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Abstract 

Marketing messages are most effective if they reach the right customers. Deciding which customers 

to contact is thus an important task in campaign planning. The paper focuses on empirical targeting 

models. We argue that common practices to develop such models do not account sufficiently for 

business goals. To remedy this, we propose profit-conscious ensemble selection, a modeling framework 

that integrates statistical learning principles and business objectives in the form of campaign profit 

maximization. The results of a comprehensive empirical study confirm the business value of the 

proposed approach in that it recommends substantially more profitable target groups than several 

benchmarks.  
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1 Introduction 

Big data analytics revolutionizes the face of decision support (e.g., Gupta & George, 2016). 

Skepticism toward formal decision aids used to be widespread among managers (Lilien, 2011). Today, 

however, we witness an unprecedented interest in quantitative decision support models. Vast amounts 

of data, powerful pattern extraction algorithms, and easy to use software systems fuel this development 

and promise to improve management support. For example, based on a survey among firm executives, 

Germann et al. (2013) estimate that increasing marketing analytics deployment is associated with an 

average eight percent increase in return on assets. In a similar way, Tambe (2014) finds the use of big 

data technologies to be associated with an average one to three percent increase of firm productivity.  

The paper concentrates on marketing decisions in campaign planning. Campaign planners need to 

answer three questions (Elsner et al., 2004): when to make an offer (timing), how often to make an offer 

(frequency), and whom to contact (target group selection). We focus on the target group selection 

problem, which has been studied in the direct marketing (e.g., Phan & Vogel, 2010) and churn 

management (e.g., Coussement & Van den Poel, 2008) literature. To target marketing offers, companies 

use response models, which estimate acceptance probabilities for individual customers. This facilitates 

soliciting the most likely responders. Response models use a variety of prediction methods including, 

artificial neural networks (e.g., Olson & Chae, 2012), support vector machines (e.g., Chen et al., 2015), 

or tree-based approaches (e.g., Lemmens & Croux, 2006).  

Prediction methods are designed for generality and solve modeling problems in various domains 

(e.g., Bose & Mahapatra, 2001). We argue that using an off-the-shelf method for customer targeting 

suffers a limitation in that contextual information related to the actual decision task does not enter model 

development. Budget constraints, customer lifetime value, parallel campaigns – relevant information in 

campaign planning – have little effect on the estimation of the targeting model. Therefore, the objective 

of the paper is to develop and test a modeling framework that accounts for business objectives during 

the development of a targeting model. Current trends in marketing support this objective. In particular, 

marketing communication is increasingly personalized (e.g., Golrezaei et al., 2014) and distributed 

through digital channels (e.g., Ding et al., 2015). Personalization amplifies the scale of targeting 

decisions while digitalization often requires real-time decision making. In this regard, both trends 
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illustrate the need to automate customer targeting. A high recognition of business goals during model 

development seems especially important when targeting models operate in a self-governed manner.   

The paper contributes to the literature in three ways. First, we make a methodological contribution. 

Relying on the principles of ensemble learning, we propose a paradigm to develop predictive marketing 

support models, which we call profit-conscious ensemble selection (PCES). PCES differs from previous 

approaches in that it integrates established principles of statistical inference with business objectives in 

customer targeting. We hypothesize that the explicit consideration of marketing goals at an early stage 

in the modeling process improves the quality of targeting decisions. Second, we perform a 

comprehensive empirical study including twenty-five real-world marketing data sets from different 

industries to test the effectiveness of PCES. In addition to comparing several targeting models, an 

important feature of the experiment is that it contrasts paradigms toward model development; namely: 

i) “profit-agnostic” models derived from minimizing statistical loss, ii) “profit-centered” models derived 

from maximizing business performance, and iii) an integrated approach in the form of PCES that 

balances statistical and economic considerations. This setup provides novel insight concerning the 

relative merits of fundamentally different approaches toward predictive modeling. Third, we clarify the 

degree to which introducing profit considerations into model development improves business 

performance and decision quality. We achieve this through estimating the campaign profit that emerges 

from model-based targeting and the marginal profit of PCES-based targeting, respectively. This 

provides a clear, managerially meaningful measure of the value of PCES. 

The reminder of the paper is organized as follows: Section 2 reviews related literature. The proposed 

targeting methodology is developed in Section 3. Section 4 and 5 elaborate on the design and results of 

the empirical evaluation of PCES, respectively. Section 6 concludes the paper.  

2 Background and related work  

A large body of literature examines the antecedents of (model-based) decision support system (DSS) 

effectiveness (e.g., Lilien et al., 2004). Several studies highlight the importance of the DSS exhibiting 

high fit for the decision task (e.g., Dennis et al., 2001). However, the effect of fit depends on the 

(post)processing of DSS recommendations. More specifically, Fuller and Dennis (2009) demonstrate 

how managers learn to mitigate a lack of DSS fit and achieve performance similar to managers who 
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have access to better technology (i.e., higher fit). This is reasonable since managers’ decision-making is 

guided by a mental model that enables them to appraise DSS outputs in awareness of a specific problem 

context, connect this output to decision quality, and, in this way, correct for misleading information 

from a poor decision support model (Fuller & Dennis, 2009; Lilien, 2011). This theory indicates the 

value of human supervision in model-based decision support. However, disadvantages of such “model-

manager-tandem” include high labor costs, a possible lack of expertize, especially related to big data 

technologies (e.g., Manyika et al., 2011), and high latency in decision-making. PCES strives to combine 

the efficiency of fully automated, model-based decision-making and the ability of managers to use 

contextual, task-specific information to improve decision quality in targeting applications. 

Data-driven prediction models are widely used to forecast customer responses to marketing 

campaigns (e.g., Bose & Mahapatra, 2001; Chen et al., 2015; Olson & Chae, 2012). Requiring little 

human intervention, they also appear well prepared to automate decision-making in real-time targeting 

applications such as online advertising or social media (e.g., Ballings & Van den Poel, 2015; Fan & 

Yan, 2015; Perlich et al., 2014). Prior work also studies the question whether the development of 

predictive decision support models should account for business objectives. In the forecasting literature, 

Granger (1969) was the first to criticize the use of quadratic loss functions for model estimation. Arguing 

that real-world applications rarely exhibit symmetric error costs, he proposed loss functions that penalize 

positive and negative residuals differently. Subsequent studies further elaborate on Granger’s work and 

contribute theoretical as well as empirical insights (e.g., Christoffersen & Diebold, 1997; Leitch & 

Tanner, 1991). PCES also employs non-standard loss functions for the development of predictive 

models and assesses models in terms of business performance. The main differences lie in the 

methodology and application. We focus on multivariate machine learning models as opposed to 

univariate time series forecasting models and examine decision problems in marketing campaign 

planning. This also implies that we study a different business objective (i.e., campaign profit). 

The cost-sensitive learning literature also studies asymmetric error costs. In general, cost-sensitive 

learning encompasses methods that operate at the data level, for example by altering the distribution 

between classes with higher/lower misclassification costs (e.g., Domingos, 1999) and algorithmic 

adaptations to make standard learners cost-aware (e.g., Žliobaitė et al., 2015). This paper also considers 



4 

class-dependent misclassification costs. Specifically, the different errors in campaign planning are 

soliciting customers who do not respond and failing to contact customers who would respond (e.g., 

purchase an item) otherwise. However, studies in cost-sensitive learning aim at generality and strive to 

develop modeling approaches that perform well across a variety of applications where misclassification 

costs differ. While generality is a goal worth pursuing, a DSS approach that focuses on a concrete 

application has the potential to better reflect its specific requirements. PCES is such an approach for 

decisions in the scope of targeted marketing. Marketing campaigns typically target only a small fraction 

of responsive customers. This implies a different notion of model performance compared to cost-

sensitive learners, the objective of which is to minimize overall error costs.  

There is also a large body of literature on predictive models for customer targeting. In general, 

previous work has studied all steps of the predictive modeling process (see Figure 1) from building an 

analytic database through gathering data from past campaigns and test mailings (e.g., Rokach et al., 

2008) over data preparation including target variable definition (Bodapati & Gupta, 2004; Glady et al., 

2009), independent variable development, encoding, and selection (e.g., Coussement et al., 2017), model 

estimation and tuning (e.g. Chen et al., 2015) to prediction post-processing (e.g., Coussement & 

Buckinx, 2011), performance evaluation (e.g., Verbraken et al., 2012) and decision-making (e.g., 

Schröder & Hruschka, 2016). However, the vast majority of previous studies estimate the targeting 

model using standard prediction methods (neural networks, support vector machines, random forest, 

etc.). We call this approach profit-agnostic because it does not take account of the actual business 

problem – campaign profit maximization – during model development.  

Some studies emphasize the inability of statistical accuracy indicators (NLL, percentage correctly 

classified, etc.) to reflect marketing objectives and propose alternatives for specific applications such as 

the (expected) maximum profit criterion for churn modeling (Verbeke et al., 2012; Verbraken et al., 

2012). We further extend this research in two ways. First, using a more general profit function, we 

consider not only churn modeling but a broad range of targeting applications. Second, focusing on profit-

oriented model development, we introduce the business goal in an earlier modeling step where 

corresponding information can exert more influence on the eventual model. To confirm this, we 

empirically compare PCES to the approach of Verbeke et al. (2012).  
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Figure 1: Predictive modeling process2  

To our knowledge, only two studies consider a profit-oriented model development. Using a genetic 

algorithm (GA), Bhattacharyya (1999) estimates the parameters of a linear model so as to maximize 

profit. Cui et al. (2015) select customers with heterogeneous expected returns via partial ordering. PCES 

differs from these approaches in that it i) uses a more advanced ensemble learning paradigm and ii) 

adopts a multi-stage approach to balance statistical loss and business goals. To verify the appropriateness 

of this design, we empirically compare PCES to the approach of Bhattacharyya (1999).  

3 Methodology 

In the following, we elaborate on our methodology. First, we review the statistical fundamentals of 

predictive models and explain how standard loss functions disregard application characteristics. Next, 

we discuss business goals in campaign planning and corresponding objective functions. Last, we 

elaborate on the PCES framework, which we propose to combine statistical and business objectives.  

3.1 Profit-agnostic targeting models  

Targeting models belong to the field of supervised learning (e.g., Hastie et al., 2009). Assume a 

marketer wishes to predict the behavior of customer i, characterized by vector ࢞௜ ൌ ሺݔଵ௜, ,ଶ௜ݔ … , ெ௜ሻݔ ∈

Թெ, where the elements of xi capture transactional and demographic information, amongst others. Let 

yi denote the response of customer i to a past marketing action. The response may be continuous (e.g., 

purchase amount) or discrete (e.g., whether an offer was accepted). In the former case, the prediction 

task is a regression problem; and a classification problem otherwise. In direct marketing, modeling 

discrete responses decreases bias due to incorrect model specification and may thus increase prediction 

accuracy (Bodapati & Gupta, 2004). Accordingly,  we focus on binary classification where ݕ௜ ∈

ሼ0,1ሽ	with a value of yi=1 (yi=0) indicating that customer i accepted (rejected) a marketing offer. A 

                                                      
2  Figure 1 grounds on process models for data analysis (e.g., Li et al., 2016) and magnifies the modeling step so 

as to highlight tasks in predictive analytics, including the estimation of a model, the tuning of its meta-
parameters, and potentially a post-processing of predictions (e.g., Coussement & Buckinx, 2011). Although not 
explicitly highlighted, we acknowledge that a modeling process may exhibit feedback loops.  



6 

targeting model, f(x), represents a functional mapping from customer records to responses: 

઩݂ሺ࢞ሻ:Թெ ⟼ ሼ0,1ሽ, where  denotes a vector of model parameters. Model estimation involves fitting 

model parameters to data. Afterwards, the specified model facilitates predicting y given x. In other 

words, the model allows the marketer to predict customer response (and more generally behavior) from 

observable customer data (summarized in x).  

Targeting model development follows an inductive approach: Given a data set of customer records 

and corresponding responses, ܦ ൌ ሺݕ௜, ࢞௜ሻ௜ୀଵ
ே , a learning algorithm fits the model parameters, , so as 

to minimize the deviation between model estimates and actual responses:   

઩ᇱ ← min
઩
ܳ൫ݕ௜, ઩݂ሺ࢞௜ሻ൯			∀	݅ ൌ 1,… ,ܰ, where ઩ᇱ denotes the optimal set of parameters and the loss 

function Q measures the disagreement between model outputs and data. Therefore, model estimation is 

equivalent to minimizing a loss function over D. To illustrate this, consider a marker who wishes to  

predict customers’ responses to a marketing message using the well-known logit model. She estimates 

the model through minimizing Q, which in the case of logit is the negative log-likelihood (NLL), over 

a sample of observations from previous campaigns (i.e., D).  

A loss function represents a model-internal notion of fit. In the previous example, a lower NLL 

indicates that a model fits the data more accurately. Common statistical loss functions (NLL, cross-

entropy, Hinge loss, etc.) implement the principles of statistical learning to ensure that a model is able 

to generalize to novel data (e.g., Vapnik & Kotz, 2006). Prediction models estimated using such loss 

functions are generic and can be employed in many domains. However, they disregard specific 

application characteristics unless these are accurately reflected in the loss function. We argue that a close 

correspondence between a model-internal internal notion of fit and business performance should not be 

taken for granted. For example, maximizing fit using some statistical loss function during model 

development may lead to a different model compared to maximizing campaign profit. On the other hand, 

statistical loss functions others have strong theoretical underpinnings and exhibit desirable properties 

related to generalization and the accuracy of model prediction in particular (e.g., Hastie et al., 2009). It 

is imperative to build on this theory when developing a prediction model to prevent overfitting (e.g., 

Vapnik & Kotz, 2006). This motivates our PCES approach to integrate statistical considerations (in the 
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form of established loss functions and estimation principles) and business objectives in campaign 

planning (in the form of campaign profit) during the development of a targeting model.  

3.2 Target group selection and model assessment in marketing campaign planning  

Campaign planning aims at maximizing the efficiency of resource utilization. Contacting customers 

with a marketing message entails a cost so that it is typically inefficient to target the whole customer 

base. Instead, marketers use targeting models to estimate response probabilities on a customer level. 

This facilitates restricting solicitations to likely responders. Applications of targeting models are 

manifold and include the mail-order industry, churn management, and cross-selling (e.g., Blattberg et 

al., 2008). Recently, targeting models are increasingly used in real-time settings, for example to increase 

purchase probabilities in e-shops through personalization (e.g., Golrezaei et al., 2014) or to guide 

decisions in online marketing (e.g., Xu et al., 2014). 

From a managerial point of view, the business value of a targeting model depends on the degree to 

which it increases the profitability of a marketing campaign. More specifically, campaign profitability 

represents a short-term business goal. A short-term perspective may be considered problematic in that 

it disregards the interdependencies of different campaigns (e.g., Bleier & Eisenbeiss, 2015; Schröder & 

Hruschka, 2016). However, a short term perspective that concentrates on campaign profit is suitable in 

this paper, which concerns operational decision support in reoccurring, routine tasks and real-time 

applications with potential/need for decision automation. Therefore, we appraise the business value of 

a targeting model in terms of the overall revenue from the specific target group that the model 

recommends minus the total cost of solicitation. More formally, we model campaign profit, ߗ, as 

(Martens & Provost, 2011; Piatetsky-Shapiro & Masand, 1999): 

,ሺ݈ሺ߬ሻߗ ߬ሻ ൌ ܰ ⋅ ߬ ⋅ ሺߨା ⋅ ݈ሺ߬ሻ ⋅ ݎ െ ܿሻ, (1) 

where N denotes the size of the customer base,  the fraction of targeted customers (i.e., campaign 

size), and ߨା the base rate of customers willing to accept the marketing offer in the customer base. The 

parameters r and c represent the return and cost associated with an accepted offer and making the offer, 

respectively. The quantity ݈ሺ߬ሻ, called the lift, is a marketing specific measure of predictive accuracy, 

which depends on the size of the campaign, . With ߨఛ denoting the fraction of responses in the target 

group the lift is given as: 
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݈ሺ߬ሻ ൌ
ఛߨ
ାߨ

 (2) 

A campaign that targets customers at random reaches a fraction of ߨା actual responders. Thus, the lift 

assesses the degree to which a model-based targeting improves over a random benchmark.  

Revised versions of (1) have been proposed to capture the characteristics of specific marketing 

applications. For example, Neslin et al. (2006) devise a profit function for models that target retention 

actions to customers with high churn probability. The expected maximum profit criterion further refines 

this approach (Verbraken et al., 2012). The advantage of the campaign profit function (1) over 

subsequent advancements is generality. Connecting customer revenues, direct costs, and model accuracy 

through model lift, (1) can represent a variety of targeting applications including churn management, 

direct mail, e-couponing, etc. Therefore, we use (1) in this paper and leave the evaluation of the proposed 

PCES approach for specific targeting tasks such as churn modeling to future work. 

An assumption of (1) and its extensions is that costs and returns are homogeneous across customers. 

In campaign planning, assuming constant offer costs is plausible for most marketing channels. However, 

disregarding variability in customer spending (r=const.) is a strong simplification. Typically, the returns 

from accepted marketing offers differ across customers. Our justification for using (1) despite this 

assumption is threefold. First, it is common practice to work with class as opposed to case depending 

costs/returns in the marketing and cost-sensitive learning literature (e.g., Hernández-Orallo et al., 2011; 

Rokach et al., 2008; Verbeke et al., 2012). Second, calculating campaign profit using the mean revenue 

per accepted offer may be more suitable for predictive modeling, for example because information to 

reliably estimate revenues at the customer level is lacking. Last, some applications do not require 

distinguishing revenues across customers, for example when targeting services like study programs that 

entail a fixed fee or running lead generation campaigns.  

3.3 Profit-conscious ensemble selection 

The proposed modeling framework is based on the view that the development of predictive decision 

support models should pay attention to both statistical and business considerations. Therefore, we strive 

to incorporate campaign profit (1) as marketing objective into model development (see Figure 1). To 

achieve this, we decompose model development into two sub-steps. The first stage leverages statistical 



9 

learning principles. In step two, model predictions are refined to maximize campaign profit. Recall that 

such multi-stage approach mimics the way in which managers use decision support models: they re-

appraise and possibly correct DSS outputs in the context of their decision task (Fuller & Dennis, 2009).  

The proposed framework is based on a machine learning paradigm called ensemble selection (e.g., 

Caruana et al., 2006; Partalas et al., 2010; Woźniak et al., 2014). An ensemble is a collection of (base) 

models, all of which predict the same target. Combining multiple models in an ensemble is useful to 

increase predictive accuracy (e.g., Malthouse & Derenthal, 2008). Ensemble selection involves three 

steps: i) constructing a library of candidate models (model library), ii) selecting an “appropriate” subset 

of models for the ensemble (candidate selection), and iii) integrating the predictions of the chosen 

models into a composite forecast (model aggregation). From an algorithmic point of view, PCES is 

similar to Caruana’s et al. (2006) approach. Its distinctive feature is that it integrates statistical and 

economic objectives. This way, PCES embodies a different paradigm toward developing predictive 

decision support models. The following subsections elaborate on this design. 

3.3.1 Model library 

The success of an ensemble depends on the diversity of its members (e.g., Partalas et al., 2010). To 

obtain a library of diverse models, we use different learning algorithms. In addition, we consider 

multiple settings for the meta-parameters of individual algorithms. Meta-parameters such as the number 

of hidden nodes in a neural network (e.g., Fletcher & Goss, 1993) facilitate adapting a learning algorithm 

to a particular task (Hastie et al., 2009). This suggests that prediction models from the same algorithm 

vary with meta-parameters and thus display diversity.  

Table 1 summarizes the learning algorithms and meta-parameter settings in the model library. The 

selection is based upon previous literature on customer targeting and ensemble modeling (Caruana et 

al., 2006; Lessmann et al., 2015; Verbeke et al., 2012). Some methods have been chosen due to their 

popularity in academia and industry (e.g., logistic regression, decision trees, discriminant analysis) and 

others because of high performance in previous studies (e.g., random forest, support vector machines, 

gradient boosting). Interested readers can find a comprehensive discussion of the algorithms in Hastie 

et al. (2009). In total, we consider 15 learning algorithms from which we derive 877 different models. 
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Table 1: Classification Methods and Meta-Parameter Settings  
Learning Algorithm Meta-parameter* Candidate Settings** 
Classification and Regression Tree  
Recursively partitions a training data set by inducing binary splitting rules so as to minimize 
the impurity of child nodes in terms of the Gini coefficient. Terminal nodes are assigned a 
posterior class-membership probability according to the distribution of the classes of the 
training instances contained in this node. To classify novel instances, the splitting rules 
learned during model building are employed to determine an appropriate terminal node. 

Overall number of models: 6 

Min. size of nonterminal nodes 
 
Pruning of fully grown tree 

10, 100, 1000 
 
Yes, No 

Artificial Neural Network 
Three-layered architecture of information processing-units referred to as neurons. Each 
neuron receives an input signal in the form of a weighted sum over the outputs of the 
preceding layer’s neurons. This input is transformed by means of a logistic function to 
compute the neuron’s output, which is passed to the next layer. The neurons of the first layer 
are simply the covariates of a classification task. The output layer consists of a single neuron, 
whose output can be interpreted as a class-membership probability. Building a neural 
network models involves determining connection weights by minimizing a regularized loss-
function over training data.  

Overall number of models: 162 

No. of neurons in hidden layer 
 
Regularization factor (weight decay) 

3, 4, …, 20 
 
10[-4, -3.5, …, 0] 

k-Nearest-Neighbor 
Decision objects are assigned a class-membership probability according to the class 
distribution prevailing among its k nearest (in terms of Euclidian distance) neighbors.  

Overall number of models: 18 

Number of nearest neighbors 10, 100, 150, 200, …, 500, 1000, 1500, 
…4000 

Linear Discriminant Analysis 
Approximates class-specific probabilities by means of multivariate normal distributions 
assuming identical covariance matrices. This assumption yields a linear classification 
model, whose parameters are estimated by means of maximum likelihood procedures from 
training data. 

Overall number of models: 20 

Covariates considered in the model Full model, stepwise variable selection 
with p-values in the range 0.05, 0.1,…, 
0.95 

Logistic Regression 
Approximates class membership probabilities (i.e., a posteriori probabilities) by means of a 
logistic function, whose parameters are estimated from training data by maximum likelihood 
procedures. 

Overall number of models: 20 
 
 
 

Covariates considered in the model Full model, stepwise variable selection 
with p-values in the range 0.05, 0.1,…, 
0.95 
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Naive Bayes 
Approximates class-specific probabilities under the assumption that all covariates are 
statistically independent. 

Overall number of models: 9 

Histogram bin size  2, 3, …, 10 

Quadratic Discriminant Analysis 
Differs from LDA only in terms of the assumption about the structure of the covariance 
matrix. Relaxing the assumption of identical covariance leads to a quadratic discriminant 
function. 

Overall number of models: 20 

Covariates considered in the model Full model, stepwise variable selection 
with p-values in the range 0.05, 0.1,…, 
0.95 

Regularized Logistic Regression  
Differs from ordinary LogR in the objective function optimized during model building. A 
complexity penalty given by the L1-norm of model parameters (Lasso-penalty) is introduced 
to obtain a “simpler” model.  

Overall number of models: 29 

Regularization factor  
 

2[-14, -13, …, 14]

 

Support Vector Machine with linear kernel 
Constructs a linear boundary between training instances of adjacent classes so as to 
maximize the distance between the closest examples of opposite classes and achieve a pure 
separation of the two groups.  

Overall number of models: 29 

Regularization factor  
 

2[-14, -13, …, 14]

 

Support Vector Machine with Radial Basis Function Kernel 
Extends SVM-lin by implicitly projecting training instances to a higher dimensional space 
by means of a kernel function. The linear decision boundary is constructed in this 
transformed space, which results in a nonlinear classification model. 

Overall number of models: 300 

Regularization factor 
 
Width of Rbf kernel function 

2[-12, -11, …, 12]

 
2[-12, -11, …, -1] 

AdaBoost 
Constructs an ensemble of decision trees in an incremental manner. The new members to be 
appended to the collection are built in a way to avoid the classification errors of the current 
ensemble. The ensemble prediction is computed as a weighted sum over the member 
classifiers’ predictions, whereby member weights follow directly from the iterative 
ensemble building mechanism. 

Overall number of models: 11 

No. of member classifiers 10, 20, 30, 40, 50, 100, 250, 500, 1000, 
1500, 2000 

Bagged Decision Trees 
Constructs multiple CART trees on bootstrap samples of the original training data. The 
predictions of individual members are aggregated by means of average aggregation. 

Overall number of models: 11 

No. of member classifiers 10, 20, 30, 40, 50, 100, 250, 500, 1000, 
1500, 2000 

Bagged Neural Networks 
Equivalent to BagDT but using ANN instead of CART to construct member classifiers. The 
ensemble prediction is computed as a simple average over member predictions.  

Overall number of models: 5 

No. of member classifiers 5, 10, 25, 50, 100 



12 

Random Forest 
The ensemble consists of fully grown CART classifiers derived from bootstrap samples of 
the training data. In contrast with standard CART classifiers that determine splitting rules 
over all covariates, a subset of covariates is randomly drawn whenever a node is branched 
and the optimal split is determined only for these preselected variables. The additional 
randomization increases diversity among member classifiers. The ensemble prediction 
follows from average aggregation. 

Overall number of models: 35 

No. of member classifiers 
 
No. of covariates randomly selected 
for node splitting 
 

100, 250, 500, 750, 1000, 1500, 2000 
 

*** 

LogitBoost  
Modification of the AdaB algorithm which considers a logistic loss function during the 
incremental member construction. We employ tree-based models as member classifiers. 

Overall number of models: 11 

No. of member classifiers 10, 20, 30, 40, 50, 100, 250, 500, 1000, 
1500, 2000 

Stochastic Gradient Boosting  
Modification of the AdaB algorithm, which incorporates bootstrap sampling and organizes 
the incremental ensemble construction in a way to optimize the gradient of some differential 
loss function with respect to the present ensemble composition. We employ tree-based 
models as member classifiers. 

Overall number of models: 11 

No. of member classifiers 10, 20, 30, 40, 50, 100, 250, 500, 1000, 
1500, 2000 

*  Note that Table 1 depicts only those meta-parameters for which we consider multiple settings. A classification method may offer additional meta-parameters. 
** We consider all possible combination of meta-parameter settings for learners such as Random Forest that exhibit multiple meta-parameters. 
*** M represents the number of explanatory variables (i.e., covariates) in a data set. 

 

 

M4] 2, 1, 0.5, ,1.0[
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3.3.2 Candidate selection 

Given the model library, we select candidate models using directed hill-climbing (Caruana et al., 

2006). In particular, we first select the single best candidate model from the library. To improve this 

model’s performance, we next assess all pairwise combinations of the chosen model and one other base 

model from the library. This way, we obtain a collection of possible two-member ensembles, out of 

which we select the best performing candidate ensemble. We then continue with examining the set of 

all three-member ensembles that include the models chosen in the previous iteration. Incremental 

ensemble growing terminates when adding novel members stops improving performance. Interested 

readers find a working example of the algorithm in the e-companion (see online Appendix I3). 

It is common practice to use statistical loss functions for ensemble member selection (e.g., Caruana 

et al., 2006; Partalas et al., 2010; Woźniak et al., 2014). We propose to reserve the selection step for 

business objectives. Using heuristic search, it is possible to gear ensemble selection toward any objective 

function that depends on the model-estimated probabilities. In particular, we propose to maximize (1) 

instead of a statistical loss function during candidate selection. This way, we devise an ensemble that 

incorporates business objectives during model development. Specifically, PCES refines the first-stage 

predictions, which stem from well-established prediction models and embody the principles of statistical 

learning, through selective combination so as to better represent the actual decision problem. This ex-

post revision of (individual model) predictions mimics the way in which managers use DSS 

recommendations and possibly correct for misleading advice (Fuller & Dennis, 2009). 

3.3.3 Model aggregation 

Model aggregation refers to a combination of models’ predictions. This occurs during candidate 

selection and when computing the final ensemble prediction. We pool models by averaging over their 

predictions. Effectively, we compute a weighted average. This is because the candidate selection 

procedure of Caruana et al. (2006) allows the same model to enter the ensemble multiple times. The 

opportunity to weight predictions whenever the data suggest that a strong model deserves greater 

influence on the ensemble prediction adds to the flexibility of ensemble selection. Note that averaging 

                                                      
3 Available online at https://bit.ly/pces_appendix. 
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model predictions requires all models to produce forecasts of a common scale. To ensure this, we 

calibrate base model predictions using a logistic link function prior to model averaging (Platt, 2000). 

4 Empirical Design 

We examine the effectiveness of PCES in the scope of an empirical benchmark. Such experiment 

requires suitable data, which represents the characteristics of customer targeting applications, and 

benchmark models to put the performance of PCES into context.  

4.1 Marketing data sets 

The empirical study considers 25 cross-sectional marketing data sets. The data sets stem from 

different industries and represent different prediction tasks, each of which requires selecting customers 

for targeted marketing actions. The main sources from which we gather the data sets are: i) data mining 

competitions, ii) previous modeling studies, iii) the UCI machine learning repository (Asuncion & 

Newman, 2010), and iv) projects with industry partners. Given the large number of data sets, it is 

prohibitive to discuss every data set in detail. Table 2 summarizes data set characteristics and identifies 

sources where more information is available. 

To simulate a real-world campaign planning setting, we randomly split data sets into two samples 

using a ratio of 60:40. We refer to the two samples as the training set and the test set, respectively. We 

develop targeting models using the training set and assess fully specified models on the test set. Certain 

modeling choices within PCES and the benchmark models (see below) require auxiliary validation data. 

Examples include the identification of the best base model in the library (as benchmark to PCES) and 

the heuristic search for ensemble members in the second stage of PCES. We obtain such validation data 

by means of five-fold cross validation on the training set (Caruana et al., 2006).  
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Table 2: Data Sets Characteristics 
Data set Marketing objective Industry Source* Observations Variables P(+1)**

D1 Churn prediction Energy DMC02 20,000 32 0.10 

D2 Churn prediction Finance CP 155,056 23 0.14 

D3 Churn prediction Finance CP  30,104 47 0.04 

D4 Churn prediction Telco (Verbeke et al., 2012) 40,000 70 0.50 

D5 Churn prediction Telco (Verbeke et al., 2012) 93,893 196 0.50 

D6 Churn prediction Telco (Verbeke et al., 2012) 12,410 18 0.39 

D7 Churn prediction Telco (Verbeke et al., 2012) 69,309 67 0.29 

D8 Churn prediction Telco (Verbeke et al., 2012) 21,143 384 0.12 

D9 Churn prediction Telco KDD09 50,000 301 0.07 

D10 Churn prediction Telco (Verbeke et al., 2012) 47,761 41 0.04 

D11 Churn prediction Telco (Verbeke et al., 2012) 5,000 18 0.14 

D12 Profitability scoring E-Commerce DMC05 50,000 119 0.06 

D13 Profitability scoring E-Commerce DMC06 16,000 24 0.49 

D14 Profitability scoring Mail-order UCI-Adult 48,842 17 0.24 

D15 Profitability scoring Mail-order DMC04 40,292 107 0.21 

D16 Response modeling Charity KDD98 191,779 43 0.05 

D17 Response modeling E-Commerce CP  121,511 82 0.06 

D18 Response modeling E-Commerce CP 214,709 77 0.13 

D19 Response modeling E-Commerce CP 382,697 76 0.09 

D20 Response modeling E-Commerce DMC10 32,428 40 0.19 

D21 Response modeling Finance CP 45,211 16 0.12 

D22 Response modeling Finance UCI-Coil 9,822 13 0.06 

D23 Response modeling Mail-order DMC01 28,128 106 0.50 

D24 Response modeling Publishing CP 300,000 30 0.01 

D25 Response modeling Retail DMC07 100,000 17 0.24 
* CP = consultancy project with industry; DMC = Data Mining Cup4 (the number gives the year of the 

competition); KDD = ACM KDD Cup5 (the number gives the year of the competition); UCI-xxx = UCI Machine 
Learning Repository6 (with xxx being the name of the data set in the repository). 

** P(+1) denotes the prior probability of response (e.g., the fraction of customers who accept an offer).  

4.2 Benchmark models 

Alternative targeting models represent a natural benchmark to the proposed PCES approach. We 

consider i) the well-known logit model, due to its popularity in marketing (e.g., Cui et al., 2006), ii) 

random forest, due to its success in previous benchmarking studies (e.g., Lessmann et al., 2015; Verbeke 

et al., 2012), and iii) a best base model (BBM) benchmark, which is given by the strongest individual 

targeting model from the model library. A common denominator among these benchmarks is that they 

account for the problem context during model selection. For each marketing data set, we select among 

the 20 / 35 / 877 candidate logit / random forest / base models (see Table 1) the one giving maximal 

                                                      
4 http://www.data-mining-cup.com 
5 http://www.sigkdd.org/kddcup/index.php 
6 http://archive.ics.uci.edu/ml/ 
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campaign profit (1). Prior work finds a selection of prediction models using business performance 

measures to substantially improve decision quality (e.g., Glady et al., 2009; Verbeke et al., 2012; 

Verbraken et al., 2014). Therefore, we expect the benchmarks to be challenging. 

The ensemble selection approach of Caruana et al. (2006) contributes a fourth benchmark. Here, we 

call it profit-agnostic ensemble selection (PAES) and employ a statistical loss function (i.e., NNL) for 

base model selection. Therefore, PAES and PCES differ in their approach to select base models the the 

final ensemble in a profit-agnostic as opposed to a profit-conscious manner. This configuration allows 

us to attribute performance differences between PAES and PCES to the fact that the latter accounts for 

business performance during model development.  

The last benchmark draws inspiration from Bhattacharyya (1999). It optimizes the coefficients of a 

linear regression function, which discriminates between responsive and non-responsive customers, 

using a genetic algorithm (GA). We use (1) as fitness function implying that the GA maximizes 

campaign profit. Focusing exclusively on business goals during model development, GA is a useful 

benchmark to support the design of PCES as an integrated modeling framework that balances statistical 

and economic considerations. To implement the GA benchmark, we reuse the settings of Bhattacharyya 

(1999) and set the population size,  crossover rate, and mutation rate to 50, 0.7, 0.2, respectively.  

4.3 Configuration of ensemble selection  

Caruana et al. (2006) propose some modifications of basic ensemble selection. One extension 

consists of an additional bagging step. More specifically, instead of selecting a single set of base models 

from the full model library, Caruana et al. (2006) subsample the library, select one ensemble from each 

subsample, and average over the resulting ensembles. The basic and bagged ensemble selection 

algorithms represent alternative strategies to develop a model. We consider both strategies and 

determine the superior approach for each data set by means of model selection. For bagged ensemble 

selection, we consider subsample sizes of 5, 10, and 20 percent of the model library and 5, 10, and 25 

bagging iterations. Importantly, PAES and PCES are treated in the same way to avoid bias. 
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5 Empirical Results 

The experimental design provides test set predictions from PCES and benchmark models across the 

marketing data sets. Many indicators are available to assess predictive accuracy. We suggest that a 

comparison in terms of business performance is most meaningful from a managerial point of view (e.g., 

Leitch & Tanner, 1991) and thus assess targeting models in terms of campaign profit (1).  

Recall that (1) is a function of campaign size, ߬. In the following, we consider ߬ a decision variable 

and let a targeting model find the profit maximal solution to (1) over l() and . This implies that the 

model determines which and how many customers to target and thus how much to spend on the 

campaign. Verbeke et al. (2012) recommend this approach and proof its effectiveness. We follow their 

advice but consider a different profit function to cover a larger scope of marketing applications.  

To cover a broad range of application scenarios, we consider multiple settings for the monetary 

campaign parameters offer cost (c) and return per accepted offer (r). More specifically, it is sufficient to 

vary r because the profit function (1) is invariant to a linear scaling. Rescaling (1) such that c=1 and 

r’=r/c does not change the profit maximal solution. We thus fix c at $1 and consider settings of r = $2, 

$3, $5, $10, $15, $25, $50, $75, and $100. These values capture a range of targeting applications. 

Smaller values represent settings where the ratio between offer cost and return per accept is moderately 

skewed. Such scenario might occur when companies contact customers through a call-center or when 

selling products by means of printed catalogs in the mail-order industry. Both channels involve 

considerable offer costs (e.g., to produce a premium catalog), which could explain moderate imbalance 

between r and c. High skewness between these parameters arises in online marketing where digital 

channels facilitate reaching customers at very low costs. Larger values of r capture such applications.  

Given that larger values of r give an incentive to increase campaign size, we constrain the optimization 

of (1) such that ߬ ൑ 0.5.  Given that marketing campaigns typically target a small fraction of responsive 

customers (e.g., Blattberg et al., 2008), contacting more than half of the customer base seems unrealistic.  

Table 3 reports the win-tie-loss statistics of PCES vs. benchmark models for the 11 (return to cost 

ratios) * 25 (data sets) = 275 comparisons. Consider, for example, the comparison of PCES versus BBM 

at r=$2. A value of 22 suggests that PCES achieves higher campaign profit than BBM on 22 out of 25 

data sets. BBM outperforms PCES on two data sets and both models tie on one data set. We also compare 
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the statistical significance of profit differences using the Friedman test (see bottom of Table 3). For the 

results of Table 3, a ߕଶ value of 823.5 indicates that we can reject the null hypothesis of equal 

performance (p-value <0.000). This allows us to proceed with a set of pairwise comparisons of PCES 

against one benchmark to detect significant differences among individual targeting models. To protect 

against an elevation of alpha values in multiple pairwise comparisons, we adjust p-values using Rom’s 

procedure (García et al., 2010). The last row of Table 3 reports the adjusted p-values. 

Table 3: Win-Tie-Loss Statistics of PCES Versus Benchmarks in the Flexible Budget Case  

  PCES vs. Logit PCES vs. RF PCES vs. BBM PCES vs. GA PCES vs. PAES 
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$2 24 1 0 21 2 2 22 1 2 25 0 0 19 3 3 

$3 24 0 1 21 1 3 22 1 2 25 0 0 22 0 3 

$4 25 0 0 24 0 1 21 1 3 25 0 0 20 0 5 

$5 25 0 0 23 1 1 23 1 1 24 1 0 20 0 5 

$10 24 0 1 24 0 1 22 0 3 24 0 1 18 0 7 

$15 24 0 1 23 0 2 18 0 7 24 0 1 12 0 13 

$20 24 0 1 23 0 2 22 0 3 24 0 1 17 0 8 

$25 24 0 1 24 0 1 23 0 2 23 0 2 16 1 8 

$50 23 0 2 23 0 2 22 0 3 24 0 1 16 0 9 

$75 23 0 2 21 1 3 21 0 4 24 0 1 13 0 12 

$100 23 0 2 19 1 5 20 0 5 23 1 1 11 1 13 

Total 263 1 11 246 6 23 236 4 35 265 2 8 184 5 86 

 96% 0% 4% 89% 2% 8% 86% 1% 13% 96% 1% 3% 67% 2% 31% 

p-value*  0.000 0.000 0.000 0.000 0.000 
 * The p-values correspond to pairwise comparisons of PCES and one benchmark, using Rom’s procedure to 

protect against an elevation of alpha values in multiple pairwise comparisons (García et al., 2010). Multiple 
pairwise comparisons are feasible since a ߕଶ value of 823.5 suggest that we can reject the null hypothesis of 
equal performance among models (Friedman test) with high confidence (p-value < 0.000). 

 
Table 3 reveals evidence that PCES produces significantly higher campaign profits than any of the 

benchmark models (p-values of pairwise comparisons consistently less than 0.000). Recall that the 

purpose of the logit, RF, and BBM benchmark is to reflect common marketing practices where a set of 

candidate models is developed and the strongest candidate (in terms of (1)) is selected. This is exactly 

the modeling paradigm advocated in previous studies (e.g., Glady et al., 2009; Verbeke et al., 2012; 

Verbraken et al., 2012). Accordingly, the results of Table 3 indicate that introducing the relevant notion 

of model performance during model development (as opposed to model selection) further increases 

performance. However, this interpretation requires further qualification since the superiority of PCES 

may also come from the ability of ensemble selection to create powerful prediction models. Indeed, the 
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PAES benchmark, an ordinary ensemble selection method, turns out to be the strongest benchmark. 

However, although benefitting from the same large base model library as PCES, a PAES-based customer 

targeting gives significantly less profit compared to using PCES. In particular, we find the latter to 

produces higher profits in 184 out of 275 comparisons (67 percent). Before examining the relative 

performance of alternative targeting models in more detail, we note that PCES also outperforms the GA 

benchmark (i.e., a direct profit maximization) with substantial margin. 

To obtain a clearer view on the degree to which PCES increases business performance, we calculate 

the profit implication resulting from using PCES or a benchmark model for campaign targeting. In 

particular, we consider a fictitious company with a customer base of N = 100,000 customers; and let the 

per-customer return from accepted offers, r, and offer costs to contact customers, c, be $10 and $1, 

respectively. Table 4 depicts the campaign profits emerging from a model-based targeting per marketing 

data set. Given that we consider campaign size a decision variable, we let every targeting model select 

its individually best setting . This way, Table 4 compares targeting models in terms of the maximal 

campaign profit they can produce for given r and c. Bold face highlights the best result per data set. The 

optimized campaign sizes corresponding to the results of Table 4 are available in Table 5. The last row 

of Table 4 summarizes the observed results in the form of an estimate of the expected profit increase of 

PCES over a benchmark. The estimation procedure comes from García et al. (2010) and is based on the 

median profit difference between PCES and a benchmark model across the data sets. Given the scope 

of the empirical study (e.g., 25 real-world data sets from different industries), we consider the resulting 

value a reliable estimate of the profit that a targeting model achieves on unseen data. 

Table 4: Comparison of Campaign Profit at Model-Optimized Campaign Sizes  

 Campaign profit [$] 
Data Logit RF BBM GA PAES PCES 

D1 1,660   1,596  1,764  1,532  1,874  1,846   

D2 61,612   75,816  75,989  62,953  75,725  76,001   

D3 -2   -83  88  -104  76  137   

D4 -2,992   -2,832  -2,832  -3,052  -2,852  26   

D5 -7,096   -6,766  -6,766  -7,096  -6,666  25   

D6 -1,017   -997  -977  -1,027  -997  159   

D7 35,578   39,598  39,778  35,098  40,408  40,618   

D8 2,966   2,926  3,270  2,756  3,404  3,121   

D9 699   469  862  509  999  1,139   

D10 442   876  839  590  901  984   
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D11 1,491   2,000  2,022  1,534  2,020  2,058   

D12 -8   17  -33  -310  84  428   

D13 14,700   18,270  18,270  15,110  18,390  18,810   

D14 34,421   34,755  35,067  34,385  35,107  35,185   

D15 21,642   21,842  22,012  21,353  21,982  21,073   

D16 572   6  572  208  527  726   

D17 9,121   9,283  9,690  9,568  10,690  10,087   

D18 64,096   101,186  105,824  63,438  105,649  106,418   

D19 85,123   119,158  122,949  91,387  123,881  123,804   

D20 10,424   10,614  10,564  9,954  10,654  10,884   

D21 12,877   14,534  14,632  12,708  14,498  14,725   

D22 210   323  325  242  305  357   

D23 29,044   29,544  30,154  28,454  30,074  30,004   

D24 -1   -2  14  1  13  27   

D25 47,440   53,210  53,210  50,380  53,770  53,660   

Estimated profit  657 407 233 756 178  

increase (in percent)* (22%) (14%) (7%) (27%) (5%)  

* The estimation is based on (García et al., 2010). We first use their contrast estimation approach to calculate 
the expected profit improvement of PCES over a benchmark, and then convert this contrast to a percentage 
through dividing by the benchmark’s median (across data sets) campaign profit.  

Table 4 reemphasizes that PCES typically produces higher profits than benchmark models. This is 

especially apparent when examining the performance contrast shown in the last row of Table 4.  Based 

on the observed results, we expect PCES to increase campaign profit by five percent compared to the 

most challenging benchmark and up to fourteen percent compared to random forest, a state-of-the-art 

classifier much credited for high accuracy (e.g., Lessmann et al., 2015; Verbeke et al., 2012). Profit 

increases of five percent above are managerially meaningful, especially for larger companies and run 

many campaigns (Neslin et al., 2006). It is also noteworthy that using the logit model for targeting, an 

approach still popular in industry, entails substantial opportunity costs. Compared to this benchmark, 

PCES produces higher campaign profits across all data sets and can be expected to increase profits by 

22 percent on average. With respect to a direct optimization of campaign profit during model 

development, which the GA benchmark embodies, Table 4 reveals that corresponding results are the 

weakest in the comparison. Last, PCES is the only approach that avoids losses. For some data sets (e.g., 

D4-D6) the optimization of  on validation data gives a poor result for the hold-out test data on which 

we calculate campaign profit. In particular, Table 5 reveals that all benchmarks select  equal to its upper 

bound of 0.5 on D4 - D6. This leads to large campaigns that result in a loss for the given setting of r:c 

= 10:1. PCES, on the other hand, benefits from its ability to adapt the ensemble forecast when optimizing 
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, because it employs (1) during model development. This allows PCES to recognize that the level of 

predictive accuracy vis-à-vis the return to cost ratio might not facilitate profitable targeting. Thus, PCES 

selectsclose to zero. Finally, Table 5 evidences a trend of PCES to recommend smaller campaigns. 

The median value  =16.66 for PCES is much less than the second-smallest value of  =25.47 for RF. 

Smaller campaigns are appealing since they require less resources and might be better targeted to 

customer interests. For example, despite recommending smaller campaigns, PCES produces higher 

profits than RF on all data sets, which signals higher predictive accuracy and, in turn, better targeting. 

Table 5: Model-Optimized Campaign Sizes  

 Model-optimized campaign sizes [%] 

Data Logit RF BBM GA PAES PCES 

D1 41.12 49.68 35.58 40.09 38.20 43.18 

D2 25.78 16.21 15.67 26.15 15.49 15.86 

D3 0.35 6.67 4.33 4.01 7.25 4.76 

D4 50.00 50.00 50.00 50.00 50.00 0.17 

D5 50.00 50.00 50.00 50.00 50.00 0.34 

D6 50.00 50.00 50.00 50.00 50.00 1.97 

D7 50.00 50.00 50.00 50.00 50.00 50.00 

D8 46.16 47.70 46.34 46.87 49.26 50.00 

D9 7.70 12.70 16.04 13.20 23.10 16.96 

D10 5.07 6.56 5.81 5.44 7.69 5.74 

D11 38.43 15.47 14.40 39.77 14.00 15.10 

D12 14.14 15.26 17.36 12.35 16.18 7.86 

D13 50.00 50.00 50.00 50.00 50.00 50.00 

D14 48.52 49.62 48.59 49.83 48.85 47.68 

D15 50.00 50.00 50.00 49.93 50.00 45.34 

D16 3.83 0.03 3.83 0.71 2.57 4.27 

D17 22.04 17.39 17.61 15.44 19.52 16.66 

D18 36.83 20.09 17.74 35.45 17.56 17.03 

D19 19.52 13.03 12.14 18.99 12.55 12.04 

D20 50.00 50.00 50.00 50.00 50.00 50.00 

D21 28.99 25.47 26.97 30.64 25.78 27.95 

D22 23.65 15.44 14.63 18.51 23.02 10.77 

D23 50.00 50.00 50.00 50.00 50.00 50.00 

D24 0.00 0.01 0.04 0.06 0.04 0.04 

D25 50.00 50.00 50.00 50.00 50.00 50.00 
Median 38.43 25.47 26.97 39.77 25.78 16.66 

 

The results of Table 4 and Table 5 stem from a campaign with specific setting of returns and offer 

costs. To confirm generalizability of results to other campaign settings, we next examine the magnitude 
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of PCES-induced profit improvements across the full range of campaign parameters r = $2, $3, $5, $10, 

$15, $25, $50, $75, and $100 (with c = $1). To that end, we rerun model development (for PCES and 

GA) and model selection (logit, RF, BBM, PAES) for all data sets and settings of r. We then use the 

same contrast estimation approach (see last row Table 4) to calculate percentage profit improvements 

of PCES over its benchmarks (García et al., 2010). Figure 2 depicts the corresponding results. Given 

that smaller settings of r lead to large improvements over weaker benchmarks, we split Figure 2 into 

two panels which show results for all settings of r and those above five, respectively. 

(a) (b) 
Figure 2: Expected percentage improvement in campaign profit due to using PCES for target group selection. We 

estimate profit contrasts in the same way as in Table 4. Panel a) shows all settings of r, whereas panel b) focuses 
on settings of r>5 for better readability.  

Figure 2 confirms that superior performance of PCES generalizes to other settings of campaign 

parameters. Above zero improvements demonstrate that PCES consistently produces higher profits than 

the benchmarks. GA is again the weakest benchmark in the comparison. Even in the scenario r:c=100:1, 

where high imbalance between marketing returns and costs renders the targeting task relatively easy, 

PCES increases campaign profits by more than five percent compared to GA. This confirms that direct 

maximization of campaign profits is not a suitable approach to develop targeting models. The other 

models ground on statistical learning. From Figure 2, we conclude that following corresponding 

principles is essential when developing a targeting model. However, the specific adaptation that we 

propose, namely to introduce campaign profits into model development, succeeds in improving the 

business performance of the resulting model.  Random forest, for example, recommends campaigns that 

are roughly 3 – 15% less profitable compared to PCES.  
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6 Discussion 

The empirical analysis evidences the effectiveness of the proposed approach toward model 

development. In addition, the study sheds some light on the divergence between the optimization of 

statistical loss functions and business objectives for prediction model development in targeting 

applications. The experimental design includes three philosophies toward model development: a direct 

maximization of business performance (GA), a model selection approach, which  introduces business 

objectives ex-post and develops models using statistical learning (Logit, RF, BBM and PAES), and 

PCES that shifts the consideration of the actual business objective to a previous modeling stage so as to 

gear model development toward the ultimate goal of the marketing campaign and achieve higher fit 

between the final model and the business task which it is meant to support.  

Observed results suggest the direct approach to be least effective. In fact, a simple logit model 

consistently outperforms GA. The logit and GA model both construct a linear classifier. Better 

performance of the former evidence that model development through minimizing a statistical loss 

function is preferable to a direct maximization of business performance. Well-known estimation 

problems such as overfitting (e.g., Hastie et al., 2009) are a likely cause of this result. Remedies to such 

problems are readily available in statistical learning. However, developing predictive decision support 

models through profit maximization, the direct approach is unable to capitalize on this knowledge.  

Considering the model selection approach, logistic regression, random forest, and BBM perform 

better than GA but inferior to PCES. Profit improvements over these benchmarks are often substantial. 

On average, PCES also recommends smaller campaigns, which indicates better targeting of PCES 

campaigns. Overall, these results indicate that incorporating business goals early in the modeling process 

has a sizeable positive effect on the quality of the prediction model and decision support, respectively. 

One might object that a targeting model that is tuned to maximize profits will naturally give higher 

profits than another model tuned to minimize NLL or some other loss function. Following this line of 

reasoning, one might question the fairness of the comparison in terms of campaign profit (1). However, 

it is important to recall that targeting is a prediction problem. We aim at predicting customer responses 

to marketing messages. In predictive modelling, it is crucial to develop a model on one set of (training) 

data and test it on a different, ‘fresh’ set of (test) data (e.g., Shmueli & Koppius, 2011). Given disjoint 
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data sets for model training and evaluation, it is wrong to assume that maximizing profit on the training 

set will naturally give higher profit on the test set. This is apparent from the poor results of the GA 

benchmark and, more importantly, statistical learning theory (e.g., Vapnik & Kotz, 2006). 

Consequently, the experimental design ensures a fair comparison. 

However, it is still interesting to examine the performance of PCES across different evaluation 

measures to shed lights on the antecedents of its success in the above comparison. In particular, 

maximizing campaign profit (1) over l() and , our evaluation criterion differs notably from typical 

accuracy indicators and statistical loss functions. We hypothesize that the advantage of PCES over 

benchmark models decreases when the ensemble selection criterion (i.e., business performance 

measure) is more similar to the loss functions that standard targeting models embody. To test this, the 

paper is accompanied by an e-companion, which provides results for additional performance measures; 

namely AUC and TDL (online Appendix II7) and campaign profit under a budget constraint (online 

Appendix III7). With respect to the similarity of these measures to standard indicators of predictive 

accuracy and statistical loss, we suggest an ordering of the form ܥܷܣ ≺ ܮܦܶ ≺ Ωሺ݈ሺ߬ሻ, ߬ ൌ .ݐݏ݊݋ܿ ሻ ≺

Ωሺ݈ሺ߬ሻ, ߬ሻ. AUC captures a classifier’s ranking performance. It is a standard accuracy indicator, which 

we consider relatively closest to standard loss functions like NLL (Bequé et al., 2017). TDL is related 

to AUC but focuses on ranking performance among of subset of customers (e.g., Neslin et al., 2006). 

Thus, we consider it more distinct from model-internal loss functions. The same logic applies to 

campaign profit under a budget constrain (Ωሺ݈ሺ߬ሻ, ߬ ൌ .ݐݏ݊݋ܿ ሻ), just that this measure, in addition, 

depends on cost and benefit parameters which introduce further differences. Last, the evaluation 

measure we consider above, campaign profit with flexible marketing budget, Ωሺ݈ሺ߬ሻ, ߬ሻ, includes the 

additional decision variable ߬ and is therefore most distinct from NLL or other standard loss functions.  

Below, we summarize results from the e-companion and illustrate how the relative performance 

advantage of PCES develops across different performance measures. In particular, Table 6 reports the 

estimated performance improvement over a benchmark model across AUC, TDL, and campaign profit 

with fixed and flexible budget, whereby we use the same approach toward performance contrast 

                                                      
7 Available online at https://bit.ly/pces_appendix. 
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estimation as in Table 4 (García et al., 2010). The e-companion provides a more detailed analysis of 

AUC, TDL performance in Appendix II8, and campaign profit with budget constraint in Appendix III8.  

Table 6: Comparison of PCES and Benchmarks Across Statistical and Monetary Performance Measures  

 AUC TDL ષሺ࢒ሺ࣎ሻ, ࣎ ൌ .࢚࢙࢔࢕ࢉ ሻ ષሺ࢒ሺ࣎ሻ, ࣎ሻ 
Logit 7.31% 25.79% 18.10% 22.00% 
RF 1.39% 3.58% 2.30% 14.00% 

BBM 0.28% 3.10% 1.00% 7.00% 
GA 6.23% 21.91% 15.60% 27.00% 

PAES 0.00% 0.14% 0.30% 5.00% 
     

We compute the relative performance improvements of PCES over benchmarks in the same way as in Table 4 
using the contrast estimation approach of García et al. (2010). 

Table 6 supports the view that PCES is most effective if an application specific (business) 

performance measure embodies a different notion of model performance than a model-internal loss 

function. Performance improvements are especially pronounced when assessing model performance in 

terms of campaign profit with flexible budget. On the other hand, improvements over the strongest 

competitor, PAES, vanish when using the AUC for performance evaluation, and are marginal for TDL 

and campaign profit under a budget constraint. The results for other benchmarks follow a similar trend, 

whereby PCES still provides a sizeable advantage in most cases. Overall, we take Table 6 as further 

evidence that incorporating profit consideration into model development is valuable. More specifically, 

the efficacy of PCES increases with decreasing similarity between a targeting model’s internal loss 

function and a relevant measure of business performance.   

7 Summary 

We set out to develop a modeling approach that integrates principles of statistical learning with 

business objectives in customer targeting. To achieve this, we propose PCES, which first estimates a set 

of statistical prediction models and then selects from this library a subset of models so as to maximize 

campaign profit. The results that we obtain from a comprehensive empirical study confirm the 

effectiveness of this approach. We observe PCES to predict customer responsiveness more accurately 

than benchmarks and show that the profit of a marketing campaign increases when using PCES for target 

                                                      
8 Available online at https://bit.ly/pces_appendix.  
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group selection. We also find this advantage over competitors to increase with decreasing correlation 

between a model-internal loss function and a relevant measure of business performance.  

7.1 Implications 

The results of our study have several implications. First, integrating business goals into the modeling 

process is interesting from a theoretical point of view. A large number of prediction methods have been 

developed in the literature. Well-grounded in the theory of statistical learning, such methods facilitate 

the development of empirical prediction models in diverse application settings. Generality, however, 

has a cost. General purpose methods disregard the characteristic properties of specific applications such 

as profit in campaign planning. On the other end, a common approach toward decision support in the 

literature involves the development of tailor-made models that fully reflect the requirements of a given 

application. However, tailor-made models also suffer limitations. In the case of predictive modeling, a 

possible shortcoming may be that they are less accurate, for example because they fail to automatically 

account for nonlinear patterns. We consider our results a stimulus to rethink approaches to develop 

prediction models. In particular, we call for the development of modeling methodologies that are both 

widely applicable and aware of characteristic application requirements. To some extent, the proposed 

PCES framework is such an approach. For example, to adapt PCES to a decision problem other than 

targeting, we can replace the campaign profit function (1), which guides ensemble member selection, 

with an objective function that captures the peculiarities of the novel business application.  

Second, from a managerial perspective, the key question is to what extent novel targeting models 

add to the bottom line. In this sense, an implication of our study is that it is feasible and effective to 

develop targeting models in a profit-conscious manner. Improvements of campaign profit of several 

percent, which we observe in many experimental settings, are managerially meaningful and indicate that 

PCES is a useful addition to campaign planners’ toolset. Its application seems especially rewarding in 

settings where companies contact a large number of customers, conduct many campaigns, and/or run 

campaigns with high frequency, all of which is common in digital marketing and e-commerce.  

A third implication of the study is related to the way in which targeting models are commonly 

employed in academia and industry. In particular, a model selection approach, which involves 

developing a set of candidate models and selecting one best model for deployment should be avoided. 
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Our study suggests that an appropriately chosen combination of (some of these) alternative models using 

ensemble selection is likely to increase predictive accuracy and, more generally, model performance. 

Furthermore, introducing an additional selection and combination step into the modeling process 

provides an excellent opportunity to account for business objectives during model development. 

Finally, a fourth implication is that the development of targeting models requires little human 

intervention. Typical modeling tasks include, for example, testing different variables, transformations 

of variables to increase their predictive value, and testing alternative prediction methods. Using an 

ensemble selection framework, campaign managers can easily automate these tasks. They only need to 

incorporate the candidate models that represent choice alternatives into the model library. The selection 

strategy will then pick the most beneficial model combination in a profit-conscious manner. This frees 

campaign planners from laborious, repetitive modeling tasks and unlocks valuable resources, which can 

be spend on tasks that truly require creativity and domain knowledge. In the case of predictive modeling, 

engineering informative features is a good example for such task. 

7.2 Future Research 

Clearly, the study exhibits limitations that open up avenues for further research. Most importantly, 

we do not account for heterogeneity among customer values. We examine a range of settings in which 

the return per accepted offer differ. However, the return is always the same across customers. Given that 

customer spending differs in many practical applications, it is important to examine customer-dependent 

returns in future research.  

Future research could also extend the proposed modeling framework. In particular, PCES is a black-

box approach that does not reveal how customer characteristics influence predictions. Such insight is 

important to understand which factors determine customers’ reactions toward marketing offers. 

Therefore, developing approaches that unlock the PCES black-box and clarify how variables influence 

predictions seems to be a fruitful avenue for future research. 
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