where Θ = {µ, κ, θ, σv, ρ} and X = {Vt, Zyt , Zvt , Nt}. An implementation

framework for the SVCJ model is available from Perez (2018). For the code, see

Quantlet.com. In this framework, we use the Metropolis-Hastings algorithm

to obtain Markov chains that converge to the posterior distribution as the num-

ber of iterations increases. For a discussion of the burn-in rate and settings of

the prior distributions, please refer to Perez (2018). Several checks for autocor-

relation of parameter estimates along the iterations of the Metropolis-Hastings

algorithm are there discussed as well.

Implementation

The empirical calibration of equation 1 and 2 is realized by Euler discretiza-

tion, rewriting it as

Yt = µ+
√
Vt−1ε

y
t + Zyt Jt (4a)

Vt = α+ βVt−1 + σv
√
Vt−1ε

v
t + Zvt Jt (4b)

where Yt+1 = log (St+1/St) denotes the log return. εyt , ε
v
t are discrete versions

of the Wiener processes, distributed as N(0, 1) and correlated at rate ρ. The

volatility is calibrated by α = κθ and β = 1 − κ. The jump processes are im-

plemented by jump sizes Zyt and Zvt , following the distributions of Equation 3b

and a Bernoulli random variable Jt, with P (Jt = 1) = λ.

3.2. Dynamics of the Cryptocurrency Market

As we are interested in the dynamics of the CC sector, we want to ex-

amine whether it is possible to precisely characterize this sector by parameter

estimates of the above-described model. To do so, we apply two robustness mea-

sures: firstly, we conduct a rolling window approach, which yields time series
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estimates for each estimated parameter. Optimally, parameter estimates would

be time-invariant, which would allow a precise description of the CC sector.

Secondly, we control for the window sizes, to see whether the estimates vary

with the choice of the window size. Time series estimates for each parameter

are presented in Figure 3 (window size: 150 days) and Figure 4 (window sizes

150, 300 & 600 days).

The time series estimates in Figure 3a and 3b are obtained by shifting a rolling

window of 150 days through the data of the period 07/2014 to 07/2020. Es-

timates are fluctuating a lot, which is a typical issue in Bayesian estimation

as they are sensitive to changes in the input data. The fluctuating lines are

parameter estimates, the solid lines in their center are moving averages of 20

days. In the next paragraphs, a discussion about i) the trend, ii) volatility and

iii) jumps is conducted.

Trend. The estimates are mainly behaving as expected: µ, the trend of the

return process (cf. Equation 4a), moves parallelly to the CRIX (cf. Figure

1). Especially the growth in 2017 and the drop in 2018 are well observable.

However, the trend is always one step ahead of the index. This is due to the

forward-looking nature of the estimation procedure: the rolling window reacts

early to changes in future index values.

Volatility. The coefficients of volatility (α and β, see Equation 4b) reveal in-

teresting patterns (cf. Figure 3b): α oscillates at a low level until the end of

2017, then suddenly jumps to a high level (α =0.5) at the turn of 2017/2018.

A similar pattern occurs at the end of 2019: less strongly, but in the same

direction, α rises again. It is interesting to note that the rise in α always cor-

relates with downturns in the CRIX: when the CRIX falls, the volatility level

rises, or in other words: when the CC market is bearish, volatility is high. An

alternative interpretation is possible by the construction of α = θκ: when the

market is bearish, the volatility takes longer to return to its long-run trend (i.e.

κ increases) or the long-run volatility trend θ climbs up to a higher level.
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β, the coefficient of lagged volatility Vt−1, seems to be correlated as well

to the trend of the CC market: before the rise in 2017, its values oscillate

around −0.4, they stagnate at −0.2 throughout 2017, though towards the end

of 2017 they drop to −0.8. The dynamics of β allow for several interpretations:

volatility detaches from its lagged values in times of rising markets (β close

to zero througout 2017) and quickly returns to its long-run trend (since β is

reversely related to the reversion rate towards the long-run trend: β = 1 − κ).

In bearish periods (market downturn), the values of β get closer to −1 and α

increases, which indicates that volatility takes longer to return to its long-run

level.

Jumps. The jump sizes (µv and µy) seem to interact with the overall CC mar-

ket dynamics: in bullish periods, µy stabilizes at low levels and the volatility

of jumps in mean σy stabilizes as well. Even its estimates do not fluctuate a

lot. The jump arrival rate λ does not reveal any specific pattern and its values

change only within a small interval (note that one would need scaled values to

interpret the magnitude of the fluctuations).

In contrast to the study of Duffie et al. (2000), there is almost no correlation

between the volatility of the mean trend and the volatility of the volatility, as

the ρ estimates are close to zero. The estimates indicate that in certain intervals

(at the end of 2015 and 2016) there are interactions between these parameters,

though there is no overall effect observable.

To check whether the size of the rolling window has an impact on the pa-

rameter estimates, Figure 4 presents estimates for several rolling windows of

size 150, 300, and 600 days. The three time series in each figure depict moving

averages of 20 days for each window size.

The three time series are not identical and the estimates fluctuate a lot over

time and are sensitive to the size of the rolling windows. The bigger the window,

the more temporary fluctuations are smoothed, which is especially protruding

for the parameters µ, α, ρ and σy. However one can observe common patterns

9



(a) Parameters µ, µy, σy, λ

Figure 3: Parameter estimates of the SVCJ model with a rolling window of 150 days. The

fluctuating lines represent actual parameter estimates, the solid lines in their center depict

moving averages of 20 days. SVCJrw graph parameters

among the three time series:

Volatility. The time series of the parameters for volatility show matching dy-

namics. The dynamics of α are very robust and its three time series overlap

almost over the entire period of analysis. Only around the turn of 2017/18

does α skyrocket, to varying degrees for each window size. This suggests that

volatility is high when the market is falling.

Similarly, the time series of β converge at a level close to Zero throughout

2017. This confirms that volatility gets detached from its lagged values when

the market is bullish. By contrast, when there is no clear market direction or

when the market is falling, β deviates from Zero, i.e. volatility needs some time

to return to its long-run trend and persists in its former state.

Another finding relates to the volatility of volatility σv: it seems that a

regime change took place around the turn of the year 2017/2018. Until 2017, σv

fluctuated at low levels and increased strongly simultaneously with the growth
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(b) Parameters α, β, ρ, σy, ρj , µv

Figure 3: (cont.) Parameter estimates of the SVCJ model with a rolling window of 150 days.

The fluctuating lines represent actual parameter estimates, the solid lines in their center depict

moving averages of 20 days. SVCJrw graph parameters
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of the CC sector. After 2018, volatility remained at this elevated level. Based on

the CRIX time series alone, one cannot explain this level shift, but it stands to

reason that the opportunities in the CC market have attracted many investors

since 2018, which may have increased applications of CCs as well as speculation,

thereby increasing volatility.

Jumps. In the previous section 3.2, we observed that the size of jumps in mean

µy declined to zero whenever the market is rising. Interestingly, this finding can

be confirmed: all three time series converge simultaneously towards zero between

2017 and 2018. And not only the size of the jumps, but also their volatility

decreases rapidly when the market is rising: one can wonderfully observe how

the estimates of the volatility of the jumps σy decrease in 2017. Due to the

forward-looking nature of rolling windows, estimates respond early to market

changes. Weakened, but in the same direction, a convergence of the time series

can be observed for the second half of 2019.

3.3. Comparison to classical assets

Do the dynamics of the CC sector differ from other asset classes or curren-

cies? Unfortunately, up to the knowledge of the authors, there does not exist a

comparable study that follows a similar methodological approach. However, in

their influential article, Eraker et al. (2003) show that the SVCJ model is appro-

priate for modeling the dynamics of the S&P 500 index and the NASDAQ 100

index. In contrast to the present analysis, they estimate the SVCJ model once

for the whole period of analysis (1980-1999) and thereby obtain one estimate

for each parameter (the mean of the posterior distribution). As we have proven

in the previous section, such an analysis contains many pitfalls, because param-

eter estimates vary over time and depend on the time horizon. A comparison

of their results (regarding the S&P 500 and the NASDAQ 100, 1980-1999) and

ours (regarding the CRIX, 2015-2020) is therefore not possible. However, one

remark is interesting: Eraker et al. (2003) emphasize the importance of jumps

in volatility to explain sudden price slumps of their indices during market dis-

tress. For the CC sector, we obtain similar results: as can be seen in Figure 5,

12



the size and intensity of jumps in prices and volatility increases during market

downturns. Since late 2017 (= the local peak of the CC sector), the frequency

of jumps in price as well as in volatility increased. This finding is in line with

the report of Chaim and Laurini (2018): they argue that the increase in jumps

is caused by the higher attention and popularity of the CC sector.

13



Figure 4: Paramter estimates for several window sizes (150, 300 & 600 days).

SVCJrw graph parameters
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(a) Jumps in returns

(b) Jumps in volatility

(c) the CRIX

Figure 5: The jumps in returns (a) and volatility (b) as identified by the SVCJ model and

based on the entire period of analysis 2015-2020.
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3.4. Cluster Analysis

Even though it is not possible to precisely characterize the CC sector by

robust parameter estimates, some dependencies among the parameters were

observable. Since the estimated time series are not independent, statistical in-

ference is limited. The discussion of Section 3.2 has already introduced some

relationships between trend, volatility and jumps; in this section we will extend

the analysis by an examination of clusters. The clustering of parameters is not

intended to show causal relationships, but merely to illustrate certain patterns.

Especially when the market points in a specific direction, some parameters sta-

bilize.

As a first example shall serve the correlation between the trend µ and the

volatility parameter β. Figure 6 presents k-means clusters for this parameter

pair. The elbow method yields the optimal number of k = 3 clusters. Below

the clustered pair of parameters is the CRIX colored in the same colors as the

clusters, which reveals the time dimension of the data and its link to the overall

market dynamics. Note that for clustering, variables were scaled.

The clustering reveals interesting connections: there seems to be a strong re-

lationship between the two parameters β and µ. This is impressive since the

underlying CRIX data is highly non-stationary. An increase in trend is accom-

panied by an increase in β, i.e. β converges to zero and the current volatility

breaks away from its previous values. By contrast, when the trend is decaying,

β declines as well and volatility becomes more persistent. Similar patterns have

been obtained by k-expectiles clustering (cf. Wang et al. (2021)).

An explanation for such an observation is difficult since the CC sector is still

detached from the real economy. Some authors even argue (most prominently

Yermack (2015)) that CCs should be seen as an asset class instead of a currency

(since the use of CCs as a medium of exchange, storage of value, and units of

account is still limited (cf. Marthinsen (2020))). This reduces CCs to specu-

lative assets. The speculative view on CCs may deliver an explanation for the

patterns between µ and β: when the momentum (cf. Jegadeesh and Titman

(1993), Elendner (2018)), the difference between today’s price of an asset and
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its price some days ago, is positive, investors jump on the train and the price of

a CC goes straight up without fluctuating a lot. Similar behavior has been re-

ported by Caginalp and Desantis (2011) for the price dynamics of stocks. ”The

trend is your friend” (Caginalp and Desantis (2011)), a famous Wall Street say-

ing, summarizes precisely these patterns: returns are steadily positive and the

market moves in one direction without fluctuating a lot. Thus, the rise of the

CC sector in 2017/18 is partially driven by the growth in returns.

Another example of the interactions among parameters is presented in Figure

7. The volatility of jumps in returns σy and the volatility of volatility parame-

ter σv seem to be reversely related: the volatility of jumps σy is low, when the

volatility of volatility parameter σv increases, and vice versa. The lower graph

in Figure 7 illustrates the time dimension as well as the impact of the market

dynamics on this correlation: Interestingely, high volatllity of jumps in returns

σy occurs especially when the market is not pointing in a specific direction. In

such periods, volatility of volatiliy σv stays at low levels. This indicates that

CC index dynamics in such periods are driven by jumps instead of volatility.

When the market is overheated, volatility of volatility σv is high. Interestingely,

σv started to increase before the CC sector reached its peakin 2017/18. Fur-

thermore, we observe high volatility of volatility σv and low volatility of jumps

in returns σy for periods of market downturns. This finding is in line with the

jumps reported in Figure 5a : between 2018 and 2019, jumps in returns are

mainly negative. To sum up, this indicates that price slumps are driven by

both, high volatility and negative jumps in returns.

4. Conclusion

The present paper examined the crypto sector as a whole and shed light on

its dynamics. By combining an SVCJ model with a rolling window approach,

we obtain time series for each parameter of the model. Thereby we identify

several recurring patterns: first, volatility remains at a low level during bullish

CC market movements and rises in times of bearish markets. In addition, when

17



Figure 6: Top: k-means clusters of parameter estimates µ and β, k = 3.

Bottom: the CRIX coloured by the respective clusters.

SVCJrw clustered parameters
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Figure 7: Top: k-means clusters of parameter estimates σy and σv , k = 3.

Bottom: the CRIX coloured by the respective clusters. SVCJrw clustered parameters

volatility is already on a high level, it needs longer to return to its long-run

trend. Second, in times of bullish markets, the size of jumps in mean return

decreases, and its volatility stabilizes as well at low levels. Third, a level shift

of the volatility of volatility parameter occurred simultaneously to the rise of

the CC market at the turn of the year 2017/18. Finally, the jumps in mean and

in volatility seem to be independent. The findings are robust to changes in the
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window size and confirmed by clustering of the parameters.
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