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Abstract

We consider the estimation and inference in a system of high-dimensional regression equations
allowing for temporal and cross-sectional dependency in covariates and error processes, covering
rather general forms of weak dependence. A sequence of large-scale regressions with LASSO is
applied to reduce the dimensionality, and an overall penalty level is carefully chosen by a block
multiplier bootstrap procedure to account for multiplicity of the equations and dependencies in the
data. Correspondingly, oracle properties with a jointly selected tuning parameter are derived. We
further provide high-quality de-biased simultaneous inference on the many target parameters of
the system. We provide bootstrap consistency results of the test procedure, which are based on a
general Bahadur representation for the Z-estimators with dependent data. Simulations demonstrate
good performance of the proposed inference procedure. Finally, we apply the method to quantify
spillover effects of textual sentiment indices in a financial market and to test the connectedness
among sectors.

JEL classification: C12, C22, C51, C53
Keywords: LASSO, time series, simultaneous inference, system of equations, Z-estimation, Bahadur
representation, martingale decomposition

1 Introduction

Many applications in economics, finance, and statistics are concerned with a system of ul-
tra high-dimensional objects that communicate within complex dependency channels. Given a
complex system involving many factors, one builds a network model by taking a large set of re-
gressions, i.e. regressing every factor in the system on a large subset of other factors. Examples
include analysis of financial systemic risk by quantile predictive graphical models with LASSO
(Least Absolute Shrinkage and Selection Operator) (Hautsch et al., 2015; Härdle et al., 2016;
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Belloni et al., 2016) and limit order book network modeling via the penalized vector autore-
gressive approach (Härdle et al., 2018). Another example is quantifying the spillover effects or
externalities for a social network, especially when the social interactions (or the interconnect-
edness) is not obvious (Manresa, 2013). In general, a step-by-step LASSO procedure is very
helpful for network formation. In pursuing a highly structural approach, one certainly favors a
simple set of regressions that allows multiple insights on the econometric structure. Therefore,
a sequence of regressions with LASSO is a natural path to take. Especially in cases of reduced
forms of simultaneous equation models and structural vector autoregressive (VAR) models, one
can attain valuable pre-information on the core structure by running a set of simple regressions
with LASSO shrinkage.

A first important question arising in this framework is how to decide on a unified level of
penalty. In this article we advocate an approach to selecting the overall level of the tuning pa-
rameter in a system of equations after performing a set of single step regressions with shrinkage.
A feasible (block) bootstrap procedure is developed and the consistency of parameter estimation
is studied. In addition, we provide a uniform near-oracle bound for the joint estimators. The
proposed technique is applicable to ultra-high dimensional systems of regression equations with
high-dimensional regressors.

A second crucial issue is to establish simultaneous inference on parameters. For example,
in a large-scale linear factor pricing model, it is of great interest to check the significance of the
intercepts of cross sectional regressions (connected with zero pricing errors), e.g. Pesaran and
Yamagata (2017). Our approach is an alternative testing solution compared to the Wald test
statistics proposed therein. To achieve the goal of simultaneous inference, we develop a uni-
form robust post-selection or post-regularization inference procedure for time series data. This
method is generated from a uniform Bahadur representation of a de-biased instrumental vari-
able estimators. In particular, we need to establish maximal inequalities for empirical processes
for a general Huber’s Z-estimation. Note that the commonly used technique for independent
data, such as the symmetrization technique, is not directly applicable in the dependent data
case.

Our contribution lies in three aspects. First, we select the penalty level by controlling
the aggregated errors in a system of high-dimensional sparse regressions, and we establish the
bounds on the estimated coefficients. Furthermore, we show the implication of the restricted
eigenvalue (RE) condition at a population level. Secondly, an easily implemented algorithm
for effective estimation and inference is proposed. In fact, the offered estimation scheme al-
lows us to make local and global inference on any set of parameters of interest. Thirdly, we
run numerical experiments to illustrate good performance of our joint penalty relative to the
single equation estimation, and we show the finite sample improvement of our multiplier block
bootstrap procedure on the parameter inference. Finally, an application of textual sentiment
spillover effects on the stock returns in a financial market is presented.

In the literature, the fundamental results on achieving near oracle rate for penalized `1-
norm estimators are developed by Bickel et al. (2009). There are many related articles on
deriving near-oracle bounds using the `1-norm penalization function for the i.i.d. case, such
as Belloni et al. (2011); Belloni and Chernozhukov (2013). There are also many extensions to
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LASSO estimation with dependent data. For example, Kock and Callot (2015) consider the
high-dimensional near-oracle inequalities in large vector autoregressive models. However, the
majority of the literature imposes a sub-Gaussian assumption on the error distribution; this
is rather restrictive and excludes heavy tail distributions. For dependent data, Wu and Wu
(2016) discuss the possibility of relaxing the sub-Gaussian assumption by generalizing Nagaev-
type inequalities allowing for only moment assumptions. For the case of LASSO the analysis
assumes the fixed design, which rules out the most important applications mentioned earlier in
the introduction.

Theoretically, the LASSO tuning parameter selection requires characterizing the asymptotic
distribution of the maximum of a high dimensional random vector. Chernozhukov et al. (2013a)
develop a Gaussian approximation for the maximum of a sum of high-dimensional random vec-
tors, which is in fact the basic tool for modern high-dimensional estimation. Here it is applied
to LASSO inference. Moreover, Chernozhukov et al. (2013b) deliver results for the case of β-
mixing processes. Although it is quite common to assume a mixing condition which is at base
a concept yielding asymptotic independence, it is not in general easy to verify the condition for
a particular process, and some simple linear processes can be excluded from the strong mixing
class, Andrews (1984). With an easily accessible dependency concept as in Wu (2005), Zhang
and Wu (2017) derive Gaussian approximation results for a wide class of stationary processes.
Note that the dependence measure is linked to martingale decompositions and is therefore read-
ily connected with a pool of results on tail probabilities, moment inequalities and central limit
theorems of martingale theory. Our results are built on the above-mentioned theoretical works
and we extend them substantially to fit into the estimation in a system of regression equations.
In particular, our LASSO estimation is with random design for dependent data; therefore, we
need to deal with the population implications of the Restricted Eigenvalue (RE) condition.
Moreover, we show the interaction between the tail assumption and the dimensionality of the
covariates in our theoretical results.

In the meantime, the issue of simultaneous inference is challenging and has motivated a
series of research articles. For the case of i.i.d. data, Belloni et al. (2011, 2014), Zhang and
Zhang (2014), Javanmard and Montanari (2014), Van de Geer et al. (2014), Neykov et al.
(2015), Chernozhukov et al. (2016), Zhu and Bradic (2017), among others, develop confidence
intervals of low-dimensional variables in high-dimensional models with various forms of de-
biased/orthogonalization methods. Still in the case of i.i.d. data, Belloni et al. (2015b) establish
a uniform post-selection inference for the target parameters defined via de-biased Huber’s Z-
estimators when the dimension of the parameters of interest is potentially larger than the sample
size, where they employed the multiplier bootstrap to the estimated residuals. Wild and residual
bootstrap-assisted approaches are also studied in Dezeure et al. (2017); Zhang and Cheng (2017)
for the case of mean regression. We pick up the line of the inference analysis of Belloni et al.
(2015b) and employ it in a temporal and cross-sectional dependence framework, thus making
it applicable to a rich class of high-dimensional time series. The core proof strategy is vastly
different, as it is well known that the technique for handling the suprema of empirical processes
indexed by functional classes with dependent data is not the same as in i.i.d. cases. For instance,
the key Bahadur representation in Belloni et al. (2015b) applies maximal inequalities derived
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in Chernozhukov et al. (2014) for i.i.d. random variables, while we derive the key concentration
inequalities based on a martingale approximation method.

The following notations are adopted throughout this paper. For a vector v = (v1, . . . , vp)>,
let |v|∞

def= max16j6p |vj | and |v|s
def= (

∑p
j=1 |vj |s)1/s, s > 1. For a random variable X, let

‖X‖q
def= (E |X|q)1/q, q > 0. For any function g : W → IR, En(g) def= n−1∑n

t=1{g(ωt)} and
Gn(g) def= n−1/2∑n

t=1[g(ωt) − E{g(ωt)}]. Given two sequences of positive numbers xn and yn,
write xn . yn if there exists constant C > 0 such that xn/yn 6 C.

The rest of the article is organized as follows. Section 2 shows the system model with a
few examples. Section 3 introduces the sparsity method for effective prediction and provides
an algorithm for the joint penalty level of LASSO via bootstrap. In Section 4 we propose
approaches to implementing individual and simultaneous inference on the coefficients. Main
theorems are listed in Section 5. In Section 6 and 7 we deliver the simulation studies and
an empirical application on textual sentiment spillover effects. The technical proofs and other
details are given in the supplementary materials.

2 The System Model

In this section, we present a general framework which covers many applications in econometrics
and statistics. Consider the system of regression equations (SRE):

Yj,t = X>j,tβ
0
j + εj,t, E εj,tXj,t = 0, j = 1, ..., J, t = 1, . . . , n,

where Xj,t = (Xjk,t)
Kj
k=1, Kj = dim(Xj,t) 6 K. We allow the dimension K of Xj,t and the

number of equations, J to be large, potentially larger than n, which interplays with the tail
assumptions on the error processes εj,t. Both spatial and temporal dependency are allowed and
we will obtain results on prediction and inference.

The SRE framework is a system of regression equations, which includes the following im-
portant special cases.

Example 1 (A Regression Model). Suppose that we are interested in estimating the pre-
dictive model for a response variable Ut:

Ut = X>t γ
0 + εt, E εtXt = 0,

and also predictive relations between covariates for a strict subset G:

Xk,t = X>−k,tδ
0
k + νk,t, E νk,tX−k,t = 0, k ∈ G ⊂ {1, . . .K},

where X−k,t = (X`,t)` 6=k ∈ IRK−1 and |G| is the cardinality of the set G. This is a special SRE
model with

(Y1,t, X1,t, ε1,t, β
0
1) = (Ut, Xt, εt, γ

0),

(Yj,t, Xj,t, εj,t, β
0
j ) = (X(j−1),t, X−(j−1),t, ν(j−1),t, δ

0
(j−1)), j = 2, . . . , J = (|G|+ 1).

It can be seen that we only put contemporaneous exogeneity conditions for Xt. It is worth
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mentioning that this SRE case is closely related to the semiparametric estimation framework
studied in Section 2.4 in Belloni et al. (2015b).

Modeling predictive relations between covariates is important for constructing joint confi-
dence intervals for the entire parameter vector (γ0

k)Kk=1 in the main regression equation. Indeed,
the construction relies on the semi-parametrically efficient point estimators obtained from the
empirical analog of the following moment equation:

E[(U0
k,t −Xk,tγ

0
k)νk,t] = 0, k ∈ G, (2.1)

where U0
k,t = Ut −X>−k,tγ0

−k is the response variable minus the part explained by the covariates
other than k. Note that the empirical analog would have all unknown nuisance parameters
replaced by the estimators.

Example 2 (Many Regression Models). Example 1 can be generalized to handle many
regression models of the following form:

Um,t = X>t γ
0
m + εm,t, E εm,tXt = 0, m = 1, . . . ,M,

and also predictive relations between covariates:

Xk,t = X>−k,tδ
0
k + νk,t, E νk,tX−k,t = 0, k ∈ G ⊂ {1, . . . ,K},

where G should be a strict subset of {1, . . . ,K} for the strict exogeneity assumption to hold.
This is again a special SRE with

(Yj,t, Xj,t, εj,t, β
0
j ) = (Uj,t, Xt, εj,t, γ

0
j ), j = 1, . . . ,M,

(Yj,t, Xj,t, εj,t, β
0
j ) = (X(j−M),t, X−(j−M),t, ν(j−M),t, δ

0
(j−M)), j = M + 1, . . . , J = M + |G|.

Here, the understanding of the predictive relations between covariates is important for con-
structing joint confidence intervals for the entire parameter vector {(γ0

mk)Kk=1}Mm=1. Indeed, the
construction relies on the efficient point estimators obtained from the empirical analog of the
following orthogonalized moment equation:

E[(U0
mk,t −Xk,tγ

0
mk)νk,t] = 0, k ∈ G, m = 1, . . . ,M, (2.2)

where U0
mk,t = Um,t − X>−k,tγ0

m(−k) is the response variable minus the part explained by the
covariates other than k.

Example 3 (Simultaneous Equation Systems (SES)). Suppose there are many regression
equations in the following form:

Um,t = U>−m,tδ
0
m +X>t γ

0
m + εm,t, m = 1, . . . ,M.

Move all the endogenous variables to the left-hand side and rewrite the model in the vector
form

DUt = ΓXt + εt,
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which is also called the structural form of the model. Suppose that D is invertible. Then the
corresponding reduced form is given by

Ut = BXt + νt, E νm,tXt = 0, m = 1, . . . ,M, (2.3)

with B = D−1Γ and νt = D−1εt. In this case the Yj,t’s and Xj,t’s in SRE have no overlapping
variables. A high-dimensional SES can be considered as a special case of SRE with

(Yj,t, Xj,t, εj,t, β
0
j ) = (Uj,t, Xt, νj,t,B>j·), j = 1, . . . ,M.

Example 4 (Large Vector Autoregression Models). In the case where the covariates
involve lagged variables of the response, SRE can be written as a large vector autoregression
model. For example, the VAR(p) model,

Ut =
p∑
`=1

B`Ut−` + εt, E εm,tUt−` = 0, m = 1, . . . ,M, (2.4)

where Ut = (U1,t, U2,t, . . . , UM,t)>, and εt is a M -dimensional white noise or innovation process;
see e.g. Chapter 2.1 in Lütkepohl (2005). It is a special SRE case again with

(Yj,t, Xj,t, εj,t, β
0
j ) = (Uj,t, (U>t−1, . . . , U

>
t−p)>, εj,t, (B1

j·, . . . ,B
p
j·)
>), j = 1, . . . ,M.

2.1 Practical Examples

Example 5 (Identification Test for Large Structural Vector Autoregression Models).
Denote Ut = (U1,t, U2,t, . . . , UM,t)>. A large structural VAR can be represented in the following
form (without loss of generality, consider only lag one):

AUt = BUt−1 + εt,

where A(invertible) and B are M ×M matrices. The structural shocks εt satisfy E(εt) = 0 and
Var(εt) = IM . The corresponding reduced form is given by

Ut = DUt−1 + νt, (2.5)

with D = A−1B and νt = A−1εt, where νt is denoted as the reduced form VAR shocks.
Suppose νt spans the space of εt. The crucial question is the identification of A. Typically,
the covariance matrix of the reduced form shock νt is estimated with M(M + 1)/2 restrictions,
which are smaller than the M2 restrictions needed to pin down εt. Adopting the identification
approach proposed by Stock and Watson (2012), we may use external instruments that are
correlated with the shock of interest and are uncorrelated with other shocks. Without loss of
generality, suppose the structural shock of interest is εj,t. Then we can define zj,t as an external
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instrument for the jth structural shock satisfying

E(εj,tzj,t) 6= 0,

E(εj′,tzj,t) = 0, for j′ 6= j.

Thus, we propose to regress zj,t on νt:

zj,t = ν>t δj + ej,t.

In practice, νt are replaced by the residuals obtained from a large VAR reduced form regres-
sion as in example 4. The estimator of δj is denoted as δ̂j . It can be obtained by LASSO
estimation, which give us a sparse estimator of the jth row of the matrix A−1 up to a scaling
factor. Repeating this step for any j, one may formulate estimators for each row and perform
simultaneous inference/hypothesis testing on the structural matrix A−1.

In summary, this is also a special case of SRE with

(Yj,t, Xj,t, εj,t, β
0
j ) = (Uj,t, U−j,t−1, νt,D>j·), j = 1, . . . ,M,

(Yj,t, Xj,t, εj,t, β
0
j ) = (z(j−M),t, νt, e(j−M),t, δ(j−M)), j = M + 1, . . . , 2M.

Example 6 (Cross-sectional Asset Pricing). Denote Yj,t as the excess return for asset j
and period t. Asset pricing models explain the cross sectional variation in expected returns
across assets; see e.g. Cochrane (2009). In particular, the variation of expected cross sectional
returns is explained by the exposure to K − 1 factors Xjk,t, k = 1, . . . ,K − 1. One commonly
used way to estimate an asset pricing model is to run a system of regression equations:

Yj,t = βj0 +
K−1∑
k=1

βjkXjk,t + εj,t, (2.6)

where Xjk,t’s are the factor returns (assumed to be excess returns of zero-cost portfolios).
The selection of factors is a critical issue and the SRE framework addresses this issue, in
particular when the number of factors K is large. See Feng et al. (2017) for a detailed model-
selection exercise on picking asset pricing factors. The factor premiums are E(Xjk,t) and the
pricing errors are βj0. Usually, asset pricing imposes the restriction that all βj0’s are zero. Our
simultaneous inference framework naturally serves the purpose of simultaneously testing the
zero pricing errors in a cross sectional regression setup. Namely, we are interested in testing
H0 : βj0 = 0,∀j = 1, . . . , J versus HA : ∃ j such that βj0 6= 0. Our test procedure in Section 4.2
can be directly applied to achieve this goal.

Example 7 (Network Formation and Spillover Effects). There is an emerging literature in
economics concerning quantifying spillover effects and network formation. One leading example
is as in Manresa (2013), which attempts to quantify social returns to research and development
(R&D). Here, Uj,t is taken to be the log output for firm j and time t. This output is loading
on Dj,t (capital stock for firm j and period t), and the aggregated spill-overs from the capital
stock of other firms

∑
i 6=j wijDi,t. The regression equation also controls for other covariates Xj,t
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(e.g., log labor, log capital etc.):

Uj,t = βjDj,t +
∑
i 6=j

ωijDi,t + γ>j Xj,t + εj,t, (2.7)

where ωij is referred to as the spillover effects of the R&D development of firm i on firm j. This
again is contained in the SRE with

(Yj,t, Xj,t, εj,t, β
0
j ) = (Uj,t, (Dj,t, D

>
−j,t, X

>
j,t)>, εj,t, (βj , ω>(−j)j , γ

>
j )>), j = 1, . . . , J.

Our simultaneous inference procedure (Section 4.2) can be applied to check the significance of
the spillover effects for any set of parameters of interest. As an analogy, the presented framework
displays a general class of network models, where Uj,t is taken to be the nodal response, and Di,t

are the nodal covariates. Global or local inference on the network parameters ωij is the subject
of research. Section 7 is devoted to inference on the spillover effects of a textual sentiment
index.

Comment 2.1. Suppose there is unobserved heterogeneity in Uj,t, e.g. Uj,t = αj+
∑
i 6=j wijDi,t

+εj,t, where wij characterizes the spillover of individual i on j, and αj is the individual fixed
effect. For this situation consider the demeaned version to eliminate the individual specific
effects and work with the new model: Ũj,t =

∑
i 6=j wijD̃i,t + ε̃j,t, where Ũj,t = Uj,t− 1

n

∑n
t=1 Uj,t,

D̃i,t = Di,t− 1
n

∑n
t=1Di,t, ε̃j,t = εj,t− 1

n

∑n
t=1 εj,t, under the condition that Uj,t has no feedback

effects on Di,t (for example, Di,t should not be the lagged variable of Uj,t).

3 Effective Prediction Using Sparsity Method

In this section, we show our model setup and the LASSO estimation algorithm, including the
joint penalty selection procedure.

3.1 Sparsity in SRE

The general SRE structure makes it possible to predict Yj,t using Xj,t effectively. Note that the
dimension of Xj,t is large, potentially larger than n. Without loss of generality we assume exact
sparsity of β0

j throughout the paper:

sj = |β0
j |0 6 s = O(n), j = 1, . . . J. (3.1)

It is now well understood that sparsity can be easily extended to approximate sparsity, in which
sorted absolute values of coefficients decrease faster to zero, with an additional bias term in the
bound.

For this situation one employs an `1-penalized estimator of β0
j of the form:

β̂j = arg min
β∈IRKj

1
n

n∑
t=1

(Yj,t −X>j,tβ)2 + λ

n

Kj∑
k=1
|βjk|Ψjk, (3.2)
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where λ is the joint "optimal" penalty level and Ψjk’s are penalty loadings, which are defined
below in (3.3).

A first aim is to obtain performance bounds with respect to the prediction norm:

|β̂j − β0
j |j,pr

def=
[ 1
n

n∑
t=1

{
X>j,t(β̂j − β0

j )
}2
]1/2

,

and the Euclidean norm:

|β̂j − β0
j |2

def=
{ K∑
k=1

(β̂jk − β0
jk)2}1/2

.

To achieve good performance bounds, we first consider "ideal" choices of the penalty level and
the penalty loadings. Let

Sjk = 1√
n

n∑
t=1

εj,tXjk,t,

where for a moment we assume to be able to observe εj,t = Yj,t−X>j,tβ0
j . In practice one obtains

an approximation by stepwise LASSO. Set

Ψjk
def=
√

Var(Sjk), (3.3)

λ0(1− α) def= (1− α)− quantile of 2c
√
n max

16j6J,16k6K
|Sjk/Ψjk|, (3.4)

where c > 1, e.g., c = 1.1, and 1− α is a confidence level, e.g. α = 0.01.
Theoretically, we can characterize the rate of λ0(1 − α) by the tail probability of Sjk. To

calculate λ0(1− α) from data, we can also use a Gaussian approximation based on:

Q(1− α) def= (1− α)− quantile of max
16j6J,16k6K

|Zjk/Ψjk|,

where {Zjk} are multivariate Gaussian centered random variables with the same covariance as
{Sjk}. Alternatively, we can employ a multiplier bootstrap procedure to estimate IC empirically
to achieve a better finite sample performance; see for example Chernozhukov et al. (2013a). In
case of dependent observations over time, it is understood that data cannot be resampled directly
as in the the i.i.d. case, as the dependency structure of the underlying processes will be lost. A
usual solution to this problem is to consider a block bootstrap procedure, where the data are
grouped into blocks, resampled and concatenated. In particular, we will adopt an estimate of
IC by a multiplier block bootstrap procedure.

3.2 Multiplier Bootstrap for the Joint Penalty Level

In this subsection, we introduce an algorithm to approximate the joint penalty level via a block
multiplier bootstrap procedure, which is particularly nonoverlapping block bootstrap (NBB).
Consider the system of equations with dependent data:

Yj,t = X>j,tβ
0
j + εj,t, E εj,tXj,t = 0, j = 1, ..., J, t = 1, . . . , n, (3.5)
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S1 Run the initial `1-penalized regression equation by equation, i.e. for the jth equation,

β̃j = arg min
β∈IRKj

1
n

n∑
t=1

(Yj,t −X>j,tβ)2 + λj
n

Kj∑
k=1
|βjk|Ψjk, (3.6)

where λj are the penalty levels and Ψjk are the penalty loadings. For instance, we
can take the X-independence choice using Gaussian approximation (in the heteroscedas-
ticity case): 2c′

√
nΦ−1{1 − α′/(2Kj)} for λj , where Φ(·) denotes the cdf of N(0, 1),

α′ = 0.1, c′ = 0.5, and choose
√

lvar(Xjk,tε̆j,t) for the penalty loadings, where ε̆j,t are
preliminary estimated errors and lvar(Xjk,tε̆j,t) is an estimate of the long-run variance∑∞
`=−∞ E(Xjk,tε̆j,tXjk,(t−`)ε̆j,(t−`)), e.g. the Newey-West estimator is given by

pn∑
`=−pn

k(`/pn) cov(Xjk,tε̆j,t, Xjk,(t−`)ε̆j,(t−`)),

with k(z) = (1−|z|)1(|z| 6 1). We note that the X-independent penalty (using Gaussian
approximation) is more conservative, as the correlations among regressors can be adapted
in the X-dependent case (using a multiplier bootstrap) with a less aggressive penalty level.

S2 Obtain the residuals for each equation by ε̃j,t = Yj,t − X>j,tβ̃j , and compute Ψjk =√
lvar(Xjk,tε̃j,t).

S3 Divide {ε̃j,t} into ln blocks containing the same number of observations bn, n = bnln,
where bn, ln ∈ Z. Then choose λ = 2c

√
nq

[B]
(1−α), where q

[B]
(1−α) is the (1 − α) quantile of

max
16j6J,16k6K

|Z [B]
jk /Ψjk|, and Z

[B]
jk are defined as

Z
[B]
jk = 1√

n

ln∑
i=1

ej,i

ibn∑
l=(i−1)bn+1

ε̃j,lXjk,l, (3.7)

ej,i are i.i.d. N(0, 1) random variables independent of the data.

Comment 3.1 (Block bootstrap procedures). (i) Concerning the determination of bn, we
shall report the fitting errors with several block sizes bn in the simulation study. If it is
the case that n cannot be divided by bn with no remainder, one can take ln = bn/bnc and
drop the remaining observations.

(ii) Other forms of multiplier bootstrap with any random multipliers centered around 0 can
also be considered.

(iii) Alternative block bootstrap procedures can be adopted, such as the circular bootstrap
and the stationary bootstrap among others; see for example Lahiri et al. (1999) for an
overview.
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4 Valid Inference on the Coefficients

With a reasonable fitting of LASSO on hand, we can proceed to investigate the issue of simul-
taneous inference. This section focuses on SRE of Example 2. We allow the covariates in each
equation to be different.

The basic idea to facilitate inference is to formulate the estimation in a semi-parametric
framework. With partialing out the effect of the nonparametric coefficient(s), we can achieve
the desired estimation accuracy of the parametric component of interest. This trick is referred
to as "Neyman orthogonalization". Notably, the procedure is equivalent to the well known de-
sparsification procedure in the mean square loss case, which is developed for the inference on the
estimated zero coefficients by LASSO. It thus serves the same purpose of generating a (robust)
de-sparsified estimation for LASSO inference.

We list three algorithms to estimate a subset of parameters β0
jk, for (j, k) ∈ G. Algorithm 1

is easy to implement and algorithm 2 is tailored to the cases of heavy-tailed distribution of the
error term, as Least Absolute Deviation (LAD) regression is well known to be robust against
outliers. Algorithm 3 considers a double selection procedure aimed at remedying the bias due
to omitted variables by one step selection, while also accounting for the cases of heteroscedastic
errors.

Algorithm 1: LS-based algorithm

S1 Consider Yj,t = Xjk,tβ
0
jk +X>j(−k),tβ

0
j(−k) + εj,t, run (post) LS LASSO procedure (for each

(j, k) ∈ G), and keep the quantity X>j(−k),tβ̂
[1]
j(−k).

S2 Run LASSO (for each (j, k) ∈ G) by regressing Xjk,t = X>j(−k),tγ
0
j(−k) + vjk,t, and keep

the residuals as v̂jk,t = Xjk,t −X>j(−k),tγ̂j(−k).

S3 Run LS IV regression of Yj,t−X>j(−k),tβ̂
[1]
j(−k) on Xjk,t using v̂jk,t as an instrument variable,

attaining the final estimator β̂[2]
jk .

Algorithm 2: LAD-based algorithm

S1 and S2 are the same as Algorithm 1.

S3′ Run LAD IV regression of Yj,t −X>j(−k),tβ̂
[1]
j(−k) on Xjk,t using v̂jk,t as an instrument vari-

able, attaining the final estimator β̂[2]
jk . We refer to Belloni et al. (2015b); Chernozhukov

and Hansen (2008) for more details about how to achieve the estimator in this step.

Comment 4.1. Our algorithms follow patterns discussed in Belloni et al. (2013, 2015a) in the
i.i.d. settings. The IV estimator obtained in S3 of Algorithm 1 reduced to the de-biased LASSO
estimator (Zhang and Zhang, 2014; Van de Geer et al., 2014) and is also first-order equivalent
to the double Lasso method in Belloni et al. (2011, 2014). In particular, the estimator under
LS IV regression (2-step least square regression) is given by

β̂
[2]
jk = (v̂>jk,tXjk)−1v̂>jk,t(Yj −X>j(−k)β̂

[1]
j(−k))

= (v̂>jk,tXjk)−1v̂>jk,tYj −
∑
m 6=k

v̂>jk,tXj,m

v̂>jk,tXjk
β̂

[1]
j,m. (4.1)

11



The second line in (4.1) is exactly the same as the de-biased or de-sparsified LASSO estimator
given in Eq. (5) in Zhang and Zhang (2014) or Eq. (5) in Van de Geer et al. (2014). As remarked
in Belloni et al. (2013, 2015a), one can alternatively implement an algorithm via double selection
as in Belloni et al. (2011, 2014). In particular, heteroscedastic LASSO is employed in S2′′ and
the IV regression is replaced by a either LASSO or LAD regression on the target variable and
all covariates selected in the first two steps.

Algorithm 3: Double selection-based algorithm

S1′′ Run LS LASSO (for each j) of Yj,t on Xj,t:

β̂
[1]
j = arg min

β

1
n

n∑
t=1

(Yj,t −X>j,tβ)2 + λ

n
|Ψ̂jβ|1.

S2′′ Run Heteroscedastic LASSO (for each (j, k) ∈ G) of Xjk,t on Xj(−k),t:

γ̂j(−k) = arg min
γ

1
n

n∑
t=1

(Xjk,t −X>j(−k),tγ)2 + λ′

n
|Γ̂jγ|1,

where penalty loadings Γ̂j can be initialized as
√

lvar{Xj`,t(Xjk,t − 1
n

∑n
t=1Xjk,t)} and

then refined by
√

lvar(Xj`,tv̂jk,t), for ` 6= k, and v̂jk,t = Xjk,t − X>j(−k),tγ̂j(−k) can be
obtained by using the initial ones.

S3′′ Run LS regression of Yj,t on Xjk,t and the covariates selected in S1′′ and S2′′:

β̂
[2]
j = arg min

β
{ 1
n

n∑
t=1

(Yj,t −X>j,tβ)2 : supp(β−k) ⊆ supp(β̂[1]
j(−k)) ∪ supp(γ̂j(−k))}.

S3′′′ Run LAD regression of Yj,t on Xjk,t and the covariates selected in S1′′ and S2′′:

β̂
[2]
j = arg min

β
{ 1
n

n∑
t=1
|Yj,t −X>j,tβ| : supp(β−k) ⊆ supp(β̂[1]

j(−k)) ∪ supp(γ̂j(−k))}.

As shown in Belloni et al. (2011) and Belloni et al. (2015a), the double selection approach in S3′′

or S3′′′ creates an orthogonality condition with respect to the space spanned by the covariates
selected by both steps, and thus generates an orthogonal relation to any space spanned by a
linear projection of the covariates, e.g. v̂jk,t. Therefore, the inference on the parameters may
still be applied as in the framework of Algorithm 1 and 2.

4.1 Confidence Interval for a Single Coefficient

We discuss an inference framework developed for a single coefficient obtained from the afore-
mentioned algorithms.

Let ψjk(Zj,t, βjk, hjk) denote the score function, where Zj,t = (Yj,t, X>j,t)>, hjk(Xj(−k),t) =
(X>j(−k),tβj(−k), X

>
j(−k),tγj(−k))>. Consider the LAD-based case with ψjk(Zj,t, βjk, hjk) = {1/2−

1(Yj,t 6 Xjk,tβjk + X>j(−k),tβj(−k))}vjk,t, define ωjk
def= E{( 1√

n

∑n
t=1 ψ

0
jk,t)2} =

∑n−1
`=−(n−1)(1 −

12



|`|
n ) cov(ψ0

jk,t, ψ
0
jk,(t−`)) with ψ0

jk,t
def= ψjk(Zj,t, β0

jk, h
0
jk), and φjk

def= ∂E{ψjk(Zj,t,β,h0
jk)}

∂β |β=β0
jk
.As

shown in Corollary 5.7 we have the limit distribution of β̂[2]
jk :

σ−1
jk n

1/2(β̂[2]
jk − β

0
jk)

L→ N(0, 1), (4.2)

where σjk = (φ−2
jk ωjk)1/2. Therefore, the two-sided 100(1−α) confidence interval by asymptotic

normality for β0
jk is given by

CIjk(α) : [β̂[2]
jk − σ̂jkn

−1/2Φ−1(1− α/2), β̂[2]
jk + σ̂jkn

−1/2Φ−1(1− α/2)]. (4.3)

Suppose we are interested in testing H0 : β0
jk = 0. For this purpose we employ the uniform

Bahadur representation (Theorem 5.8) to construct the confidence interval via a bootstrap
procedure. In particular, the distribution of the asymptotically pivotal statistics:

Tjk =
√
n(β̂[2]

jk − β0
jk)

σ̂jk
, (4.4)

is approximated via its block multiplier bootstrap counterpart:

T ∗jk = 1√
n

ln∑
i=1

ej,i

ibn∑
l=(i−1)bn+1

ζ̂jk,l, (4.5)

where ζjk,t = −φ−1
jk σ

−1
jk ψ

0
jk,t, ej,i are independently drawn from N(0, 1), ln and bn are the

numbers of blocks and block size, respectively.
Let σ̂jk be any consistent estimator of σjk. Then the confidence interval is given by

CI∗jk(α) : [β̂[2]
jk − σ̂jkn

−1/2q∗jk(1− α/2), β̂[2]
jk + σ̂jkn

−1/2q∗jk(1− α/2)], (4.6)

where q∗jk(1− α/2) is the (1− α/2) quantile of the bootstrapped distribution of |T ∗jk|.

Comment 4.2. Alternative bootstrap procedures may be considered as well, e.g. the residual
multiplier bootstrap procedure:

ε̂j,t = Yj,t −X>j,tβ̂
[1]
j ,

then divide {ε̂j,t} into ln blocks of size bn, where bnln = n, and for each block i = 1, . . . , ln,

ε∗j,t = (ε̂j,t −
1
n

n∑
t=1

ε̂j,t)ej,i, for t ∈ {(i− 1)bn + 1, . . . , ibn}.

Define Y ∗j,t = X>j,tβ̂
[1]
j + ε∗j,t and compute the bootstrap counterpart as

T ∗jk =
√
n(β̂∗jk − β̂

[1]
jk )

σ̂∗jk
,

where β̂∗jk and σ̂∗jk are estimated using the bootstrap sample {Y ∗j,t, Xj,t}.
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4.2 Joint Confidence Region for Simultaneous Inference

We now continue to extend the single coefficient inference to simultaneous inference on a set
of coefficients. As shown in the practical examples in Section 2.1, it is essential to conduct
simultaneous inference on a group of parameters G. In this case, the null hypothesis is: H0 :
βjk = 0, ∀(j, k) ∈ G, and the alternative HA : βjk 6= 0, for some (j, k) ∈ G, where the group
G is a set of coefficients with cardinality |G|. Suppose for the j-th equation there are pj target
coefficients and the cardinality |G| =

∑J
j pj . This can be understood as a multiple estimation

problem compared to Section 4.1. Without loss of generality, we can rearrange the order of
the variables and rewrite the regression equation for each j as (consider the LAD-based model
here)

Yj,t =
pj∑
l=1

Xjl,tβ
0
jl +

Kj∑
l=pj+1

Xjl,tβ
0
jl + εj,t, Fεj (0) = 1/2 (4.7)

One follows the algorithms to obtain β̂jl(1 6 l 6 pj) for each j. Then the idea of simul-
taneous inference is very straightforward. We aggregate the statistics Tjk in (4.4) by taking
the maximum and minimum over the set G. Finally, the component-wise confidence interval is
constructed with the quantiles of the bootstrap statistics over all bootstrap samples.

Denote q∗G(1 − α/2) as the (1 − α/2) quantile of max
(j,k)∈G

|T ∗jk|. A joint confidence region is

then:
{β ∈ IR|G| : max

(j,k)∈G
Tjk 6 q∗G(1− α/2) and min

(j,k)∈G
Tjk > −q∗G(1− α/2)}, (4.8)

and for each component (j, k) ∈ G, the confidence interval C̃I
∗
jk(α) is given by [β̂[2]

jk−σ̂jkn−1/2q∗G(1−
α/2), β̂[2]

jk + σ̂jkn
−1/2q∗G(1 − α/2)]. We show in Corollary 5.9 the consistency of this bootstrap

confidence band in simultaneous inference.

5 Main Theorems

In this section, we present the theoretical foundations for the procedures given earlier. In
particular, we discuss the properties of the theoretical choices of penalty level and the validity
of the other two empirical choices, as well as the theoretical support for the simultaneous
inference.

Throughout the whole section, we define Sjk
def= n−1/2∑n

t=1 εj,tXjk,t, Sj· = (Sjk)Kk=1, and
Ψjk

def=
√

Var(Sjk), which is the square root of the long-run variance of Xjk,tεj,t, namely
{
∑∞
`=−∞ E(Xj,k,tXjk,(t−`)εj,tεj,(t−`))}1/2. Recall that for a single equation LASSO, we select

the penalty in the following ways:

a) theoretically, for each regression, λj is λ0
j (1 − α) (IC), i.e. the (1 − α) quantile of

2c
√
n max

16k6K
|Sjk/Ψjk| (note that this penalty takes into account the correlation among

regressors and is design adaptive);

b) an empirical choice given a Gaussian approximation result is: Qj(1−α) def= 2c
√
nΦ−1{1−

α/(2Kj)};

14



c) another empirical choice of the penalty level is Λj(1 − α) as the (1 − α) quantile of
2c
√
n max

16k6K
|Z [B]
jk /Ψ̂jk| (Z

[B]
jk ’s are defined in (3.7)), and obtainable via the multiplier block

bootstrap technique.

5.1 Near Oracle Inequalities under IC

We first provide the oracle inequalities for the single equation LASSO estimation β̃j obtained
from (3.6) under the ideal choices (IC). For this purpose, a few assumptions and definitions are
required.

(A1) For j = 1, . . . , J, k = 1, . . . ,K, let Xjk,t and εj,t be stationary processes admitting the
following representation forms Xjk,t = gjk(Ft) = gjk(. . . , ξt−1, ξt) and εj,t = hj(Ft) =
hj(. . . , ηt−1, ηt), where ξt, ηt are i.i.d. random elements (innovations or shocks, allowing
for overlap, see Comment 5.1) across t, Ft = (. . . , ξt−1, ηt−1, ξt, ηt), gjk(·) and hj(·) are
measurable functions (filters). E(Xjk,tεj,t) = 0, for any j, k ∈ 1, · · · , J, 1, · · · ,K.

Definition 5.1. Let F∗t be Ft with ξ0 replaced by an i.i.d. copy of ξ∗0, and X∗jk,t = gjk(F∗t ).
For q > 1, define the functional dependence measure δq,j,k,t

def= ‖gjk(F∗t )− gjk(Ft)‖q = ‖Xjk,t −
X∗jk,t‖q, which measures the dependency of ξ0 on Xjk,t. Also define ∆m,q,j,k

def=
∑∞
t=m δq,j,k,t,

which measures the cumulative effect of ξ0 on Xjk,t>m. Moreover, we introduce the dependence
adjusted norm of Xjk,t as ‖Xjk,·‖q,ς

def= supm>0(m + 1)ς∆m,q,j,k(ς > 0). Similarly, we define
‖εj,·‖q,ς .

For more details on this functional dependency measure, see Wu (2005). It should be
noted that (A1) admits a wide class of processes. The largest value of ς which ensures a finite
dependence adjusted norm characterizes the dependency structure of the process. The moment-
based measure is directly connected with the impulse functions. A few examples for univariate
time series Zt are listed in Appendix B in the supplementary materials; for more examples
please refer to Wu (2011).

(A2) Restricted eigenvalue (RE): given c̄ > 1, for β ∈ IRKj , with probability 1− O(1),

κj(c̄)
def= min
|βTc

j
|16c̄|βTj |1, β 6=0

√
sj |β|j,pr
|βTj |1

> 0,

where Tj
def= {k : β0

jk 6= 0} and sj = |Tj | = O(n), βTjk = βk if k ∈ Tj , βTjk = 0 if k /∈ Tj .

(A3) ‖εj,·‖q,ς <∞ and ‖Xjk,·‖q,ς <∞ (q > 8).

Comment 5.1. We allow for overlap in the elements in ξt and ηt, as long as the contempora-
neous exogeneity condition E(Xjk,tεj,t) = 0 is satisfied. For example, consider the VAR(1)
model: Yt = AYt−1 + εt, with Yt, εt ∈ IRJ, and suppose that Yt admits the representa-
tion Yt =

∑∞
l=0A

lεt−l with εt−l as measurable functions of ξ−∞, . . . , ξt−l. Thus Xjk,t =
gjk(. . . , ξt−1) =

∑∞
l=0[Al]kεt−1−l, where [Al]k is the kth row of the matrix Al, k = 1, . . . , J .

In this case no serial correlation in the innovations εts would be sufficient for E(Xjk,tεj,t) = 0.
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Comment 5.2. We show in Theorem A.1 (see the supplementary materials) that the RE
(A2) and RSE (A6) conditions can be implied by assumptions on the corresponding population
variance-covariance matrix. This illustrates the feasibility of the RE/RSE assumption.

Lemma 5.1 (Prediction Performance Bound of Single Equation LASSO). Suppose (A1) and
(A2) (with c̄ = c+1

c−1 , c > 1), under the exact sparsity assumption (3.1) and given the event
λj > 2c

√
n max

16k6K
|Sjk/Ψjk| and another event which RE holds, then with probability 1−O(1), β̃j

obtained from (3.6) satisfy

|β̃j − β0
j |j,pr 6 (1 + 1/c)

λj
√
sj

nκj(c)
max

16k6K
Ψjk. (5.1)

In addition, if (A2) (with 2c̄) holds, then with probability 1− O(1),

|β̃j − β0
j |1 6

(1 + 2c̄)√sj
κj(2c̄)

|β̃j − β0
j |j,pr. (5.2)

Lemma 5.1 follows Theorem 1 of Belloni and Chernozhukov (2013). As the proof is built
on inequalities and for the case of dependent data (A1) it remains unchanged, we omit the
detailed proof here. To further characterize the rate of IC, we provide a tail probability for
2c
√
n max

16k6K
|Sjk/Ψjk| under the moment assumption (A3). In particular, the rate depends on

the dependence adjusted norm ‖Xjk,·εj,·‖q,ς .

Theorem 5.1. Under (A1) and (A3), we have

P(2c
√
n max

16k6K
|Sjk/Ψjk| > r) 6C1$nnr

−q
K∑
k=1

‖Xjk,·εj,·‖qq,ς
Ψq
jk

+ C2

K∑
k=1

exp
( −C3r

2Ψ2
jk

n‖Xjk,·εj,·‖22,ς

)
,

(5.3)

where for ς > 1/2− 1/q (weak dependence case), $n = 1; for ς < 1/2− 1/q (strong dependence
case), $n = nq/2−1−ςq. C1, C2, C3 are constants depending on q and ς.

Under the choice (IC) λ0
j (1 − α) is given by the (1 − α) quantile of 2c

√
n max

16k6K
|Sjk/Ψjk|,

combining the results of Lemma 5.1 and Theorem 5.1 we can get the bounds for λ0
j (1− α) and

further obtain the oracle inequalities as in Corollary 5.1.

Corollary 5.1 (Bounds for λ0
j (1 − α) and Oracle Inequalities under IC). Under (A1)-(A3),

given λ0
j (1− α) satisfying

λ0
j (1− α) . max

16k6K

{
‖Xjk,·εj,·‖2,ς

√
n log(K/α) ∨ ‖Xjk,·εj,·‖q,ς(n$nK/α)1/q

}
, (5.4)

and the exact sparsity assumption (3.1), then β̃j obtained from (3.6) under IC satisfies

|β̃j − β0
j |j,pr .

√
sj

κj(c̄)
max

16k6K
Ψjk

{
‖Xjk,·εj,·‖2,ς

√
log(K/α)√

n
∨ ‖Xjk,·εj,·‖q,ςn1/q−1($nK/α)1/q

}
,

(5.5)
with probability 1 − α − O(1), where for ς > 1/2 − 1/q (weak dependence case), $n = 1; for
ς < 1/2− 1/q (strong dependence case), $n = nq/2−1−ςq.

16



Comment 5.3. The Nagaev type of inequality in (5.3) has two terms, namely an exponential
term and a polynomial term. It should be noted that if the polynomial term dominates, the
above bound does not allow for ultra high dimension of K. Basically, we only allow for a
polynomial rate K = O(nc̃), and the rate of K interplays with the dependence adjusted norm
‖Xjk,·εj,·‖qq,ς . In particular, to make sure that the estimators are consistent (i.e. the error
bounds tend to zero for sufficiently large n), for example, we need c̃ < q − 1 − υq/2, if there
exists q as the maximal number to guarantee ‖Xjk,·εj,·‖qq,ς = O(1) and 0 < υ < 1 such that
sj = O(nυ).

We now discuss the case of sub-Gaussian tail or sub-exponential tail, which is mostly assumed
in the literature.

Comment 5.4. Suppose a stronger exponential moment condition is satisfied,

‖Xjk,·εj,·‖ψν = sup
q>2

q−ν
∞∑
t=0

θq,j,t = sup
q>2

q−ν
∞∑
t=0
‖E(Xjk,tεj,t|F0)− E(Xjk,tεj,t|F−1)‖q <∞, (5.6)

where ‖Xjk,·εj,·‖ψν is interpreted as the dependence adjusted sub-exponential (ν = 1) or sub-
Gaussian (ν = 1/2) norm, and θq,j,t denotes the predictive dependence measure. In this case,
applying the exponential tail bounds as in Theorem 3 of Wu and Wu (2016), we arrive at the
following error bounds with probability 1− α− O(1),

|β̃j − β0
j |j,pr .

√
sj

κj(c̄)
max

16k6K
Ψjk‖Xjk,·εj,·‖q,ς

{log(K/α)}1/2√
n

. (5.7)

This bound (5.7) works with ultra-high dimension rate exp(nα) (α < 1) of K as only the
exponential term shows in the inequality.

5.2 Gaussian Approximation for Dependent Data

Now we look at the validity of the choice of Qj(1−α), which relies on a Gaussian approximation
theorem. First we define the Kolmogorov distance between any two K-dim random vectors.

Definition 5.2. Let X = (X1, · · · , XK)> ∈ IRK, Y = (Y1, · · · , YK)> ∈ IRK. The Kolmogorov
distance between X and Y is defined as

ρ(X,Y ) = sup
r>0

∣∣P(|X|∞ > r)− P(|Y |∞ > r)
∣∣.

For each single equation j, aggregate the dependence adjusted norm over k = 1, . . . ,K:

‖|Xj,·|∞‖q,ς
def= sup

m>0
(m+ 1)ς

∞∑
t=m

δq,j,t, δq,j,t
def= ‖|Xj,t −X∗j,t|∞‖q, (5.8)

where q > 1 and ς > 0. Moreover, define the following quantities

Φj,q,ς
def= 2 max

16k6K
‖Xjk,·‖q,ς‖εj,·‖q,ς , Γj,q,ς

def= 2‖εj,·‖q,ς
( K∑
k=1
‖Xjk,·‖q/2q,ς

)2/q

Θj,q,ς
def= Γj,q,ς ∧

{
2‖|Xj,·|∞‖q,ς‖εj,·‖q,ς(logK)3/2}. (5.9)
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Some additional assumptions are required. Define L1,j = {Φj,4,ςΦj,4,0(logK)2}1/ς , W1,j =
(Φ6

j,6,0+Φ4
j,8,0){log(Kn)}7,W2,j = Φ2

j,4,ς{log(Kn)}4,W3 = [n−ς{log(Kn)}3/2Θj,2q,ς ]1/(1/2−ς−1/q),
N1,j = (n/ logK)q/2Θq

j,2q,ς , N2,j = n(logK)−2Φ−2
j,4,ς , N1,j = {n1/2(logK)−1/2Θ−1

j,2q,ς}1/(1/2−ς).

(A4) i) (weak dependency case) Given Θj,2q,ς < ∞ with q > 4 and ς > 1/2 − 1/q, then
Θj,2q,ςn

1/q−1/2{log(Kn)}3/2 → 0 and L1 max(W1,j ,W2,j) = O(1) min(N1,j , N2,j).
ii) (strong dependency case) Given 0 < ς < 1/2− 1/q, then Θj,2q,ς(logK)1/2 = O(nς) and
L1 max(W1,j ,W2,j ,W3,j) = O(1) min(N2,j , N3,j).

The assumptions impose mild restrictions on the dependency structure of covariates and
error terms. They include a wide class of potential correlation and heterogeneity (including
conditional heteroscedasticity), with possible allowance of the lagged dependent variables. Two
examples of large VAR and ARCH for high-dimensional time series can be found in Appendix
B in the supplementary materials.

Theorem 5.2 (Gaussian Approximation Results for Dependent Data). Under (A1) and (A3)-
(A4), for each j = 1, . . . , J assume that there exists a constant cj > 0 such that
min

16k6K
Var(Xjk,tεj,t) > cj, then we have

ρ
(
D−1
j Sj·, D

−1
j Zj

)
→ 0, as n→∞, (5.10)

where Zj ∼ N(0,Σj), Σj is the K ×K long-run variance-covariance matrix of Xj,tεj,t, and Dj

is a diagonal matrix with the square root of the diagonal elements of Σj, namely

{
∞∑

`=−∞
E(Xjk,tXjk,(t−`)εj,tεj,(t−`))}1/2 =

√
Var(Sjk), for k = 1, . . . ,K.

Theorem 5.2 justifies the choice of λj as Qj(1− α), which leads to the following corollary:

Corollary 5.2. Under the conditions of Theorem 5.2, for each j we have

sup
α∈(0,1)

∣∣P{ max
16k6K

2c
√
n|Sjk/Ψjk| 6 Qj(1− α)} − (1− α)

∣∣→ 0, as n→∞. (5.11)

It is worth noting that in practice the variance involved in the Gaussian approximation in 5.2
is not known; we shall discuss how we estimate the variance and also the validity of the Gaussian
approximation result with an estimated variance. Given the realization Xj,1εj,1, . . . , Xj,nεj,n,
we propose to estimate the K ×K long-run variance-covariance matrix Σj for j = 1, . . . , J as
follows, given EXj,tεj,t = 0, and consider:

Σ̂j = 1
bnln

ln∑
i=1

( ibn∑
l=(i−1)bn+1

Xj,lεj,l
)( ibn∑
l=(i−1)bn+1

Xj,lεj,l
)>
. (5.12)

Moreover, the following corollary ensures that the Gaussian approximation results still hold if
we use the estimate in (5.12).
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Corollary 5.3. Let the conditions of Theorem 5.2 hold, and assume Φj,2q,ς < ∞ with q > 4,
bn = O(nη) for some 0 < η < 1. Let Fς = n, for ς > 1 − 2/q; Fς = lnb

q/2−ςq/2
n , for

1/2 − 2/q < ς < 1 − 2/q; Fς = l
q/4−ςq/2
n b

q/2−ςq/2
n , for ς < 1/2 − 2/q. Further assume

n−1(logK)3/2 max
{
n1/2b

1/2
n Φ2

j,2q,ς , n
1/2b

1/2
n
√

logKΦ2
j,8,ς , F

2/q
ς Γ2

j,2q,ς
}

= O(1). Then for each j

we have
ρ
(
D̂−1
j Sj·, D

−1
j Zj

)
→ 0, as n→∞, (5.13)

where D̂j = {diag(Σ̂j)}1/2.

5.3 Multiplier Block Bootstrap Procedure

In this subsection, we discuss how Λj(1 − α) is attainable via block bootstrap. The data over
t = 1, . . . , n are divided into ln blocks with the same number of observations bn, n = bnln

(without loss of generality), where bn, ln ∈ Z.
Recall that Λj(1 − α) = 2c

√
nq

[B]
j,(1−α), q

[B]
j,(1−α) is the (1 − α) quantile of max

16k6K
|Z [B]
jk /Ψjk|,

where Z [B]
jk are defined as

Z
[B]
jk = 1√

n

ln∑
i=1

ej,i

ibn∑
l=(i−1)bn+1

εj,lXjk,l, (5.14)

and ej,i are i.i.d. N(0, 1) random variables independent of X and ε.
In fact, the above construction relies on knowing the true residuals εj,t. In practice, one

needs to pre-estimate them using a conservative choice of penalty levels and loadings. The issue
of generated errors can be dealt with using a similar argument as in the proof of Corollary 5.3.

Theorem 5.3 (Validity of Multiplier Block Bootstrap Method). Under (A1) and (A3), and
assume Φj,2q,ς < ∞ with q > 4, bn = O(nη) for some 0 < η < 1 (the detailed rate is calculated
in (A.1) in the supplementary materials), then we have

sup
α∈(0,1)

∣∣P ( max
16k6K

|Sjk/Ψjk| 6 q
[B]
j,(1−α)

)
− (1− α)

∣∣→ 0, as n→∞. (5.15)

5.4 Joint Penalty over Equations

In this section we provide results for joint equation estimation. The dimension along k =
1, . . . ,K and j = 1, . . . , J will be considered together by vectorization, resulting in the dimension
KJ . Following the results for the single equation (where j is fixed), we generalize the theorems
above to multiple equations case by changing the dimension from K to KJ .

Recall that the theoretical choice λ0(1− α) is defined as the (1− α) quantile of
max

16k6K,16j6J
2c
√
n|Sjk/Ψjk|. First, we provide the analogue results of Theorem 5.1 and Corollary

5.1.
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Theorem 5.4. Under (A1) and (A3), we have

P(2c
√
n max

16k6K,16j6J
|Sjk/Ψjk| > r) 6C1$nnr

−q
J∑
j=1

K∑
k=1

‖Xjk,·εj,·‖qq,ς
Ψq
jk

+ C2

J∑
j=1

K∑
k=1

exp
( −C3r

2Ψ2
jk

n‖Xjk,·εj,·‖22,ς

)
, (5.16)

where for ς > 1/2− 1/q (weak dependence case), $n = 1; for ς < 1/2− 1/q (strong dependence
case), $n = nq/2−1−ςq. C1, C2, C3 are constants depending on q and ς.

Corollary 5.4 (Bound for λ0(1−α) and Oracle Inequalities under IC). Under (A1) and (A3),
given λ0(1− α) satisfies

λ0(1− α) . max
16k6K,16j6J

{
‖Xjk,·εj,·‖2,ς

√
n log(KJ/α) ∨ ‖Xjk,·εj,·‖q,ς(n$nKJ/α)1/q

}
, (5.17)

additionally assume that the RE condition (A2) holds uniformly over equations j = 1, . . . , J
with probability 1− O(1), and under the exact sparsity assumption (3.1), then β̂j obtained from
(3.2) under IC satisfy

|β̂j − β0
j |j,pr . C

√
s max

16k6K
Ψjk max

16j6J

{
‖Xjk,·εj,·‖2,ς

√
log(KJ/α)
√
n

∨ ‖Xjk,·εj,·‖q,ςn1/q−1($nKJ/α)1/q
}
, (5.18)

with probability 1 − α − O(1), where for ς > 1/2 − 1/q (weak dependence case), $n = 1; for
ς < 1/2 − 1/q (strong dependence case), $n = nq/2−1−ςq, and the constant C depends on the
RE constants.

The other empirical choices of the joint penalty level can be:

a) Q(1− α) def= 2c
√
nΦ−1{1− α/(2KJ)};

b) Λ(1− α) def= 2c
√
nq

[B]
(1−α), where q

[B]
(1−α) is the (1− α) quantile of max

16k6K,16j6J
|Z [B]
jk /Ψjk|.

For a) again we need the Gaussian approximation results for the vectorized process S̃ def=
vec[{(Sjk)Kk=1}Jj=1] = 1√

n

∑n
t=1 X̃t, where X̃t

def= vec[{(Xjk,tεj,t)Kk=1}Jj=1] similar to Theorem 5.2
and Corollary 5.2 to justify the choice of λ as Q(1− α).

Let Xt
def= vec[{(Xjk,t)Kk=1}Jj=1]. We first aggregate the dependence adjusted norm over

j = 1, . . . , J and k = 1, . . . ,K:

‖|X·|∞‖q,ς
def= sup

m>0
(m+ 1)ς

∞∑
t=m

δq,t, δq,t
def= ‖|Xt −X ∗t |∞‖q, (5.19)

where q > 1, and ς > 0. Moreover, define the following quantities

Φq,ς
def= 2 max

16k6K,16j6J
‖Xjk,·‖q,ς‖εj,·‖q,ς , Γq,ς

def= 2
( J∑
j=1
‖εj,·‖q/2q,ς

)2/q( K∑
k=1

J∑
j=1
‖Xjk,·‖q/2q,ς

)2/q

Θq,ς
def= Γq,ς ∧

{
‖|X·|∞‖q,ς‖εj,·‖q,ς(logKJ)3/2}. (5.20)
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Let L1 = [Φ4,ςΦ4,0{log(KJ)}2]1/ς , W1 = (Φ6
6,0 + Φ4

8,0){log(KJn)}7, W2 = Φ2
4,ς{log(KJn)}4,

W3 = [n−ς{log(KJn)}3/2Θj,2q,ς ]1/(1/2−ς−1/q), N1 = {n/ log(KJ)}q/2Θq
2q,ς ,

N2 = n{log(KJ)}−2Φ−2
4,ς , N3 = [n1/2{log(KJ)}−1/2Θ−1

2q,ς ]1/(1/2−ς).

(A5) i) (weak dependency case) Given Θ2q,ς < ∞ with q > 4 and ς > 1/2 − 1/q, then
Θ2q,ςn

1/q−1/2{log(KJn)}3/2 → 0 and L1 max(W1,W2) = O(1) min(N1, N2).
ii) (strong dependency case) Given 0 < ς < 1/2 − 1/q, then Θ2q,ς{log(KJ)}1/2 = O(nς)
and L1 max(W1,W2,W3) = O(1) min(N2, N3).

Consider the case with Θ2q,ς = O((KJ)1/q) and Φ2q,ς = O(1) where ς > 1/2 − 1/q.
Then Θ2q,ςn

1/q−1/2{log(KJn)}3/2 → 0 becomes KJ{log(nKJ)}3q/2 = O(nq/2−1), which im-
plies L1 max(W1,W2) = O(1) min(N1, N2). This means that to make (A5) hold, the dimension
KJ has to satisfy the condition such that KJ{log(KJ)}3q/2 = O(nq/2−1).

Theorem 5.5. Under (A1), (A3) and (A5), for each k = 1, . . . ,K, j = 1, . . . , J assume that
there exists a constant c > 0 such that min

16k6K,16j6J
Var(Xjk,tεj,t) > c, then we have

ρ
(
D−1S̃, D−1Z̃

)
→ 0, as n→∞, (5.21)

where Z̃ ∼ N(0,ΣX̃ ), ΣX̃ is the JK × JK long-run variance-covariance matrix of X̃t, and D is
a diagonal matrix with the square root of the diagonal elements of ΣX̃ , namely

{
∞∑

`=−∞
E(Xjk,tXjk,(t−`)εj,tεj,(t−`))}1/2 =

√
Var(Sjk), for k = 1, . . . ,K, j = 1, . . . , J.

Corollary 5.5. Under the conditions of Theorem 5.5, we have

sup
α∈(0,1)

|P{ max
16k6K,16j6J

2c
√
n|Sjk/Ψjk| 6 Q(1− α)} − (1− α)| → 0, as n→∞. (5.22)

Corollary 5.6. Under the conditions of Theorem 5.5, and assume Φ2q,ς < ∞ with q > 4,
bn = O(nη) for some 0 < η < 1. Let Fς = n, for ς > 1− 2/q; Fς = lnb

q/2−ςq/2
n , for 1/2− 2/q <

ς < 1− 2/q; Fς = l
q/4−ςq/2
n b

q/2−ςq/2
n , for ς < 1/2− 2/q. Given

n−1{log(KJ)}3/2 max
{
n1/2b1/2n Φ2

2q,ς , n
1/2b1/2n

√
log(KJ)Φ2

8,ς , F
2/q
ς Γ2

2q,ς
}

= O(1),

then we have
ρ
(
D̂−1S̃, D−1Z̃

)
→ 0, as n→∞, (5.23)

where D̂ = {diag(Σ̂X̃ )}1/2, Σ̂X̃ = 1
bnln

∑ln
i=1

(∑ibn
l=(i−1)bn+1 X̃l

)(∑ibn
l=(i−1)bn+1 X̃l

)>.
Lastly, we need to show the validity of b). Let Z̃ [B] def= vec[{(Z [B]

jk )Kk=1}Jj=1] and Ψ̃ def=
vec[{(Ψjk)Kk=1}Jj=1]. Similarly to Theorem 5.3 we have the following results:

Theorem 5.6. Under (A1), (A3), and assume Φ2q,ς < ∞ with q > 4, bn = O(nη) for some
0 < η < 1 (the detailed rate is calculated in (A.2) in the supplementary materials), then

ρ̃n
def= sup

r∈IR
|P(|Z̃ [B]/Ψ̃|∞ 6 r|X·, ε·)− P(|Z̃/Ψ̃|∞ 6 r)| → 0, as n→∞, (5.24)
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and
sup

α∈(0,1)

∣∣P(|S̃/Ψ̃|∞ 6 q
[B]
(1−α)

)
− (1− α)

∣∣→ 0, as n→∞. (5.25)

5.5 Post-Model Selection Estimation

LASSO estimation is known to be biased especially for large coefficients. Therefore, a post-
selection step helps to reduce the bias by running an OLS as a second step on the selected
covariates in the first step. In particular, we consider the 2-step OLS post-LASSO estimator:

i) `1-penalized regression (LASSO selection)

β̆j = arg min
β∈IRKj

1
n

n∑
t=1

(Yj,t −X>j,tβ)2 + λ

n

Kj∑
k=1
|βjk|Ψjk, (5.26)

where λ is the joint penalty level obtained above.

ii) We run the post-selection regression (OLS estimation)

β̂
[P ]
j = arg min

β∈IRKj
{ 1
n

n∑
t=1

(Yj,t −X>j,tβ)2 : βk = 0, k /∈ T̂j}, (5.27)

where T̂j
def= supp(β̆j) = {k ∈ {1, . . . ,Kj} : β̆jk 6= 0}.

To provide the prediction performance bounds for the OLS post-LASSO estimators, we need
the following restricted sparse eigenvalue (RSE) condition:

(A6) Restricted sparse eigenvalue (RSE): given p < n, for β ∈ IRK, with probability 1− O(1),

κ̃j(p)2 def= min
|βTc

j
|06p,β 6=0

|β|2pr
|β|22

> 0, φj(p)
def= max
|βTc

j
|06p,β 6=0

|β|2pr
|β|22

> 0.

Here p denotes the restriction on the length of the active set of T cj . When Tj = ∅, (A6) is

reduced to the standard sparse eigenvalue condition. Moreover, let µj(p)
def=
√
φj(p)
κ̃j(p) , and denote

by p̂j
def= |T̂j \ Tj | the number of components outside Tj

def= supp(β0
j ) = {k ∈ {1, . . . ,Kj} : β0

jk 6=
0} selected by LASSO in the first step. The performance bounds for the OLS post-LASSO
estimator are shown in the following theorem:

Theorem 5.7 (Prediction Performance Bounds for OLS Post-LASSO). Given (A1) and (A3),
suppose (A2) (with c̄ = c+1

c−1 , c > 1) and (A6) (with p̂j = |T̂j \Tj |) hold uniformly over equations
with probability 1 − O(1), then under the exact sparsity assumption (3.1), for any τ > 0, there
is a constant Cτ independent of n, for all j = 1, . . . , J we have

|β̂[P ]
j − β

0
j |j,pr 6 Cτσj

√
p̂j log(KJ) + log(eµj(p̂j))

n

+ 1(Tj * T̂j)C
√
s max

16k6K
Ψjk max

16j6J

{
‖Xjk,·εj,·‖2,ς

√
log(KJ/α)√

n
∨ ‖Xjk,·εj,·‖q,ςn1/q−1($nKJ/α)1/q},

(5.28)
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with probability 1− α− τ − O(1), where for ς > 1/2− 1/q (weak dependence case), $n = 1; for
ς < 1/2− 1/q (strong dependence case), $n = nq/2−1−ςq. σj is the square root of the long-run
variance of εj,t, and the constant C depends on the RE constants.

The proof of Theorem 5.7 is a direct application of Theorem 5 of Belloni and Chernozhukov
(2013) by inserting the bound for λ0(1−α) (5.17) provided in Corollary 5.4, and thus is omitted.

5.6 Simultaneous Inference

This subsection develops theory corresponding to Section 4. A key Bahadur representation
which linearize the estimator for a proper application of the central limit theorem for inference
is provided.

Recall that for each j = 1, . . . , J , the following model is considered

Yj,t =
pj∑
k=1

Xjk,tβ
0
jk +

Kj∑
k=pj+1

Xjk,tβ
0
jk + εj,t, Fεj (0) = 1/2, (5.29)

Xjk,t = X>j(−k),tγ
0
j(−k) + vjk,t, E(vjk,t|Xj(−k),t) = 0, k = 1, . . . , pj . (5.30)

In this subsection, we show the validity of the joint confidence region for simultaneous inference
on H0 : β0

jk = 0,∀(j, k) ∈ G, with |G| =
∑J
j=1 pj . In particular, for j = 1, . . . , J , β0

jk (k =
1, . . . , pj) are the target parameters. Theoretically, we formulate the estimation as a general
Z-estimation problem, with the leading examples as the LAD/LS cases. Nevertheless, it can
also include a more general class of loss function.

For each (j, k) ∈ G, we define the score function as ψjk{Zj,t, βjk, hjk(Xj(−k),t)}, where
Zj,t

def= (Yj,t, X>j,t)> and the vector-valued function hjk(·) is a measurable map from IRK−1

to IRM (M is fixed). In particular, in our linear regression case we have hjk(Xj(−k),t) =
(X>j(−k),tβj(−k), X

>
j(−k),tγj(−k))>, and for the LAD regression ψjk{Zj,t, βjk, hjk(Xj(−k),t)} = {1/2−

1(Yj,t 6 Xjk,tβjk +X>j(−k),tβj(−k))}(Xjk,t −X>j(−k),tγj(−k)).
Assume that there exists s = sn > 1 such that |β0

j(−k)|0 6 s, |γ0
j(−k)|0 6 s, for each (j, k) ∈ G.

Moreover, we assume that the nuisance function h0
jk = (h0

jk,m)Mm=1 admits a sparse estimator
ĥjk = (ĥjk,m)Mm=1 of the form

ĥjk,m(Xj(−k),t) = X>j(−k),tθ̂jk,m, |θ̂jk,m|0 6 s, m = 1, . . . ,M,

where the sparsity level s is small compared to n (s� n).
The true parameter β0

jk is identified as a unique solution to the moment condition

E[ψjk{Zj,t, β0
jk, h

0
jk(Xj(−k),t)}] = 0. (5.31)

However, the object arg zero
βjk∈B̂jk

En |[ψjk{Zj,t, βjk, h0
jk(Xj(−k),t)}]| does not necessarily exist due

to the discontinuity of the function ψjk. The estimator β̂jk is obtained as a Z-estimator by
solving the sample analogue of (5.31)

E n[ψjk{Zj,t, β̂jk, ĥjk(Xj(−k),t)}] 6 inf
βjk∈B̂jk

|E n[ψjk{Zj,t, βjk, ĥjk(Xj(−k),t)}]|+ O(n−1/2g−1
n ),
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where gn
def= {log(e|G|)}1/2 and B̂jk is defined in (C2).

We now lay out the following conditions needed in this section, which are assumed to hold
uniformly over (j, k) ∈ G.

(C1) Orthogonality condition:

∂

∂h
E{ψjk(Zj,t, β0

jk, h)|Xj(−k),t}
∣∣
h=h0

jk
(Xj(−k),t)

= 0. (5.32)

(C2) The true parameter β0
jk satisfies (5.31). Let Bjk be a fixed and closed interval and B̂jk

be a possibly stochastic interval such that with probability 1− O(1), [β0
jk ± c1rn] ⊂ B̂jk ⊂

Bjk, where rn
def= n−1/2(log an)1/2 max

(j,k)∈G
‖ψ0

jk,·‖2,ς+n−1rς(log an)3/2∥∥ max
(j,k)∈G

|ψ0
jk,·|

∥∥
q,ς
, an

def=

max(JK, n, e), and ψ0
jk,t

def= ψjk{Zj,t, β0
jk, h

0
jk(Xj(−k),t)}. rς = n1/q for ς > 1/2− 1/q and

rς = n1/2−ς for ς < 1/2− 1/q.

(C3) Properties of the score function: the map (β, h) 7→ E{ψjk(Zj,t, β, h)|Xj(−k),t} is twice con-
tinuously differentiable, and for every ϑ ∈ {β, h1, . . . , hM},
E[supβ∈Bjk |∂ϑ E{ψjk(Zj,t, β, h)|Xj(−k),t}|2] 6 C1; moreover, there exist measurable func-
tions `1(·), `2(·), constants L1n, L2n > 1, ν > 0 and a cube
Tjk(Xj(−k),t) = ×Mm=1Tjk,m(Xj(−k),t) in IRM with center h0

jk(Xj(−k),t) such that for every
ϑ, ϑ′ ∈ {β, h1, . . . , hM} we have sup(β,h)∈Bjk×Tjk(Xj(−k),t) |∂ϑ∂ϑ′ E{ψjk(Zj,t, β, h)|Xj(−k),t}| 6
`1(Xj(−k),t), E{|`1(Xj(−k),t)|4} 6 L1n, and for every β, β′ ∈ Bjk, h, h′ ∈ Tjk(Xj(−k),t) we
have E[{ψjk(Zj,t, β, h) − ψjk(Zj,t, β′, h′)}2|Xj(−k),t] 6 `2(Xj(−k),t)(|β − β′|ν + |h − h′|ν2),
and E{|`2(Xj(−k),t)|4} 6 L2n.

(C4) Identifiability: 2|E[ψjk{Zj,t, β, h0
jk(Xj(−k),t)}]| > |φjk(β − β0

jk)| ∧ c1 holds for all β ∈ Bjk,
where φjk

def= ∂β E[ψjk{Zj,t, β0
jk, h

0
jk(Xj(−k),t)}] and |φjk| > c1.

(C5) Properties of the nuisance function: with probability 1 − O(1), ĥjk ∈ Hjk, where Hjk =
×Mm=1Hjk,m and each Hjk,m being the class of functions of the form h̃jk,m(Xj(−k),t) =
X>j(−k),tθjk,m, |θjk,m|0 6 s, h̃jk,m ∈ Tjk,m and E[{h̃jk,m(Xj(−k),t) − h0

jk,m(Xj(−k),t)}2] 6
C1n

−1s(log an) max
16k6K

(
‖Xjk,·εj,·‖2q,ς ∨ ‖Xjk,·vjk,·‖2q,ς

)
.

(C6) The class of functions Fjk = {z 7→ ψjk{z, β, h̃(xj(−k))} : β ∈ Bjk, h̃ ∈ Hjk ∪ {h0
jk}} (z

is a random vector taking values in a Borel subset of a Euclidean space which contains
the vectors xj(−k) as subvectors) is pointwise measurable and has measurable envelope
Fjk > sup

f∈Fjk
|f |, such that F = max

(j,k)∈G
Fjk satisfies E{F q(z)} <∞ for some q > 4.

(C7) Dimension growth rates: there exist sequences of constants ρn ↓ 0, δn ↓ 0 such that
ρ
ν/2
n (L2ns log an)1/2+n−1/2rς(s log an)2 = O(g−1

n ) and n−1/2(s log an)1/2+n−1rς(s log an)2 =
O(ρn).

(C8) The second-order moments of scores are bounded away from zero, i.e.,
ωjk = E([ 1√

n

∑n
t=1 ψjk{Zj,t, β0

jk, h
0
jk(Xj(−k),t)}]2) > c1.
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(C9) The density of error fεj (·) is continuously differentiable and both of fεj (·) and f ′εj (·) are
bounded from the above. Recall that Xt

def= vec[{(Xjk,t)Kk=1}Jj=1]. For q > 2, assume the
dependence adjusted norm ‖|X·|∞‖q,ς is finite. The following restrictions are assumed:

n−1/2(log an)1/2 max
(j,k)∈G

‖ψ0
jk,·‖2,ς + n−1rς(log an)3/2∥∥ max

(j,k)∈G
|ψ0
jk,·|

∥∥
q,ς

= O(1),∥∥ max
β∈Bjk, (j,k)∈G

|∂β E{ψjk(Zj,·, β, h0
jk)|F·−1, Xj(−k),·}|

∥∥
q,ς

= O{(s log an)1/2ρ−1
n },

max
β∈Bjk, (j,k)∈G

‖∂β E{ψjk(Zj,, β, h0
jk)|F·−1, Xj(−k),·}‖2,ς = O(ρν/2−1

n L
1/2
2n ),

·max
16k6K

(‖Xjk,·εj,·‖q,ς ∨ ‖Xjk,·vjk,·‖q,ς)‖|X·|∞‖2q,ς
∥∥ max
h∈Hjk, (j,k)∈G

|∂hm
E{ψjk(Zj,·, β0

jk, h)|F·−1, Xj(−k),·}|
∥∥

2q,ς

= O(n1/2s−1/2),

max
16k6K

(‖Xjk,·εj,·‖q,ς ∨ ‖Xjk,·vjk,·‖q,ς)‖|X·|∞‖4,ς max
h∈Hjk, (j,k)∈G

‖∂hm
E{ψjk(Zj,·, β0

jk, h)|F·−1, Xj(−k),·}‖4,ς

= O{ρν/2
n L

1/2
2n n

1/2s−1(log an)−1/2},

max
16k6K

(‖Xjk,·εj,·‖q,ς ∨ ‖Xjk,·vjk,·‖q,ς)‖∂hm
E{ψjk(Zj,·, β0

jk, h)|F·−1, Xj(−k),·}‖2,ς

= O{n1/2(s log an)−1/2ρn}.

In addition, assume the dependence adjusted sub-Gaussian norm ‖ψ0
jk,·‖ψ1/2 (defined in

(5.6)) is finite.

Conditions (C1)-(C4) and (C8) assume mild restrictions on the Z-estimation problems.
They include the LAD-based regression (used in Algorithm 2) with nonsmooth score function.
In (C5), we suppose that the nuisance parameters have estimators with good sparsity and
convergence rate properties. As discussed in previous sections, given the ideal choice of the
tuning parameter, the oracle inequalities provided in Corollary 5.1 and Comment 5.4 ensure
that our proposed algorithms can produce the estimator of the form |β̂[1]

j(−k) − β0
j(−k)|j,pr .√

s log(an)/nmax16k6K ‖Xjk,·εj,·‖q,ς (with probability 1−O(1)), under the exponential moment
condition in (C9). The moments of the envelopes are assumed to be bounded in (C6). As
indicated in Belloni et al. (2015b), it can be accommodated to a bound growing with n by
adjusting (C7). For the case with n−1/2rς(sn log an)2/3 = O(1), (C7) implies n−1s2(log an)3 =
O(1) if ν = 2, and n−1s3(log an)5 = O(1) if ν = 1. Moreover, different from the i.i.d. case,
(C9) imposes additional constraints on the rate of ρn regarding the dependence adjusted norm.
As for (C9), for the LAD regression case, since the sub-gradient of the score function ψjk{·} is
bounded, it is sufficient to impose the sub-Gaussian assumption on vjk,t.

Comment 5.5 (Discussion of the case with linear processes and LAD regression). The esti-
mation requires the dependence adjusted norm ‖∂hm E{ψjk(Zj,·, β0

jk, h)|F·−1, Xj(−k),·}‖q,ς and
‖∂β E{ψjk(Zj,·, β, h0

jk)|F·−1, Xj(−k),·}‖q,ς to be finite for q > 2. Suppose we have the linear
process Xjk,t =

∑∞
l=0 ajk,lξt−l and εj,t =

∑∞
l=0 bj,lηt−l, with i.i.d. innovations ξt and ηt, for all

j = 1, . . . , J, k = 1, . . . ,K. Thus X∗jk,t −Xjk,t = ajk,t(ξ∗0 − ξ0) and ε∗t − εt = bj,t(η∗0 − η0).
And for the linear regression model, where h(Xj(−k),t) = (X>j(−k),tβj(−k), X

>
j(−k),tγj(−k))>,

the conditional distribution Fεj,t|Ft−1,Xj(−k),t{(β−β
0
jk)Xjk,t+h1−h0

jk,1} = Fηt{(β−β0
jk)Xjk,t+

h1 − h0
jk,1 −

∑∞
l=1 bj,lηt−l}. Therefore, we have

∣∣Fε∗j,t|F∗t−1,Xj(−k),t{(β − β
0
jk)X∗jk,t + h1 − h0

jk,1} −
Fεj,t|Ft−1,Xj(−k),t{(β − β

0
jk)Xjk,t + h1 − h0

jk,1}
∣∣ . |(β − β0

jk)ajk,t(ξ∗0 − ξ0)| + |bj,t(η∗0 − η0)|, and
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similarly,
∣∣fε∗j,t|F∗t−1,Xj(−k),t{(β − β

0
jk)X∗jk,t + h1 − h0

jk,1}− fεj,t|Ft−1,Xj(−k),t{(β − β
0
jk)Xjk,t + h1 −

h0
jk,1}

∣∣ . |(β − β0
jk)ajk,t(ξ∗0 − ξ0)|+ |bj,t(η∗0 − η0)|.

Consider the LAD regression model, where ψjk{Zj,t, β, h} = {1/2 − 1(Yj,t 6 Xjk,tβ +
h1)}(Xjk,t−h2). It is not hard to see that

∣∣E[{ψjk(Z∗j,t, β, h)−ψjk(Zj,t, β, h)}|Ft−1, Xj(−k),t]
∣∣ .∣∣Fε∗j,t|F∗t−1,Xj(−k),t{(β − β

0
jk)X∗jk,t + h1 − h0

jk,1}−Fεj,t|Ft−1,Xj(−k),t{(β − β
0
jk)Xjk,t + h1 − h0

jk,1}
∣∣+

|X∗jk,t−Xjk,t| . |(β−β0
jk)ajk,t(ξ∗0−ξ0)|+|bj,t(η∗0−η0)|+|ajk,t(ξ∗0−ξ0)|. Assume

∑∞
t=0 |ajk,t| <∞,∑∞

t=0 |bj,t| < ∞. It follows that ‖E{ψjk(Zj,·, β, h)|F·−1, Xj(−k),·}‖q,ς < ∞. As we can see, the
dependence adjusted norm is explicitly linked to the dependency structure of the underlying
linear processes.

Moreover, the partial derivatives of E{ψjk(Zj,t, β, h)|Ft−1, Xj(−k),t} are given by: −E[fεj{(β−
β0
jk)Xjk,t + h1 − h0

jk,1}Xjk,t(Xjk,t − h2)|Ft−1, Xj(−k),t] (w.r.t. β), −E[fεj{(β − β0
jk)Xjk,t + h1 −

h0
jk,1}(Xjk,t−h2)|Ft−1, Xj(−k),t] (w.r.t. h1), −E[1/2−Fεj{(β−β0

jk)Xjk,t+h1−h0
jk,1}|Ft−1, Xj(−k),t]

(w.r.t. h2). Then the dependence adjusted norm for the partial derivatives of
E{ψjk(Zj,t, β, h)|Ft−1, Xj(−k),t} are finite and can be verified similarly.

Theorem 5.8 (Uniform Bahadur Representation). Under conditions (A1), (A3) and (C1)-
(C9), with probability 1− O(1), we have

max
(j,k)∈G

|n1/2σ−1
jk (β̂jk − β0

jk) + n−1/2σ−1
jk φ

−1
jk

n∑
t=1

ψ0
jk,t| = O(g−1

n ), as n→∞, (5.33)

where σ2
jk

def= φ−2
jk ωjk, ωjk

def= E( 1√
n

∑n
t=1 ψ

0
jk,t)2.

The results in Theorem 5.8 imply the asymptotic normality of the proposed estimator by
Algorithm 1 and 2 by applying central limit theorems and Gaussian Approximation.

Corollary 5.7. Under conditions (A1), (A3), (C8) and (C9), for any (j, k) ∈ G the estimators
obtained by Algorithm 1 and 2 satisfy

σ−1
jk n

1/2(β̂[2]
jk − β

0
jk)

L→ N(0, 1).

Theorem 5.9 (Uniform-Dimensional Central Limit Theorem). Under conditions (A1) and
(A3), assume that ‖ψ0

jk,·‖2,ς <∞, we have

σ−1
jk n

1/2(β̂jk − β0
jk)

L→ N(0, 1),

uniformly over (j, k) ∈ G.

Consider the vector ζ̃t
def= vec{(ζjk,t)(j,k)∈G}, ζjk,t

def= −σ−1
jk φ

−1
j,kψ

0
jk,t, and define the aggre-

gated dependence adjusted norm as follows:

‖ζ̃·‖q,ς
def= sup

m>0
(m+ 1)ς

∞∑
t=m
‖|ζ̃t − ζ̃∗t |∞‖q, (5.34)
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where q > 1, and ς > 0. Moreover, define the following quantities

Φζ
q,ς

def= max
(j,k)∈G

‖ζjk,·‖q,ς , Γζq,ς
def=
( ∑

(j,k)∈G
‖ζjk,·‖qq,ς

)1/q
,

Θζ
q,ς

def= Γζq,ς ∧
{
‖ζ̃·‖q,ς(log |G|)3/2}. (5.35)

Define Lζ1 = {Φ2,ςΦ2,0(log |G|)2}1/ς ,W ζ
1 = (Φ6

3,0+Φ4
4,0){log(|G|n)}7,W ζ

2 = Φ2
2,ς{log(|G|n)}4,

W ζ
3 = [n−ς{log(|G|n)}3/2Θj,q,ς ]1/(1/2−ς−1/q), N ζ

1 = (n/ log |G|)q/2Θq
q,ς , N

ζ
2 = n(log |G|)−2Φ−2

2,ς ,
N ζ

3 = {n1/2(log |G|)−1/2Θ−1
q,ς }1/(1/2−ς).

(A7) i) (weak dependency case) Given Θq,ς < ∞ with q > 2 and ς > 1/2 − 1/q, then
Θq,ςn

1/q−1/2{log(|G|n)}3/2 → 0 and L1 max(W ζ
1 ,W

ζ
2 ) = O(1) min(N ζ

1 , N
ζ
2 ).

ii) (strong dependency case) Given 0 < ς < 1/2 − 1/q, then Θq,ς(log |G|)1/2 = O(nς) and
L1 max(W ζ

1 ,W
ζ
2 ,W

ζ
3 ) = O(1) min(N ζ

2 , N
ζ
3 ).

Corollary 5.8 (Consistency of the Bootstrap Confidence Interval). Under (A7) and the same
conditions as in Theorem 5.8, for each (j, k) ∈ G assume that there exists a constant c > 0 such
that min

(j,k)∈G
Var(ζjk,t) > c, with probability 1− O(1), we have

sup
α∈(0,1)

|P(β0
jk ∈ C̃Ijk(α), ∀(j, k) ∈ G)− (1− α)| = O(1), as n→∞, (5.36)

where C̃Ijk(α) def=
[
β̂jk ± σ̂jkn−1/2q(1− α/2)

]
, and q(1 − α/2) is the (1 − α/2) quantile of the

max
(j,k)∈G

|Zjk|, where Zjk’s are the standard normal random variables and σ̂jk is a consistent

estimator of σjk.

Following Theorem 5.8, a joint confidence region and the corresponding confidence inter-
val for each component can be constructed via a block bootstrap method. In particular, the
bootstrap statistic are defined by 1√

n

∑ln
i=1 ei

∑ibn
l=(i−1)bn+1 ζ̂jk,l, where ei’s are independent and

identically distributed draws of standard normal random variables and are independent with
respect to the data sample (Zj,t)Jj=1.

Corollary 5.9 (Validity of Multiplier Bootstrap). Under the same conditions as in Theorem
5.8, assume Φζ

q,ς <∞ with q > 4, bn = O(nη) for some 0 < η < 1 (the detailed rate is specified
in (A.18)), we have

sup
α∈(0,1)

|P(β0
jk ∈ C̃I

∗
jk(α), ∀(j, k) ∈ G)− (1− α)| = O(1), as n→∞, (5.37)

where C̃I
∗
jk(α) def=

[
β̂jk ± σ̂jkn−1/2q∗(1− α/2)

]
, and q∗(1 − α/2) is the (1 − α/2) conditional

quantile of max
(j,k)∈G

1√
n
|
∑ln
i=1 ei

∑ibn
l=(i−1)bn+1 ζ̂jk,l|.

6 Simulation Study

In this section, we illustrate the performance of our proposed methodology under different
simulation scenarios. The first part concerns the performance of the jointly selected penalty
level over equations, and the second part discusses the simultaneous inference.
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6.1 Estimation with a Jointly Selected Penalty Level

Setting 1:
Consider the system of regression equations:

Yj,t = X>j,tβ
0
j + εj,t, , t = 1, . . . , n, j = 1, . . . , J, (6.1)

where Xj,t ∈ IRK. We generate Xj,t from N(0,Σ), where Σk1,k2 = ρ|k1−k2|, ρ = 0.5, εj,t
i.i.d.∼

N(0, 1). The coefficient vectors βj are assumed to be sparse. In particular, we divide the indices
{1, . . . ,K} evenly into blocks with fixed block size 5. β0

jk = 10 if k and j belong to the same
block and 0 otherwise.

We take n = 100, # of bootstrap replications = 1000. We set J,K = 50, 100 and 150.
The prediction norm |β̂j − β0

j |j,pr and the Euclidean norm |β̂j − β0
j |2 ratios are presented in

Table 6.1. The ratios measure the relative difference between the results using the penalty level
determined from the equation-by-equation case and from the joint equation case (λj and λ are
selected by the multiplier block bootstrap procedure introduced in Section 3). In particular, a
ratio smaller than 1 indicates a better performance of the jointly selected penalty level.

J = K = 50 J = K = 100 J = K = 150
Prediction norm

Mean 0.8915 0.8381 0.7869
Median 0.9141 0.8698 0.8404

Euclidean norm
Mean 0.8962 0.8478 0.7876
Median 0.8922 0.8513 0.8109

Table 6.1: Equation-by-equation to joint equation ratios of prediction norm and Euclidean norm
(mean or median over equations). Results are averaged over 1000 simulations.

It is evident from Table 6.1 that the proposed estimation procedure delivers much better
performance in terms of the two measures (more than 10%). In particular, the superiority tends
to be more evident with higher dimension of the covariates and more equations.

Setting 2:
Consider the Vector Autoregression (VAR) model of order 1:

Yt = Φ0Yt−1 + εt, t = 1, . . . , n, (6.2)

where Yt ∈ IRK. The matrix Φ0 is set to be a sparse matrix. In particular, it has a block diagonal
structure where the blocks are 5 × 5 matrices with the same parameter φ in all blocks. We
consider two cases where φ equals either 0.05 or 0.15 (in these two cases the largest eigenvalues
of Φ0 are 0.25 and 0.75, respectively). εt

i.i.d.∼ N(0, IK).
We take n = 100, # of bootstrap replications = 500, K = 50, 100 and 150 (in this case

J = K). We choose bn = 4, 10, 20, 25. The prediction norm |Φ̂j· − Φ0
j·|j,pr (where Φj· denotes

the jth row of Φ) and the Euclidean norm |Φ̂j· − Φ0
j·|2, j = 1, . . . ,K ratios (results with the

jointly estimated λ relative to using the single equation λj ’s, which are selected by the multiplier
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block bootstrap procedure in Section 3) are reported in Table 6.2.

φ = 0.05 φ = 0.15
K = 50 K = 100 K = 150 K = 50 K = 100 K = 150

Prediction norm

bn = 4 Mean 0.8813 0.8464 0.7584 1.0510 1.0381 1.0221
Median 0.9686 0.9605 0.9501 1.0458 1.0351 1.0231

bn = 10 Mean 0.8858 0.8404 0.7451 1.0812 1.0567 1.0353
Median 0.9706 0.9636 0.9487 1.0692 1.0506 1.0359

bn = 20 Mean 0.8915 0.8501 0.7471 1.1017 1.0645 1.0465
Median 0.9702 0.9636 0.9491 1.0874 1.0596 1.0455

bn = 25 Mean 0.8936 0.8491 0.7405 1.1040 1.0715 1.0412
Median 0.9725 0.9676 0.9486 1.0915 1.0625 1.0395

Euclidean norm

bn = 4 Mean 0.8362 0.7947 0.5663 0.9883 0.9630 0.9375
Median 1 1 1 1.0000 1 1

bn = 10 Mean 0.8411 0.7857 0.5595 0.9773 0.9506 0.9240
Median 1 1 1 1.0000 1 1

bn = 20 Mean 0.8485 0.7982 0.5721 0.9633 0.9396 0.9192
Median 1 1 1 0.9996 1 1

bn = 25 Mean 0.8540 0.7977 0.5315 0.9584 0.9376 0.9158
Median 1 1 1 0.9997 1 1

Table 6.2: Equation-by-equation λ̂j to the jointly estimated tuning parameter ratios measured
by prediction norm and Euclidean norm (mean or median over equations). Results are averaged
over 1000 simulations.

This shows that the coefficient estimation performance measured by both the Euclidean
norm and the prediction norm is in favor of the joint penalty level approach, especially in
a higher dimension case with weaker dependency. More specifically, if there exists stronger
dependency in the data, the coefficient estimation with larger block size gives lower errors (in
terms of the Euclidean norm).

6.2 Simultaneous Inference

In this subsection we consider the following regression model for the purpose of simultaneous
inference on the parameters within a system of equations

Yj,t = dj,tα
0
j +X>t β

0
j + εj,t, dj,t = X>t θ

0
j + vj,t, t = 1, . . . , n, j = 1, . . . , J, (6.3)

where α0
j = α0 for all j. Also, β0

j , θ
0
j ∈ IRK are assumed to be sparse. In particular, we divide

the indices 1, . . . ,K evenly into blocks with a fixed block size 5, β0
jk = 0.5/(k − bk5c × 5), θ0

jk =
0.25(k − bk5c × 5) if k and j belong to the same block and 0 otherwise.

Covariates Xt ∈ IRK are generated from a VAR(1) process, where the coefficient matrix has
a block diagonal structure (e.g., the blocks are 5 × 5 matrices with all entries in each block
equal to 0.1) and the innovations of the VAR process follow i.i.d.∼ N(0, IK). For each j, εj,t and
vj,t are independently drawn from the AR(1) process with the autocorrelation coefficient as 0.5
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and i.i.d. N(0, 1) innovations.
We consider the sample size n = 100. Our goal is to estimate and make inferences on the

target variables dj,t’s based on the procedure proposed in Section 4. We evaluate and compare
the power and size performance of the confidence intervals constructed by the asymptotic dis-
tribution theory (4.3), block bootstrap (4.6) and the simultaneous confidence regions via the
block bootstrap (4.8). The bootstrap statistics are computed based on 500 replications and we
take the block size bn = 25 because the numerical study conducted above suggests that larger
block size is more favorable in the presence of stronger dependency. To investigate the empirical
size and power performances, we generate a sequence of alternatives with either Hj

A : α0
j = a

(individual inference) or HA : α0
1 = · · · = α0

J = a (simultaneous inference), where a > 0 uni-
formly lies in [0, 1.5]. Note that the case of a = 0 gives the size performance under the null
hypothesis, while a > 0 illustrates the power results.

Figure 6.1 shows the empirical coverage probabilities, namely the average rejection rate of
Hj

0 : α0
j = 0 over j for individual inference and the rejection rate of H0 : α0

1 = · · · = α0
J = 0 for

simultaneous inference under different settings of J and K. In particular, the size performances
are reported in Table 6.3. The rejection rates are computed over 1000 simulation samples.

K = 100, J = 50 K = J = 100 K = 200, J = 100 K = J = 200
Ind. Asym. 0.000 0.001 0.000 0.000
Ind. Boot. 0.034 0.045 0.038 0.061
Simult. Boot. 0.010 0.010 0.000 0.000

Table 6.3: Size performances with different K,J ’s, where we take average over j for the indi-
vidual inference.
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Figure 6.1: Average rejection rate of Hj
0 : α0

j = 0 over j for the individual inference (solid
- asymptotics, dashed - bootstrap) and the rejection rate of H0 : α0

1 = · · · = α0
J = 0 for

simultaneous inference (dotted - bootstrap) under several true α0 values (given the significance
level = 0.05).

The results show that the size can be controlled under the significance level 0.05 and the
rejection rate converges to 100% as the true α0 values increase. In particular, for individual in-
ference our proposed individual bootstrap approach provides a much more powerful performance
compared to constructing the confidence intervals by asymptotic distributions. We observe that
the simultaneous inference is more conservative than the individual inference and the results
are robust with increasing dimensions.

7 Empirical Analysis: Textual Sentiment Spillover Effects

Financial markets are driven by information, and this is a well-known phenomenon among
investors. More frequent news and availability of sentiment data allows study of the impact of
firm-specific investor sentiment on market behavior such as stock returns, volatility and liquidity;
see Baker and Wurgler, 2006; Tetlock, 2007, among others. Moreover, powerful statistical
tools (e.g. LASSO-type estimators) are being used to model complex relationships among
individuals. For example, Audrino and Tetereva (2017) analyze the influence of news on US
and European companies by constructing a sparse predictive network via adaptive LASSO and
related testing procedures. In this section the developed technology is applied to study textual
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sentiment spillover effects across individual stocks. This is different from the "equation-by-
equation" analysis in Audrino and Tetereva (2017), since we build up a system of regression
equations and implement the estimation and the inference of the network jointly.

7.1 Data Source

The empirical study in this paper is carried out based on the financial news articles published
on the NASDAQ community platform from January 2, 2015 to December 29, 2015 (252 trading
days). The data were gathered via a self-written web scraper to automate the downloading
process. The dataset is available at the Research Data Centre (RDC), Humboldt-Universität zu
Berlin. Moreover, unsupervised learning approaches are employed to extract sentiment variables
from the articles. Two sentiment dictionaries: the BL option lexicon (Hu and Liu, 2004) and the
LM financial sentiment dictionary (Loughran and McDonald, 2011) were used in Zhang et al.
(2016). For each article i (published on day t), the average proportion of positive/negative
words using BL or LM lexica - PosBL

i,t , NegBL
i,t , PosLM

i,t , NegLM
i,t - are considered as the text

sentiment variables. Furthermore, the bullishness indicator for stock j on day t with the related
articles i = 1, . . . ,m (based on a particular lexicon) is constructed by following Antweiler and
Frank (2004)

Bj,t = log[{1 +m−1
m∑
i=1

1(Posi,t > Negi,t)}/{1 +m−1
m∑
i=1

1(Posi,t > Negi,t)}]. (7.1)

We refer to Zhang et al. (2016) for more details about the data gathering and processing pro-
cedure. 63 individual stocks which are S&P 500 component stocks from 9 Global Industrial
Classification Standard (GICS) sectors are considered. They are traded at NSDAQ Stock Ex-
change or NYSE. The list of the stock symbols and the corresponding company names can be
found in Table C.1 in Appendix C in the supplementary materials.

The daily log returns Rj,t and log volatilities log(σ2
j,t) for the stocks over the same time

span are taken as response variables. More precisely, the Garman and Klass (1980) range-based
measure to represent the volatility level is employed:

σ2
j,t = 0.511(uj,t − dj,t)2 − 0.019{rj,t(uj,t + dj,t)− 2uj,tdj,t} − 0.383r2

j,t, (7.2)

where uj,t = log(PHj,t) − log(POj,t), dj,t = log(PLj,t) − log(POj,t), rj,t = log(PCj,t) − log(POj,t), with
PHj,t, P

L
j,t,, POj,t, and PCj,t denote the highest, lowest, opening and closing prices, respectively.

In addition, the S&P 500 index returns and Chicago Board Options Exchange volatility index
(VIX) are included as the state variables. The financial time series data were originally obtained
from Datastream, and GICS sector information was found at Compustat.
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7.2 Model Setting and Results

We now construct a network model to detect the spillover effects from sentiment variables to
financial variables by

rj,t = cj +B>t βj + z>t γj + rj,t−1δj + εj,t,

log σ2
j,t = cj +B>t βj + z>t γj + log σ2

j,t−1δj + εj,t, (7.3)

where j = 1, . . . , J indicate the stock symbols, Bt = (B1,t, . . . , BJ,t)> and zt includes the state
variables.

It is of interest to make inferences on the parameters βj ∈ IRJ, j = 1, . . . J . Following
the framework introduced in Section 4, an estimation procedure with three steps needs to be
implemented.

S1 For each j, run LASSO on (7.3) and keep the estimator β̂[1]
j(−j), γ̂

[1]
j , δ̂[1]

j and ĉ[1]
j .

S2 For each j, run LASSO on Bj,t = (B>−j,t, z>t , rj,t−1)>θj + vj,t to model the dependence
among sentiment variables. In particular, we propose to take the joint penalty level ob-
tained via block multiplier bootstrap (discussed in Section 3.2) for this regression system.
Keep the residuals as v̂j,t = Bj,t − (B>−j,t, z>t , rj,t−1)>θ̂j .

S3 For each (j, k), run IV regression of rj,t − ĉ[1]
j − B>−j,tβ̂

[1]
j(−j) − z

>
t γ̂

[1]
j − rj,t−1δ̂

[1]
j on Bk,t

using v̂k,t as an instrument variable. Then we obtain the final estimator β̂[2]
jk .

If for stock j, the sentiment variable of firm k is selected into the active set after the
individual significance test i.e., the null hypothesis Hjk

0 : βjk = 0 is rejected under the block
multiplier bootstrap procedure, block size bn = 25, then we put a directional edge from k to
j. As a result, we achieve a 0 − 1 adjacency matrix describing the dependency network from
sentiment variable to financial variable. Note that the diagonal elements in the matrix show
the self-effect of stocks.

The graphical network for stock returns and volatility modelled by (7.3) based on BL and
LM lexica (from 01/02/15 to 12/29/15) is depicted in Figures 7.1-7.2.
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Figure 7.1: The dependency network among individual stocks from sentiment variables to re-
turn.
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Figure 7.2: The dependency network among individual stocks from sentiment variables to
volatility.

Figures 7.1-7.2 depict the dependency networks among individual stocks. Given that the
time series of returns and volatility are scaled and centered before implementing the estimation
procedure, we find even denser spillover effects in the volatility analysis. This indicates the
stock volatility is more sensitive to sentiment than returns. Moreover, the relationships between
sectors are also of interest. The simultaneous confidence region constructed via the bootstrap
approach introduced in Section 4.2 may help us to detect whether the sentiment information
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from one sector has joint influence on the returns of the stocks in another sector. In particular,
we look at the null hypothesis: HS1,S2

0 : βjk = 0, ∀j ∈ S1, k ∈ S2, where S1 and S2 represent
two groups of stocks that belong to two sectors, respectively. The conclusion that the sentiment
from sector S2 has a joint effect on the returns or volatility of sector S1 can be drawn if the
null hypothesis is rejected with the simultaneous confidence region (4.8) under the significance
level = 0.05.
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Figure 7.3: The dependency network among sectors from sentiment variables to financial vari-
ables.

Figure 7.3 describes the spillover effect network from sentiment to financial variables on the
sector levels. In particular, the connections from health care to utilities and from industrials
to consumer discretionary are found to be significant in the analysis of stock returns; while
if volatility is focused on then the spillover effects from the utilities sector to the information
technology sector and from the financial sector to the consumer staple sector are detected.
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APPENDIX A: Detailed Proofs

A.1 Proofs of Single Equation Estimation

Proof of Theorem 5.1. For each j = 1, . . . J , k = 1, . . . , K, applying Theorem 2 of Wu
and Wu (2016) gives

P(
√
n|Sjk| > x) 6

C ′1$nn‖Xjk,·εj,·‖qq,ς
xq

+ C ′2 exp
( −C3x

2

n‖Xjk,·εj,·‖2
2,ς

)
,

where for ς > 1/2 − 1/q, $n = 1; for ς < 1/2 − 1/q, $n = nq/2−1−ςq. C ′1, C
′
2, C3 are

three constants depending on q and ς. It follows that the conclusion holds if we set x =
(2c)−1Ψjkr.

Proof of Theorem 5.2. According to the Minkowski’s inequality and Hölder’s inequality,
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we have
∞∑
t=m
‖Xjk,tεj,t −X∗jk,tε∗j,t‖q 6

∞∑
t=m

{
‖Xjk,t(εj,t − ε∗j,t)‖q + ‖(Xjk,t −X∗jk,t)ε∗j,t‖q

}
6

∞∑
t=m

{
‖Xjk,t‖2q‖εj,t − ε∗j,t‖2q + ‖Xjk,t −X∗jk,t‖2q‖εj,t‖2q

}
.

Thus, it is easy to see that

‖Xjk,·εj,·‖q,ς 6 ‖Xjk,·‖2q,0‖εj,·‖2q,ς + ‖Xjk,·‖2q,ς‖εj,·‖2q,0 6 2‖Xjk,·‖2q,ς‖εj,·‖2q,ς .

Consequently, we have the following relationships:

max
16k6K

‖Xjk,·εj,·‖q,ς 6 2 max
16k6K

‖Xjk,·‖2q,ς‖εj,·‖2q,ς ,

(
K∑
k=1
‖Xjk,·εj,·‖qq,ς)1/q 6 2‖εj,·‖2q,ς(

K∑
k=1
‖Xjk,·‖q2q,ς)1/q,

‖Xj,·εj,·‖q,ς 6 2‖Xj,·‖2q,ς‖εj,·‖2q,ς .

Therefore, the conditions in Theorem 3.2 of Zhang and Wu (2017) can be verified for the K-
dimensional stationary process Xj,tεj,t. Finally, applying that theorem yields the Gaussian
approximation results.

Proof of Corollary 5.2. Given the Gaussian approximation results in Theorem 5.2, we
have P( max

16k6K
|Sjk/Ψjk| > r) 6

∑K
k=1 P(|Sjk/Ψjk| > r) ≈ 2K{1 − Φ(r)}. Consequently,

taking r = Φ−1{1− α/(2K)} leads to the desired conclusion.

Proof of Corollary 5.3. For w > 0, we have

ρ(D̂−1
j Sj·, D

−1
j Zj) = sup

r>0

∣∣∣P(|D̂−1
j Sj·|∞ > r)− P(|D−1

j Zj|∞ > r)
∣∣∣

6 ρ(D−1
j Sj·, D

−1
j Zj) + sup

r>0
P(||D−1

j Zj|∞ − r| 6 w) + P(|(D−1
j − D̂−1

j )Sj·|∞ > w)

. ρ(D−1
j Sj·, D

−1
j Zj) + w

√
logK + P(|(D−1

j − D̂−1
j )Sj·|∞ > w),

where the last line uses the arguments of Theorem 3 in Chernozhukov et al. (2015). Let
Vn,j

def= max
16k6K

|(Ψjk/Ψ̂jk)1/2 − 1| and Ln,j
def= max

16k6K
|Ψ2

jk − Ψ̂2
jk|. Then |(D−1

j − D̂−1
j )Sj·|∞ 6

2



Vn,j|D−1
j Sj·|∞. As min

16k6K
Ψ2
jk > cj, let w = xy, 0 < x < cj/2, y > 0, then

P(|(D−1
j − D̂−1

j )Sj·|∞ > w) 6 P(Vn,j > 2x/cj) + P(|D−1
j Sj·|∞ > cjy/2)

6 P(Ln,j > x) + ρ(D−1
j Sj·, D

−1
j Zj) + P(|D−1

j Zj|∞ > cjy/2).

It follows that

ρ(D̂−1
j Sj·, D

−1
j Zj) 6 ρ(D−1

j Sj·, D
−1
j Zj) + xy

√
logK + P(Ln,j > x) + P(|D−1

j Zj|∞ > cjy/2).

Applying Theorem 5.1 of Zhang and Wu (2017), for u > n1/2b1/2
n Φ2

j,2q,ς , we have

P(nLn,j > u) .
FςΓqj,2q,ς
uq/2

+K exp
(
− Cju

2

nbnΦ4
j,8,ς

)
,

where the constants Cj depend on η, q, and ς. Then we have P(Ln,j > x) → 0, as n → ∞,
if we set x =

√
logK
n

max
{
n1/2b1/2

n Φ2
j,2q,ς , n

1/2b1/2
n

√
logKΦ2

j,8,ς , F
2/q
ς Γ2

j,2q,ς

}
. Moreover, given

Theorem 5.2 and choosing y = C
√

logK (the constant C > 0 is sufficiently large) yields the
conclusion.

Proof of Theorem 5.3. Let Sjk,i = 1√
n

∑ibn
l=(i−1)bn+1Xj,k,lεj,l, we first need to prove that

ρn,j
def= sup

r∈IR

∣∣∣P{ max
16k6K

(Z [B]
jk /Ψjk) 6 r|Xj,·, εj,·

}
− P

{
max

16k6K
(Zjk/Ψjk) 6 r

}∣∣∣
= sup

r∈IR

∣∣∣P { max
16k6K

( ln∑
i=1

ej,iSjk,i/Ψjk

)
6 r|Xj,·, εj,·

}
− P

{
max

16k6K
(Zjk/Ψjk) 6 r

}∣∣∣→ 0, as n→∞.

According to Theorem 2 of Chernozhukov et al. (2015), ρn,j is bounded by Cδ1/3
j {1 ∨ a2

K ∨
log(1/δj)}1/3(logK)1/3, where

δj = max
16k1,k26K

∣∣∣∣∣
∑ln
i=1 Sjk1,iSjk2,i

Ψjk1Ψjk2

− ln E(Sjk1,iSjk2,i)
Ψjk1Ψjk2

∣∣∣∣∣
6

max
16k1,k26K

∣∣∣∑ln
i=1 Sjk1,iSjk2,i − ln E(Sjk1,iSjk2,i)

∣∣∣
min

16k1,k26K
Ψjk1Ψjk2

and aK = E( max
16k6K

Zjk/Ψjk) 6
√

2 logK.

The tail probability of δj is our object of analysis. Applying Theorem 5.1 of Zhang and
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Wu (2017), for x > n1/2b1/2
n Φ2

j,2q,ς , we have

P
(
nδj >

x

min
16k1,k26K

Ψj1k1Ψj2k2

)
.
KFςΓqj,2q,ς

xq/2
+K2 exp

(
− Cjx

2

nbnΦ4
j,8,ς

)
,

for all large n, where Fς = n, for ς > 1− 2/q; Fς = lnb
q/2−ςq/2
n , for 1/2− 2/q < ς < 1− 2/q;

Fς = lq/4−ςq/2n bq/2−ςq/2n , for ς < 1/2 − 2/q. The constants Cj depend on η, q, and ς. This
ensures that when x = max

{
n1/2b1/2

n Φ2
j,2q,ς , n

1/2b1/2
n (logK)1/2Φ2

j,8,ς , K
2/qF 2/q

ς Γ2
j,2q,ς

}
, the tail

probability tends to 0, as n→∞. It follows that ρn,j → 0 as n→∞, given x = O(n log2K),
which implies the following conditions on bn:

bn = O(n log4KΦ−4
j,2q,ς ∧ n log3KΦ−4

j,8,ς), Fς = O{nq/2(logK)qK−1Γ−qj,2q,ς}. (A.1)

At last, combining the Gaussian approximation results for Sjk/Ψjk and by Triangle in-
equality we complete the proof.

A.2 Proofs of Joint Equation Estimation

Proof of Theorem 5.6. Analogue to the proof of Theorem 5.3, the conclusions are implied
by

P
(
nδ >

(
min

16k1,k26K,16j1,j26J
Ψj1k1Ψj2k2

)−1
x

)
.
JKFςΓq2q,ς

xq/2
+ (JK)2 exp

(
− Cx2

nbnΦ4
8,ς

)
,

for x > n1/2b1/2
n Φ2

2q,ς and all large n, where

δ
def= max

16k1,k26K,16j1,j26J

∣∣∣∣∣
∑ln
i=1 Sj1k1,iSj2k2,i

Ψj1k1Ψj2k2

− ln E(Sj1k1,iSj2k2,i)
Ψj1k1Ψj2k2

∣∣∣∣∣.
In particular, when x = max

{
n1/2b1/2

n Φ2
2q,ς , n

1/2b1/2
n {log(JK)}1/2Φ2

8,ς , (JK)2/qF 2/q
ς Γ2

2q,ς

}
, the

tail probability tends to 0, as n → ∞. It follows that ρ̃n → 0 as n → ∞, given x =
O[n{log(KJ)}2], which implies the following conditions on bn:

bn = O[n{log(KJ)}4Φ−4
2q,ς ∧ n{log(KJ)}3Φ−4

8,ς ], Fς = O[nq/2{log(KJ)}qK−1Γ−q2q,ς ]. (A.2)

Recall that Fς = n, for ς > 1 − 2/q; Fς = lnb
q/2−ςq/2
n , for 1/2 − 2/q < ς < 1 − 2/q;
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Fς = lq/4−ςq/2n bq/2−ςq/2n , for ς < 1/2− 2/q.

The rest of the proof is similar to that of Theorem 5.3 and thus is omitted.

A.3 Plausibility of RE and RSE Conditions

Theorem A.1 (Plausibility of RE and RSE). For any j = 1, . . . , J , suppose the vectors Xj,t

of length Kj satisfy

0 < κ 6 min
|δ|06s,|δ|1=1

δ> E(Xj,tX
>
j,t)δ 6 max

|δ|06s,|δ|1=1
δ> E(Xj,tX

>
j,t)δ 6 ψ <∞,

where ψ and κ are positive constants. Given max
|δ|06s,|δ|1=1

‖(X>j,·δ)2‖2,ς < ∞, and for q > 2,∥∥∥ max
|δ|06s,|δ|1=1

(X>j,·δ)2
∥∥∥
q,ς
<∞, n−1/2(s logKj)1/2 + n−1rς(s logKj)2 = O(1), where rς = n1/q for

ς > 1/2 − 1/q and rς = n1/2−ς for ς < 1/2 − 1/q, then the restricted (sparse) eigenvalue
conditions hold with probability 1− O(1).

Proof of Theorem A.1. Define the s-sparse sphere as Fδ = {δ : |δ|0 6 s, |δ|2 = 1}.
According to Rudelson and Zhou (2012), the ε-covering number of Fδ w.r.t. the Euclidean
metric is l = exp(s log(3eKj/mε)), with m > 1. This is the cardinality of the ε-cover set Πδ

of Fδ.

Now we proceed to check the implication of the population matrix. We know that
δ>X>j Xjδ/n = |X̃jδ|22, where Xj is a n × Kj matrix of Xj,t and X̃j

def= n−1/2Xj. For any
point δ ∈ Fδ, let πδ denote the closest point to δ within Πδ. Then we have the following
inequalities for any point δ ∈ Fδ,

−|X̃j{δ − π(δ)}|2 + |X̃jπ(δ)|2 6 |X̃jδ|2 6 |X̃j{δ − π(δ)}|2 + |X̃jπ(δ)|2. (A.3)

We first check the right hand side of (A.3). Define ‖X̃j‖2,Fδ
def= sup

δ∈Fδ
|X̃jδ|2. As indicated in

the proof of Theorem 16 in Rudelson and Zhou (2012), we have |X̃j{δ−π(δ)}|2 6 ε‖X̃j‖2,Fδ .
To bound max

π(δ)∈Πδ
|X̃jπ(δ)|2, we invoke the tail probability inequality in Lemma A.2. Consider

the set Πδ, and let X̆π(δ)
j,t

def= {X̃>j,tπ(δ)}2− n−1π(δ)> E{Xj,tX
>
j,t}π(δ), which is a vector of the

cardinality of Πδ. Let Φ̆2,ς
def= max

π(δ)∈Πδ
‖X̆π(δ)

j,· ‖2,ς , we have

P
(

max
π(δ)∈Πδ

∣∣∣ n∑
t=1

X̆
π(δ)
j,t

∣∣∣ > x
)

= P
[

max
π(δ)∈Πδ

∣∣∣|X̃jπ(δ)|22 − π(δ)> E{Xj,tX
>
j,t}π(δ)

∣∣∣ > x
]
,
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if x &
√
n log lΦ̆2,ς + rς(log l)3/2

∥∥∥ max
π(δ)∈Πδ

|X̆π(δ)
j,· |

∥∥∥
q,ς
.

Therefore, given κ, ψ > 0, κ−xn 6 |X̃jπ(δ)|22 6 xn+ψ holds with probability 1−O(1) for
all π(δ) ∈ Πδ, where xn def=

√
n log lΦ̆2,ς + rς(log l)3/2

∥∥∥ max
π(δ)∈Πδ

|X̆π(δ)
j,· |

∥∥∥
q,ς
. In particular, the as-

sumptions max
π(δ)∈Πδ

‖{X>j,·π(δ)}2‖2,ς <∞,
∥∥∥ max
|δ|06s,|δ|1=1

(X>j,·δ)2
∥∥∥
q,ς
<∞, and n−1/2(s logKj)1/2 +

n−1rς(s logKj)2 = O(1) ensure that xn = O(1).

Hence, the right inequality in (A.3) leads to |X̃jδ|2 6 ε‖X̃j‖2,Fδ + √xn +
√
ψ. Taking

the supremum over all δ ∈ Fδ on both sides shows that sup
δ∈Fδ
|X̃jδ|2 6 (√xn +

√
ψ)/(1 − ε)

with probability 1 − O(1). Moreover, by the left hand side of (A.3), we have |X̃jδ|2 >
√
κ− xn − ε(

√
xn +

√
ψ)/(1− ε), with probability 1− O(1).

Collecting the results together, we have shown that for all δ ∈ Fδ,

√
κ− xn −

ε(√xn +
√
ψ)

(1− ε) 6 |X̃jδ|2 6
√
xn +

√
ψ

(1− ε) , (A.4)

with probability 1− O(1).

At last, with properly chosen ε the RE and RSE conditions can be achieved.

A.4 Proofs of Simultaneous Inference

A.4.1 Some Useful Lemmas

Lemma A.1 (Burkholder (1988)). Let q > 1, q′ = min(q, 2). Let Mn = ∑n
t=1 ξt; where

ξt ∈ Lq (i.e., ‖ξt‖q <∞) are martingale differences. Then

‖Mn‖q
′

q 6 Kq′

q

n∑
t=1
‖ξt‖q

′

q where Kq = max((q − 1)−1,
√
q − 1).

Lemma A.2 (Theorem 6.2 of Zhang and Wu (2017) Tail probabilities for high dimen-
sional partial sums). For a mean zero p-dimensional random variable Xt ∈ Rp (p > 1),
let Sn = ∑n

t=1Xt and assume that ‖|X·|∞‖q,ς < ∞, where q > 2 and ς > 0, and Φ2,ς =
max16j6p ‖Xj,·‖2,ς <∞. i) If ς > 1/2−1/q, then for x &

√
n log pΦ2,ς+n1/q(log p)3/2‖|X·|∞‖q,ς ,

P(|Sn|∞ > x) 6
Cq,ςn(log p)q/2‖|X·|∞‖qq,ς

xq
+ Cq,ς exp

(
−Cq,ςx2

nΦ2
2,ς

)
.
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ii) If 0 < ς < 1/2− 1/q, then for x &
√
n log pΦ2,ς + n1/2−ς(log p)3/2‖|X·|∞‖q,ς ,

P(|Sn|∞ > x) 6
Cq,ςn

q/2−ςq(log p)q/2‖|X·|∞‖qq,ς
xq

+ Cq,ς exp
(
−Cq,ςx2

nΦ2
2,ς

)
.

Lemma A.3 (Theorem 1 of El Machkouri et al. (2013)). Denote Yt = f(Ft), where f is some
measurable function. Let Sn = ∑n

t=1 Yt, and δς,t = ‖Yt − Y ∗t ‖ς . If E(Yi) = 0, ∑∞t=0 δς,t < ∞,
some ς > 2, and σ2

n
def= E(S2

n)→∞, then

σ−1
n Sn

L→ N(0, 1).

Lemma A.4. Under the same conditions as in Theorem 5.8, let β̃jk be any estimator such
that |β̃jk − β0

jk| 6 Cρn with probability 1− O(1). Then we have

n−1 max
(j,k)∈G

∆n . O(n−1/2g−1
n ), (A.5)

holds with probability 1− O(1), where ∆n
def= n1/2Gn{ψjk(Zj,t, β̃jk, ĥjk)− ψjk(Zj,t, β0

jk, h
0
jk)}.

Proof of Lemma A.4. For any finitely discrete measure Q on a measurable space (Z,Z),
let L2(Q) denote the space of all measurable functions f : Z → IR such that ‖f‖Q,2 def=
(Q|f |2)1/2 < ∞, where Qf def=

∫
fdQ. For a class of measurable functions F , the ε-

covering number with respect to the L2(Q)-semimetric is denoted as N (ε,F , ‖ · ‖Q,2), and
let ent(ε,F) = log supQN (ε‖F̄‖Q,2,F , ‖ · ‖Q,2) with F̄ = supf∈F |f | (the envelope) denote
the uniform entropy number.

As indicated in the proof of Theorem 2 in Belloni et al. (2015b), the entropy ent(ε, F̃) 6
cs log(an/ε) for the function class F̃ = {z 7→ ψjk{z, β, h̃(xj(−k))} − ψjk{z, β0

jk, h
0
jk(xj(−k))} :

(j, k) ∈ G, β ∈ Bjk, |β − β0
jk| 6 Cρn, h̃ ∈ Hjk}, which has 2F as the envelope (the definition

of F is given in (C6)). Therefore, for any f ∈ F̃ , there exists a set Fn such that minf ′∈Fn ‖f−
f ′‖Q,2 6 ε̃, where ε̃ def= ε‖2F‖Q,2 and the cardinality of the set |Fn| = (an/ε)cs. Then we have

sup
f∈F̃

∣∣∣∣∣
n∑
t=1

[
f − π(f)− E{f − π(f)}

]∣∣∣∣∣ 6 2ε̃n,
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where π(f) def= arg min
f ′∈F̃
‖f − f ′‖Q,2. Hence, with probability 1− O(1),

max
(j,k)∈G

∆n 6 n1/2 sup
f∈F̃
|Gn(f)|

= n sup
f∈F̃

∣∣∣[E n(f)− E n{π(f)} − E(f) + E{π(f)}] + [E n{π(f)} − E{π(f)}]
∣∣∣

6 2nε̃+ nmax
f∈Fn
|E n(f)− E(f)|

6 2nε̃+ nmax
f∈Fn
|E n(f)− E n E(f |Ft−1, Xj(−k),t)|+ nmax

f∈Fn
|E n E(f |Ft−1, Xj(−k),t)− E(f)|

= 2nε̃+Kn +Nn (A.6)

Next, we look for the bounds forKn and Nn, respectively. Note the summands ofKn form
martingale differences. Consider the function set Fn, for each f ∈ Fn, let ϕt def= f(zt) and
ϕ̃t

def= ϕt−E(ϕt|Ft−1, Xj(−k),t). Note that ϕt and ϕ̃t are vectors of length |Fn| = (an/ε)cs. For
m = 1, . . . , |Fn|, the dependence adjusted norm of ϕ̃m,t obeys that ‖ϕ̃m,·‖2,ς 6 2‖ϕ̃m,t‖2 6

4‖ϕm,t‖2. And by (C3), (C5), and (C7), we have ‖ϕm,t‖2
2 6 L2nρ

ν
n.

Apply the tail inequality as in Lemma A.2 to the vector ϕ̃t. As max
16m6|Fn|

‖ϕ̃m,·‖2,ς 6

(L2nρ
ν
n)1/2 and ‖ max

16m6|Fn|
ϕ̃m,·‖q,ς .

√
s log(an/ε), and given the exponential moment condi-

tion: E{exp(bϕ̃m,t)} 6 exp(b2σ2/2) for any b ∈ IR (implied by (C9)), then we can see that
with probability greater than 1−O(|Fn|−1 + (log |Fn|)−q),

Kn .
√
ns log(an/ε) max

16m6|Fn|
‖ϕ̃m,·‖2,ς + rς(s log an/ε)3/2‖ max

16m6|Fn|
ϕ̃m,·‖q,ς

6
√
ns log(an/ε)(L2nρ

ν
n)1/2 + rς{s log(an/ε)}2.

Hence, we have
Kn . ρKn, (A.7)

where ρKn
def= rk1 + rςrk2 with rk1

def=
√
ns log(an/ε)(L2nρ

ν
n)1/2, rk2

def= {s log(an/ε)}2 and
rς = n1/q for ς > 1/2− 1/q and rς = n1/2−ς for ς < 1/2− 1/q.

Then we handle the term Nn. Again consider the function set Fn, for each f ∈ Fn, let
ϕ̆t

def= E(ϕt|Ft−1, Xj(−k),t)− E(ϕt), where ϕt = f(zt). Then

Nn 6 max
16m6|Fn|

|
n∑
t=1

ϕ̆m,t|.
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Moreover, for ` = 1, . . . , |Fn|, there is a function g corresponding to each f ∈ Fn such that
ϕ̆`,t = g(zt, β, h̃), where β ∈ Bjk, |β − β0

jk| 6 Cρn, h̃ ∈ Hjk, (j, k) ∈ G. By the mean value
theorem and the continuity of the function g, we have

g(Zj,t, β, h̃) =∂βg(Zj,t, β̄, h̃)(β − β0
jk)

+
2∑

m=1
∂hmg(Zj,t, β, h̄){h̃m(Xj(−k),t)− h0

jk,m(Xj(−k),t)},

where (β̄, h̄(·)) is the corresponding point which joins the line segment between (β, h̃(·)) and
(β0

jk, h
0
jk(·)). Then

max
16`6|Fn|

n∑
t=1

ϕ̆`,t = max
β̄∈Fβn

n∑
t=1

∂βg(Zj,t, β̄, h̃)(β − β0
jk)

+ max
h̄∈Fhn

2∑
m=1

n∑
t=1

∂hmg(Zj,t, β, h̄){h̃m(Xj(−k),t)− h0
jk,m(Xj(−k),t)},

where F β
n and F h̃

n collect all the points of β and h̃ according to Fn, respectively.

Recall that in our linear model setting, h0
jk(Xj(−k),t) = (X>j(−k),tβ

0
j(−k), X

>
j(−k),tγ

0
j(−k))> =

(X>j(−k),tθ
0
jk,1, X

>
j(−k),tθ

0
jk,2)>, and h̃(Xj(−k),t) = (X>j(−k),tθ̃jk,1, X

>
j(−k),tθ̃jk,2)>, where θ0

jk,m and
θ̃jk,m (m = 1, 2) are vectors of length Kj− 1. Let T 0

jk
def= {1 6 l 6 Kj− 1 : θ0

jk,1,l 6= 0, θ0
jk,2,l 6=

0}, T̃jk def= {1 6 l 6 Kj − 1 : θ̃jk,1,l 6= 0, θ̃jk,2,l 6= 0}, and X̆jk
t

def= vec{(Xj(−k),t,l)l∈T 0
jk

⋃
T̃jk
}.

Now we apply Lemma A.2 on ∑n
t=1 ∂hmg(Zj,t, β, h̄){h̃m(Xj(−k),t)− h0

jk,m(Xj(−k),t)} and∑n
t=1 ∂βg(Zj,t, β̄, h̃)(β − β0

jk). To this end, we define the following quantities:

Φh
m,2,ς

def= max
h̄∈F h̃n

∥∥∥|X̆jk
· |∞|∂hmg(Zj,·, β, h̄)|

∥∥∥
q,ς
,

Ωh
m,q,ς

def=
∥∥∥max
h̄∈F h̃n

|X̆jk
· |∞|∂hmg(Zj,·, β, h̄)|

∥∥∥
q,ς
.

Let χmt
def= ∂hmg(Zj,t, β, h̄){h̃m(Xj(−k),t) − h0

jk,m(Xj(−k),t)} and define the projector op-
erator Pl(χmt ) def= E(χmt |Fl) − E(χmt |Fl−1). According to Theorem 1(i) of Wu (2005), it is
not hard to see that ‖χm· ‖q,ς . supd>0(d + 1)ς∑∞t=d ‖P0(χmt )‖q, for m = 1, 2. Moreover, as
|θ̃jk,m − θ0

jk,m|1 . s
√

(log an)/n max
16k6K

(‖Xjk,·εj,·‖q,ς ∨ ‖Xjk,·vjk,·‖q,ς), we have

‖P0(χmt )‖q 6
(

E[P0{|∂hmg(Zj,t, β, h̄)X̆jk
t |∞}|θ̃jk,m − θ0

jk,m|1]q
)1/q

. s
√

(log an)/n max
16k6K

(‖Xjk,·εj,·‖q,ς ∨ ‖Xjk,·vjk,·‖q,ς)
(

E[P0{|∂hmg(Zj,t, β, h̄)X̆jk
t |∞}]q

)1/q
.
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It follows that ‖χm· ‖q,ς . s
√

(log an)/n max
16k6K

(‖Xjk,·εj,·‖q,ς∨‖Xjk,·vjk,·‖q,ς)
∥∥∥|X̆jk

· |∞|∂hmg(Zj,·, β, h̄)|
∥∥∥
q,ς
.

Then applying the tail probability bounds in Lemma A.2 yields

max
h̄∈F h̃n

∣∣∣ n∑
t=1

∂hmg(Zj,t, β, h̄){h̃m(Xj(−k),t)− h0
jk,m(Xj(−k),t)}

∣∣∣ . rN1,m + rςrN2,m,

where rN1,m = s3/2(log an)1/2{log(an/ε)}1/2 max
16k6K

(‖Xjk,·εj,·‖q,ς∨‖Xjk,·vjk,·‖q,ς)Φh
m,2,ς , and rN2,m =

s5/2n−1/2(log an)1/2{log(an/ε)}3/2 max
16k6K

(‖Xjk,·εj,·‖q,ς∨‖Xjk,·vjk,·‖q,ς)Ωh
m,q,ς . Note that we have

the following relationships

Φh
m,2,ς . 2

∥∥∥|X̆jk
· |∞

∥∥∥
4,ς

max
h̄∈F h̃n

∥∥∥∂hmg(Zj,·, β, h̄)
∥∥∥

4,ς
,

Ωh
m,q,ς . 2

∥∥∥|X̆jk
· |∞

∥∥∥
2q,ς
‖max
h̄∈F h̃n

∂hmg(Zj,·, β, h̄)
∥∥∥

2q,ς
,

where the rates of Φh
m,2,ς and Ωh

m,q,ς are restricted in (C9).

Similarly, by defining

Φβ
q,ς

def= max
β̄∈Fβn

∥∥∥∂βg(Zj,·, β̄, h̃)
∥∥∥
q,ς
, Ωβ

q,ς
def=
∥∥∥max
β̄∈Fβn

|∂βg(Zj,·, β̄, h̃)|
∥∥∥
q,ς
,

we have

max
β̄∈Fβn

∣∣∣ n∑
t=1

∂βg(Zj,t, β̄, h̃)(β − β0
jk)
∣∣∣ . rN1,0 + rςrN2,0,

where rN1,0 = ρn
√
ns log(an/ε)Φβ

2,ς , rN2,0 = ρn{s log(an/ε)}3/2Ωβ
q,ς . And (C9) constrains the

rates of Φβ
2,ς and Ωβ

q,ς .

As a result, with probability 1− O(1),

Nn . ρNn , (A.8)

by letting max
m∈{0,1,2}

{rN1,m + rςrN2,m} = O(ρNn).

As P(Kn+Nn > x) 6 P(Kn > x/2)+P(Nn > x/2) and collecting the results from (A.6),
(A.7), and (A.8), we have shown that ∆n satisfies

n−1 max
(j,k)∈G

∆n . ρ∆n ,

where ρ∆n = n−1(ρKn + ρNn) = O(n−1/2g−1
n ) (given ε̃ is sufficiently small, and using (C7) and
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(C9)).

Lemma A.5. Under the same conditions as in Theorem 5.8, we have with probability 1 −
O(1),

max
(j,k)∈G

|E nψjk{Zj,t, β0
jk, h

0
jk(Xj(−k),t)}| . rn. (A.9)

Proof of Lemma A.5. Consider the class of function FG = {z 7→ ψjk{z, β0
jk, h

0
jk(xj(−k))} :

(j, k) ∈ G}, the cardinality of the set is |G|. Therefore, the corresponding covering number
is given by supQN (ε‖F̄G‖Q,2,FG, ‖ · ‖Q,2) = |G|/ε, with F̄G = supf∈FG |f |. Let ψ0

jk,t
def=

ψjk{Zj,t, β0
jk, h

0
jk(Xj(−k),t)} and applying the tail probability bounds in Lemma A.2, we have

with probability 1− O(1),

max
(j,k)∈G

|E nψ
0
jk,t| . n−1(r1 + rςr2) . rn, (A.10)

where r1 = (n log an)1/2 max
(j,k)∈G

‖ψ0
jk,·‖2,ς , r2 = (log an)3/2‖ max

(j,k)∈G
|ψ0
jk,·|‖q,ς , rς = n1/q for ς >

1/2− 1/q and rς = n1/2−ς for ς < 1/2− 1/q.

Lemma A.6. Under the same conditions as in Theorem 5.8, consider the class of functions
F ′ = {z 7→ ψjk{z, β, h̃(xj(−k))} : (j, k) ∈ G, β ∈ Bjk, h̃ ∈ Hjk ∪ {h0

jk}}, we have with
probability 1− O(1),

n−1/2 sup
f∈F ′
|Gn(f)| . ρn. (A.11)

Proof of Lemma A.6. The covering number of the function class F ′ is given by
supQN (ε‖F̄ ′‖Q,2,F ′, ‖ · ‖Q,2) = (an/ε)cs, with F̄ ′ = supf∈F ′ |f |. Also, for any f ∈ F ′, there
exists a set F ′n such that minf ′∈F ′n ‖f − f ′‖Q,2 6 ε‖F̄ ′‖Q,2 and the cardinality of the set
|F ′n| = (an/ε)cs.

One can apply the technique we used in the proof of Lemma A.4 to achieve the concentra-
tion inequality. Particularly, here we can consider a rougher and simpler bound for the part
of nmax

f∈F ′n
|E n E(f |Ft−1, Xj(−k),t)− E(f)|. For each f ∈ F ′n, there exists a function g such that

g(zt, β, h̃) = E{f(zt)|Ft−1, Xj(−k),t} − E{f(zt)}, where β ∈ Bjk, h̃ ∈ Hjk ∪ {h0
jk}, (j, k) ∈ G.

As by the mean value theorem and the continuity of the function g, we have

g(Zj,t, β, h̃) =∂βg(Zj,t, β̄, h̃)(β − β0
jk)

+
2∑

m=1
∂hmg(Zj,t, β, h̄){h̃m(Xj(−k),t)− h0

jk,m(Xj(−k),t)},

11



where (β̄, h̄(·)) is the corresponding point which joins the line segment between (β, h̃(·)) and
(β0

jk, h
0
jk(·)). Then by Cauchy-Schwartz inequality, for m = 1, 2, with probability 1 − O(1),

we have
n∑
t=1

∂hmg(Zj,t, β, h̄){h̃m(Xj(−k),t)− h0
jk,m(Xj(−k),t)}

6
√
n
[ n∑
t=1
{∂hmg(Zj,t, β, h̄)}2

]1/2[ 1
n

n∑
t=1
{h̃m(Xj(−k),t)− h0

jk,m(Xj(−k),t)}2
]1/2

.
√
n
[ n∑
t=1
{∂hmg(Zj,t, β, h̄)}2

]1/2{
E[{h̃m(Xj(−k),t)− h0

jk,m(Xj(−k),t)}]2
}1/2

.
[ n∑
t=1
{∂hmg(Zj,t, β, h̄)}2

]1/2√
s log an max

16k6K
(‖Xjk,·εj,·‖q,ς ∨ ‖Xjk,·vjk,·‖q,ς) (by (C5)).

Let χmt
def= {∂hmg(Zj,t, β, h̄)} and define the projector operator Pl(χmt ) def= E(χmt |Fl) −

E(χmt |Fl−1). Then we have χmt = ∑∞
l=0Pt−l(χmt ) with Pt−l(χmt ) are m.d.s. over t. Hence, we

can apply the Burkholder inequality in A.1 and get ‖∑n
t=1Pt−l(χmt )‖2

2 6
∑n
t=1 ‖Pt−l(χmt )‖2

2 =∑n
t=1 ‖P0(χml )‖2

2 6 n‖χml −(χml )∗‖2
2. It follows that

∑n
t=1 χ

m
t 6

√
n‖χm· ‖2,ς by the definition of

dependence adjusted norm. Therefore, we have shown that∑n
t=1 ∂hmg(Zj,t, β, h̄){h̃m(Xj(−k),t)−

h0
jk,m(Xj(−k),t)} .

√
ns log an‖χm· ‖2,ς max

16k6K
(‖Xjk,·εj,·‖q,ς ∨ ‖Xjk,·vjk,·‖q,ς) and the rates of ‖χm· ‖2,ς

and max
16k6K

(‖Xjk,·εj,·‖q,ς ∨ ‖Xjk,·vjk,·‖q,ς) are assumed in (C9).

The rest of the proof is similar as for Lemma A.4 and thus is omitted.

A.4.2 Proofs of Section 5.6

Proof of Theorem 5.8. The sketch of the proof follows the proof of Theorem 2 in Belloni
et al. (2015b).

Step 1: Let β̃jk be any estimator such that |β̃jk − β0
jk| 6 Cρn with probability 1 − O(1).

By rewriting (using the fact that E[ψjk{Zj,t, β0
jk, h

0
jk(Xj(−k),t)}] = 0), we have

E n[ψjk{Zj,t, β̃jk, ĥjk(Xj(−k),t)}] = E n[ψjk{Zj,t, β0
jk, h

0
jk(Xj(−k),t)}]

+ E[ψjk{Zj,t, β, h̃(Xj(−k),t)}]
∣∣∣
β=β̃jk,h̃=ĥjk

+ n−1∆n (A.12)

where ∆n
def= n1/2Gn[ψjk{Zj,t, β̃jk, ĥjk(Xj(−k),t)} − ψjk{Zj,t, β0

jk, h
0
jk(Xj(−k),t)}].

We first observe that with probability 1−O(1), max(j,k)∈G ∆n 6
√
n sup

f∈F̃ |Gn(f)|, where
F̃ is the class of functions defined by F̃ = {z 7→ ψjk{z, β, h̃(xj(−k))}−ψjk{z, β0

jk, h
0
jk(xj(−k))} :

12



(j, k) ∈ G, β ∈ Bjk, |β − β0
jk| 6 Cρn, h̃ ∈ Hjk}. The key to our proof is to achieve a concen-

tration inequality for ∆n, such that n−1 max(j,k)∈G ∆n . O(n−1/2g−1
n ) holds with probability

1− O(1). This is done in Lemma A.4.

Then we expand the second term in (A.12) by Taylor expansion. Pick any β ∈ Bjk such
that |β − β0

jk| 6 Cρn and h̃ ∈ Hjk. For any (j, k) ∈ G, let (β̄, h̄(Xj(−k),t)>)> lie on the
line segment between (β, h̃(Xj(−k),t)>)> and (β0

jk, h
0
jk(Xj(−k),t)>)>. Therefore, we can write

E[ψjk{Zj,t, β, h̃(Xj(−k),t)}] as follows

E[ψjk{Zj,t, β0
jk, h

0
jk(Xj(−k),t)}] + E(∂β E[ψjk{Zj,t, β0

jk, h
0
jk(Xj(−k),t)}|Xj(−k),t])(β − β0

jk)

+
M∑
m=1

E(∂hm E[ψjk{Zj,t, β0
jk, h

0
jk(Xj(−k),t)}|Xj(−k),t]{h̃m(Xj(−k),t)− h0

jk,m(Xj(−k),t)})

+ 1
2 E(∂2

β E[ψjk{Zj,t, β̄, h̄(Xj(−k),t)}|Xj(−k),t])(β − β0
jk)2

+ 1
2

M∑
m,m′=1

E(∂hm∂hm′ E[ψjk{Zj,t, β̄, h̄(Xj(−k),t)}|Xj(−k),t]{h̃m(Xj(−k),t)− h0
jk,m(Xj(−k),t)}

{h̃m′(Xj(−k),t)− h0
jk,m′(Xj(−k),t)})

+ 1
2

M∑
m=1

E(∂hm∂β E[ψjk{Zj,t, β̄, h̄(Xj(−k),t)}|Xj(−k),t]{h̃m(Xj(−k),t)− h0
jk,m(Xj(−k),t)})(β − β0

jk).

(A.13)

It can be seen from the orthogonality condition (5.32) that the third term in (A.13) is zero.
By (C3) we have E(∂β E[ψjk{Zj,t, β0

jk, h
0
jk(Xj(−k),t)}|Xj(−k),t]) = ∂β E[ψjk{Zj,t, β0

jk, h
0
jk(Xj(−k),t)}]

= φjk. Moreover, each of the last three terms in (A.13) is O(L1nρ
2
n) = O(n−1/2g−1

n ) (by (C3)
and (C5)). Therefore, we have shown that the second term in (A.12) equals φjk(β̃jk−β0

jk) +
O(n−1/2g−1

n ), uniformly over (j, k) ∈ G. Then, combining the results in Lemma A.4 gives

E n[ψjk{Zj,t, β̃jk, ĥjk(Xj(−k),t)}] = E n[ψjk{Zj,t, β0
jk, h

0
jk(Xj(−k),t)}]

+ φjk(β̃jk − β0
jk) + O(n−1/2g−1

n ). (A.14)

Step 2: Next, we need to prove that inf
β∈B̂jk

|E n[ψjk{Zj,t, β, ĥjk(Xj(−k),t)}]| = O(n−1/2g−1
n )

holds with probability 1 − O(1). For any (j, k) ∈ G, we focus on any point β∗jk = β0
jk −

φ−1
jk E n[ψjk{Zj,t, β0

jk, h
0
jk(Xj(−k),t)}], thus

max
(j,k)∈G

|β∗jk − β0
jk| 6 C max

(j,k)∈G
|E n[ψjk{Zj,t, β0

jk, h
0
jk(Xj(−k),t)}]|.
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By Lemma A.5, we have |β∗jk − β0
j,k| . rn uniformly over (j, k) ∈ G. By (C2), [β0

jk ±
c1rn] ⊂ B̂jk with probability 1− O(1), thus β∗jk is contained in B̂jk with probability 1− O(1).
Using the continuity argument as in (A.14) with β̃jk = β∗jk and combining the fact that
φjk(β∗jk − β0

jk) = −E n[ψjk{Zj,t, β0
jk, h

0
jk(Xj(−k),t)}], we have,

E n[ψjk{Zj,t, β∗jk, ĥjk(Xj(−k),t)}] = E n[ψjk{Zj,t, β0
jk, h

0
jk(Xj(−k),t)}] + φjk(β∗jk − β0

jk) + O(n−1/2g−1
n )

= O(n−1/2g−1
n ).

Therefore,

max
(j,k)∈G

inf
β∈B̂jk

|E n[ψjk{Zj,t, β, ĥjk(Xj(−k),t)}]| 6|E n[ψjk{Zj,t, β∗jk, ĥjk(Xj(−k),t)}]| = O(n−1/2g−1
n ),

(A.15)

holds with probability 1− O(1) uniformly over (j, k) ∈ G.

Step 3: Lastly, it is left to prove that with probability 1 − O(1), max(j,k)∈G |β̂jk − β0
jk| 6

Cρn, which will lead to the desired Bahadur representation. Consider the class of functions
F ′ = {z 7→ ψjk{z, β, h̃(xj(−k))} : (j, k) ∈ G, β ∈ Bjk, h̃ ∈ Hjk ∪ {h0

jk}}. From (A.15) and by
the definition of β̂jk we have
∣∣∣E n[ψjk{Zj,t, β̂jk, ĥjk(Xj(−k),t)}]

∣∣∣ > ∣∣∣E[ψjk{Zj,t, β, h̃(Xj(−k),t)}]|β=β̂jk,h̃=ĥjk

∣∣∣−n−1/2 sup
f∈F ′
|Gn(f)|,

holds with probability 1− O(1) uniformly over (j, k) ∈ G.

Lemma A.6 ensures that n−1/2 sup
f∈F ′
|Gn(f)| = O(ρn). Furthermore, applying the expansion

in (A.13) with β0
jk = β implies that

∣∣∣E[ψjk{Zj,t, β, h̃(Xj(−k),t)}]− E[ψjk{Zj,t, β, h0
jk(Xj(−k),t)}]

∣∣∣ 6 C(ρn + L1nρ
2
n) = O(ρn).

By (C3) along with the fact that E[{h̃m(Xj(−k),t)− h0
jk,m(Xj(−k),t)}2] 6 Cρ2

n for all m =
1, . . . ,M and any h̃ = (h̃m)Mm=1 ∈ Hjk, we have with probability 1− O(1),
∣∣∣E[ψjk{Zj,t, β, h̃(Xj(−k),t)}]|β=β̂jk,h̃=ĥjk

∣∣∣ > ∣∣∣E[ψjk{Zj,t, β, h0
jk(Xj(−k),t)}]|β=β̂jk

∣∣∣−O(ρn),(A.16)

uniformly over (j, k) ∈ G.

From (A.15) we can see that the left-hand side of (A.16) is O(n−1/2g−1
n ). Moreover, due to

the identification condition (C4), the first term on the right-hand side of (A.16) is bounded

14



from below by 1
2{|φjk(β̂jk − β

0
jk)| ∧ c1} and this results in |β̂jk − β0

jk| 6 O(n−1/2g−1
n ) +O(ρn),

with probability 1− O(1).

In summary, we have shown that, with probability 1− O(1),

E n[ψjk{Zj,t, β̂jk, ĥjk(Xj(−k),t)}] = E n[ψjk{Zj,t, β0
jk, h

0
jk(Xj(−k),t)}]

+ φjk(β̂jk − β0
jk) + O(n−2g−1

n ), (A.17)

uniformly over (j, k) ∈ G. And with probability 1 − O(1), the left-hand side is O(n−1/2g−1
n )

uniformly over (j, k) ∈ G. Lastly, the uniform Bahadur representation can be obtained by
solving (A.17) with respect to (β̂jk − β0

jk).

Proof of Corollary 5.7. The proof is an application of Theorem 5.8 with verification of
conditions (C1)-(C7).

Here we focus on the estimator by Algorithm 2 as the proof of Algorithm 1 is basically
the same. In particular, with the LAD regression case, we have |G| = 1, an = max(JK, n),
gn = 1, M = 2, h0

jk(Xj(−k),t) = (X>j(−k),tβ
0
j(−k), X

>
j(−k),tγ

0
j(−k))>, ψjk{Zj,t, βjk, h0

jk(Xj(−k),t)} =
{1/2− 1(Yj,t 6 Xjk,tβjk +X>j(−k),tβ

0
j(−k))}(Xjk,t −X>j(−k),tγ

0
j(−k)).

Verification of (C1): Our model setting assumes Fεj(0) = 1/2 and E(vjk,t|Xj(−k),t) = 0;
hence we have

∂h1 E{ψjk(Zj,t, β0
jk, h)|Xj(−k),t}

∣∣∣
h=h0

jk
(Xj(−k),t)

= −E{fεj(0)vjk,t|Xj(−k),t} = 0,

∂h2 E{ψjk(Zj,t, β0
jk, h)|Xj(−k),t}

∣∣∣
h=h0

jk
(Xj(−k),t)

= −E{1/2− Fεj(0)|Xj(−k),t} = 0.

Verification of (C2): The true parameter β0
jk satisfies (5.31) given Fεj(0) = 1/2. Moreover,

based on the fact that |β̂[1]
j −β0

j |j,pr .
√
s(log an)/n and by Remark 2 in Belloni et al. (2015a),

with probability 1− O(1), |β̂[2]
jk − β0

jk| = O(1/ log n), so that for some sufficiently small c > 0,
[β0
jk ± c/ log n] ⊂ B̂j,k ⊂ Bj,k, with probability 1− O(1). Then the condition holds.

Verification of (C3): The map

(β, h) 7→E{ψjk(Zj,t, β, h)|Xj(−k),t}

= E([1/2− Fεj{Xjk,t(β − β0
jk)−X>j(−k),tβ

0
j(−k) + h1}](Xjk,t − h2)|Xj(−k),t)

is twice continuously differentiable as f ′εj is continuous. For every ϑ ∈ {β, h1, h2},
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∂ϑ E{ψjk(Zj,t, β, h)|Xj(−k),t} is−E[fεj{Xjk,t(β−β0
jk)−X>j(−k),tβ

0
j(−k)+h1}Xjk,t(Xjk,t−h2)|Xj(−k),t]

(w.r.t. β) or −E[fεj{Xjk,t(β − β0
jk)−X>j(−k),tβ

0
j(−k) + h1}(Xjk,t − h2)|Xj(−k),t] (w.r.t. h1) or

−E[1/2 − Fεj{Xjk,t(β − β0
jk) − X>j(−k),tβ

0
j(−k) + h1}|Xj(−k),t] (w.r.t. h2). Hence, for every

β ∈ Bjk,

|∂ϑ E{ψjk(Zj,t, β, h)|Xj(−k),t}| 6 C1 E(|Xjk,tvjk,t| |Xj(−k),t) ∨ C1 E(|vjk,t| |Xj(−k),t) ∨ 1.

Therefore, the expectation of the square of the right-hand side is bounded. Moreover, let
Tjk(Xj(−k),t) = {τ ∈ IR2 : |τ2 − X>j(−k),tβ

0
j(−k)| 6 c3}, where c3 > 0 is a constant. Then for

every ϑ, ϑ′ ∈ {β, h1, h2}, we have

|∂ϑ∂ϑ′ E{ψjk(Zj,t, β, h)|Xj(−k),t}|

6 C1[1 ∨ E{|X2
jk,t(Xjk,t − h2)| |Xj(−k),t} ∨ E{|Xjk,t(Xjk,t − h2)| |Xj(−k),t} ∨ E(|Xjk,t| |Xj(−k),t)

∨ E(|Xjk,t − h2| |Xj(−k),t)].

In particular,

E{|X2
jk,t(Xjk,t − h2)| |Xj(−k),t} 6 E{|(X>j(−k),tγ

0
j(−k) + vjk,t)2(c3 + |vjk,t|)| |Xj(−k),t}

6 2 E{|{(X>j(−k),tγ
0
j(−k))2 + v2

jk,t}(c3 + |vjk,t|)| |Xj(−k),t}

6 C|X>j(−k),tγ
0
j(−k)|2.

And by similar computation we can show that |∂ϑ∂ϑ′ E{ψjk(Zj,t, β, h)|Xj(−k),t}| 6 `1(Xj(−k),t) =
C ′|X>j(−k),tγ

0
j(−k)|2, where the constants C,C ′ dependd on c3 and C1. Lastly, for every

β, β′ ∈ Bjk, h, h′ ∈ Tjk(Xj(−k),t) we have

E[{ψjk(Zj,t, β, h)− ψjk(Zj,t, β′, h′)}2|Xj(−k),t] 6 C1 E{|Xjk,t(Xjk,t − h2)2| |Xj(−k),t}|β − β′|

+ C1 E{(Xjk,t − h2)2 |Xj(−k),t}|t1 − t′1|+ (t2 − t′2)2

6 C ′′|X>j(−k),tγ
0
j(−k)|(|β − β′|+ |t1 − t′1|) + (t2 − t′2)2

6
√

2(C ′′|X>j(−k),tγ
0
j(−k)|+ 2c3)(|β − β′|+ |t− t′|2),

where constant C ′′ depends on c3 and C1. Consequently, we have verified the last condition
in (C3) by taking `2(Xj(−k),t) =

√
2(C ′′|X>j(−k),tγ

0
j(−k)|+ 2c3) and ν = 1. And given the finite

moments conditions on Xt, we have E{|`1(Xj(−k),t)|4} 6 L1n, E{|`2(Xj(−k),t)|4} 6 L2n.
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Verification of (C4): For any β ∈ Bjk, there exists β′ between β0
jk and β such that

E[ψjk{Zj,t, β, h0
jk(Xj(−k),t)}] =∂β E[ψjk{Zj,t, β0

jk, h
0
jk(Xj(−k),t)}](β − β0

jk)

+ 1
2∂

2
β E[ψjk{Zj,t, β′, h0

jk(Xj(−k),t)}](β − β0
jk)2.

Let φjk = ∂β E[ψjk{Zj,t, β0
jk, h

0
jk(Xj(−k),t)}] > c2

1. Since ∂2
β E[ψjk{Zj,t, β′, h0

jk(Xj(−k),t)}] 6

C1 E |X2
jk,tvjk,t| 6 C2, we have

2
∣∣∣E[ψjk{Zj,t, β, h0

jk(Xj(−k),t)}]
∣∣∣ > 2φjk|β − β0

jk| − C2(β − β0
jk)2 > φjk|β − β0

jk|,

whenever |β − β0
jk| 6 c2

1/C2.

Verification of (C5): According to Comment 5.4, under the sub-Gaussian assumption,
with probability 1− O(1) we have

‖β̂[1]
j(−k) − β

0
j(−k)‖j,pr .

√
s(log an)/n max

16k6K
‖Xjk,·εj,·‖q,ς ,

‖γ̂j(−k) − γ0
j(−k)‖j,pr .

√
s(log an)/n max

16k6K
‖Xjk,·vjk,·‖q,ς ,

which means the algorithms can provide an estimator of the nuisance function with good
sparsity and rate properties given IC λ. Thus, by Lemma 7 in Belloni et al. (2015a), we have
(C5) holds.

Verification of (C6): We refer to the proof of Theorem 1 in Belloni et al. (2015a).

Verification of (C7): Take sn = `ns and ρn = n−1/2(sn log an)1/2 + n−1rς(sn log an)2 .

n−1/2(sn log an)1/2, under n−1/2rς(sn log an)3/2 = O(1). Also let ν = 1, L2n . Mn. Then
the condition holds given n−1(sn log an)3M2

n = O(1) and n−1/2rς(sn log an)2 = O(1), with `n
growing slowly enough.

Lemma A.7. Let ψ0
jk,t

def= ψjk{Zj,t, β0
jk, h

0
jk(Xj(−k),t)}, T jkn

def= σ−1
jk φ

−1
jk

∑n
t=1 ψ

0
jk,t, and assume

that ‖ψ0
jk,·‖2,ς <∞. Then

T jkn = O(
√
n), and n−1/2T jkn

L→ N(0, 1)

Proof of Lemma A.7. Define the projector operator Pl(Xt) def= E(Xt|Fl) − E(Xt|Fl−1).
Note that the projection operator is directly linked to the dependence adjusted norm for
Xjk,t = gjk(Ft) = gjk(. . . , ξt−1, ξt), and ‖P0(Xjk,t)‖2 6 ‖gjk(Ft)− gjk(F∗t )‖2 6 2‖P0(Xjk,t)‖2

17



(by Theorem 1(i) in Wu, 2005).

Let J jkl,n
def= σ−1

jk φ
−1
jk

∑n
t=1Pt−l(ψ0

jk,t), and it is not hard to see that T jkn = ∑∞
l=0 J

jk
l,n. As

σ−1
jk φ

−1
jk Pt−l(ψ0

jk,t)’s form the martingale differences over t, according to Lemma A.1 we can
apply the Burkholder Inequality and get ‖J jkl,n‖2

2 6 (σjkφjk)−2∑n
t=1 ‖Pt−l(ψ0

jk,t)‖2
2 . n(δψj,k,l)2,

where δψj,k,l
def= ‖ψ0

jk,l − (ψ0
jk,l)∗‖2. Thus, T jkn .

√
n
∑∞
l=0 δ

ψ
j,k,l 6

√
n‖ψ0

jk,·‖2,ς = O(
√
n). Then

the conclusion that n−1/2T jkn
L→ N(0, 1) follows from Lemma A.3 in light of the fact that

Eψ0
jk,t = 0 and ‖ψ0

jk,·‖2,ς <∞.

Proof of Theorem 5.9. The proof follows directly from Lemma A.7.

Proof of Corollary 5.8. We apply the high-dimensional central limit theorem (Theorem
3.2 in Zhang and Wu (2017)) to the vector =̃ def= 1√

n

∑n
t=1 ζ̃t and Z̃

def= vec[{(Zjk)Kk=1}Jj=1] is
the corresponding standard Gaussian random vector, with the same correlation structure.
Then we have ρ(D−1=̃, D−1Z̃) → 0, as n → ∞, where D is a diagonal matrix with the
square root of the diagonal elements of the long-run variance-covariance matrix of ζ̃t, namely
{∑`=∞

`=−∞ E(ζjk,tζjk,(t−`))}1/2, for k = 1, . . . , K, j = 1, . . . , J . The rest of the proof is similar
to Corollary 5.2 and thus is omitted.

Proof of Corollary 5.9. The proof is similar to that of Theorem 5.3 and Theorem 5.6;
therefore, we omit the detailed proof here. In particular, the following conditions on bn are
required:

bn = O[min{n(log |G| log n)−2(Φζ
q,ς)−4, n(log |G|)−3(log n)−2(Φζ

4,ς)−4}],

Fς = O{nq/2(log |G| log n)−q/2|G|−1(Γζq,ς)−q},

b1/2
n log{n1/2(Φζ

q,ς)2}+ b1/2
n log(bn)/2 = O{n1/2(log |G|)−1(Φζ

q,ς)−2},

b1/2
n log{n1/2(log |G|)1/2(Φζ

4,ς)2}+ b1/2
n log(bn)/2 = O{n1/2(log |G|)−3/2(Φζ

4,ς)−2},

F 2/q
ς log(|G|2/q(Γζq,ς)2}+ 2F 2/q

ς log(Fς)/q = O{n(log |G|)−1|G|−2/q(Γζq,ς)−2}, (A.18)

where Fς = n, for ς > 1 − 2/q; Fς = lnb
q/2−ςq/2
n , for 1/2 − 2/q < ς < 1 − 2/q; Fς =

lq/4−ςq/2n bq/2−ςq/2n , for ς < 1/2− 2/q.

APPENDIX B: Examples of the Dependence Measure

1. AR(1): Zt follows Zt = aZt−1 + εt, with |a| < 1, εt ∼ i.i.d.(0, σ2). Therefore, the
MA representation is given by Zt = ∑∞

l=0 a
lεt−l and Z∗t = ∑∞

l=0 a
lεt−l + atε∗0 − atε0.

‖Zt − Z∗t ‖q = |a|t‖ε0 − ε∗0‖q, ∆m,q . |a|m, ‖Z·‖q,ς . supm>0(m+ 1)ς |a|m <∞.
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2. ARCH(1): An ARCH (Autoregressive conditionally heteroscedastic) model is given
by Zt = σtεt, σ2

t = w+α2Z2
t−1, with w > 0, εt are i.i.d. shocks and Var(Zt) = σ2 <∞.

Thus, it is not hard to see that Z2
t = w

∑∞
l=0 α

2l∏l
k=0 ε

2
t−k. Rewrite the model as

Zt = R(Zt−1, εt) =
√

(w + α2Z2
t−1)εt. According to Wu and Shao (2004), we have

the Lipschitz constant involved in the Lyapunov type condition ensuring the forward
iteration contraction supx 6=x′

|R(x,ε0)−R(x′,ε0)|
|x−x′| 6 |αε0|. Let µ def= E |αε0| < 1 and assume

|αε0|+ |R(t0, ε0)| has finite qth moment. Then the process Zt has stationary solutions.
Moreover, ‖Zt − Z∗t ‖q 6 |µ|t‖ε0 − ε∗0‖q, and thus ∆m,q . |µ|m. Given |µ| < 1, then we
have ‖Z·‖q,ς . supm>0(m+ 1)ς |µ|m <∞.

3. TAR (Threshold autoregressive model): Zt = θ1Zt−11{Zt−1 < τ} + θ2Zt−11{Zt−1 >

τ} + εt, where θ1 and θ2 are two parameters and εt are i.i.d. shocks. If θ def=
max{|θ1|, |θ2|} < 1 and εt has a finite α-th order moment, then the TAR model admits
a stationary solution with ‖Z·‖q,ς . supm>0(m+ 1)ςθm <∞.

4. VAR (Vector autoregressive model): Without loss of generality we focus on VAR(1)
given by Xt = AXt−1 + εt, where Xt, εt ∈ IRJ, and εt ∼ i.i.d.N(0,Σ). If the spectral
radius of A>A, ρ(A>A) < 1, then lim

m→∞
‖A‖m → 0, where ‖·‖ denotes the spectral norm

of a matrix. Rewrite the model as Xt = ∑∞
l=0A

lεt−l. The existence of a stationary
solution can be checked by Kolmogorov’s three series theorem. For each equation j,
Xj,t − X∗j,t = [At]j(ε0 − ε∗0), where [At]j is the jth row of the matrix At. (E(|Xj,t −
X∗j,t|q))1/q 6 |[At]j|q‖|ε0 − ε∗0|∞‖q. Suppose max

16j6J
|[At]j|q . |α|t (|α| < 1). Then we

have max
16j6J

‖Xj,·‖q,ς . (log J)1/2 and ‖|Xj,·|∞‖q,ς . (log J)1/2 as E |εt|∞ . (log J)1/2.

Similarly, suppose ∑J
j=1 |[At]j|q . J |α|t (|α| < 1). Then we have (∑J

j=1 ‖Xj,·‖q,ς)1/q .

J(log J)1/2q.

5. High-dimensional ARCH: Consider Yt ∈ IRJ, a high-dimensional ARCH(1) model
follows for example the general specification from Bollerslev et al. (1988) and Hansen
and Rahbek (1998): Yt = H

1/2
t εt, and E(YtY >t |Ft−1) = Ht, with εt ∼ i.i.d.N(0, IJ). The

specification of the conditional covariance matrix Ht = Ω + AYt−1Y
>
t−1A

>, where Ω is
positive definite and A is a J×J matrix. Studying the stationarity condition of the pro-
cess is not trivial. Define ht def= vech(Ht), the selection matrixDJ (J2×J(J+1)/2) gives
vec(Ht) = DJht and its generalized inverse matrix D+

J such that D+
JDJ = IJ(J+1)/2.

The vech notation of the iterations follows ht = vech(Ω)+D+
J (A⊗A)DJvech(Yt−1Y

>
t−1).

Define Ã
def= D+

J (A ⊗ A)DJ , w def= vech(Ω). For simplicity we look at the pro-
cess ht, with the state space representation ht = w + G(ht−1, εt−1) = F (ht−1, εt−1),
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where F (ht−1, εt−1) = w + Ãvech({vech−1(ht−1)}1/2εt−1ε
>
t−1{vech−1(ht−1)}−1/2) with

vech(Ht−1) = ht−1. The partial derivative matrix is ∆t = ∆(ht, εt) = ∂ht+1/∂h
>
t =

ÃD+
J (H1/2

t εtε
>
t H

−1/2
t ⊗ IJ)DJ , and E ∆t = Ã. Therefore, the spectral radius of AA>,

ρ(AA>) < 1 ensures a stationary solution to the process ht. Moreover, by solving the
state space iteration recursively, we have E |ht − h∗t |1 6 2 E |P0(ht)|1 6 |Ãt{vech(Σ) +
w} + Ãt+1vech(Σ)|1 . {tr(AA>)}t, where the projector operator Pl(ht) def= E(ht|Fl) −
E(ht|Fl−1) and Σ = EHt = ∑∞

i=0A
iΩ(Ai)>. Assume that {tr(AA>)}t < J |c|t, with

|c| < 1, we have ∑j ‖hj,·‖1,ς . J .

According to Hafner and Preminger (2009), the iteration formulae are given by ht =
$(h̄?t−1, εt−1)+∑m−1

l=1 Πl
k=1∆(h̄?t−k, εt−k)$(h̄?t−l−1, εt−l−1)+Πm

k=1∆(h̄?t−k, εt−k)ht−m, where
$(h, ε) = w+G(h?, ε)−∆(h, ε)h?, h? is the contraction state, and h̄?t−k’s lie on the line
segment between h? and ht−k. For ease of derivation, we assume a strong assumption
such that E suphm ‖∆(hm, εm)‖q < s < 1 for allm > 1 and q > 2, where ‖·‖ denotes the
spectral norm of a matrix. Let hm = {(h>1 , . . . , h>m)> : |ht|2 = 1, t = 1, . . . ,m}, it fol-
lows E suphm ‖Πm

k=1∆(hm−k+1, εm−k+1)‖q 6 Πm
k=1 E suphm−k+1

‖∆(hm−k+1, εm−k+1)‖q 6

sm. Hence, maxj ‖hj,·‖q,ς . C, ‖|h·|∞‖q,ς . C(E maxj |hj,t|q)1/q, (∑j ‖hj,·‖q,ς)1/q .

J(J + 1)/2.

APPENDIX C: Additional Details for Empirical Analysis

20



C
on

su
m

er
D

is
cr

et
io

na
ry

(1
1)

F
in

an
ci

al
s

(8
)

G
D

G
en

er
al

D
yn

am
ic

s
C

or
po

ra
tio

n
A

M
ZN

A
m

az
on

.c
om

,I
nc

.
A

IG
A

m
er

ic
an

In
te

rn
at

io
na

lG
ro

up
,I

nc
.

G
E

G
en

er
al

El
ec

tr
ic

C
om

pa
ny

B
B

Y
B

es
t

B
uy

C
o.

In
c.

A
M

T
A

m
er

ic
an

To
w

er
C

or
po

ra
tio

n
(R

EI
T

)
H

O
N

H
on

ey
w

el
lI

nt
er

na
tio

na
lI

nc
.

C
B

S
C

B
S

C
or

po
ra

tio
n

A
X

P
A

m
er

ic
an

Ex
pr

es
s

C
om

pa
ny

LM
T

Lo
ck

he
ed

M
ar

tin
C

or
po

ra
tio

n
C

M
C

SA
C

om
ca

st
C

or
po

ra
tio

n
B

A
C

B
an

k
of

A
m

er
ic

a
C

or
po

ra
tio

n
LU

V
So

ut
hw

es
t

A
irl

in
es

C
om

pa
ny

C
M

G
C

hi
po

tle
M

ex
ic

an
G

ril
l,

In
c.

C
C

iti
gr

ou
p

In
c.

In
fo

rm
at

io
n

T
ec

hn
ol

og
y

(1
1)

D
IS

W
al

t
D

isn
ey

C
om

pa
ny

(T
he

)
ET

FC
E*

T
R

A
D

E
Fi

na
nc

ia
lC

or
po

ra
tio

n
A

A
PL

A
pp

le
In

c.
F

Fo
rd

M
ot

or
C

om
pa

ny
G

S
G

en
pa

ct
Li

m
ite

d
A

C
N

A
cc

en
tu

re
pl

c
G

M
G

en
er

al
M

ot
or

s
C

om
pa

ny
JP

M
J

P
M

or
ga

n
C

ha
se

&
C

o
A

D
P

A
ut

om
at

ic
D

at
a

Pr
oc

es
sin

g,
In

c.
G

PS
G

ap
,I

nc
.

(T
he

)
H

ea
lt

h
C

ar
e

(8
)

C
SC

O
C

isc
o

Sy
st

em
s,

In
c.

H
D

H
om

e
D

ep
ot

,I
nc

.
(T

he
)

A
ET

A
et

na
In

c.
EA

El
ec

tr
on

ic
A

rt
s

In
c.

LE
N

Le
nn

ar
C

or
po

ra
tio

n
A

M
G

N
A

m
ge

n
In

c.
EB

AY
eB

ay
In

c.
C

on
su

m
er

St
ap

le
s

(4
)

B
II

B
B

io
ge

n
In

c.
EM

C
EM

C
C

or
po

ra
tio

n
C

O
ST

C
os

tc
o

W
ho

le
sa

le
C

or
po

ra
tio

n
B

M
Y

B
ris

to
l-M

ye
rs

Sq
ui

bb
C

om
pa

ny
FS

LR
Fi

rs
t

So
la

r,
In

c.
C

V
S

C
V

S
H

ea
lth

C
or

po
ra

tio
n

C
EL

G
C

el
ge

ne
C

or
po

ra
tio

n
H

PQ
H

P
In

c.
K

O
C

oc
a-

C
ol

a
C

om
pa

ny
(T

he
)

G
IL

D
G

ile
ad

Sc
ie

nc
es

,I
nc

.
IB

M
In

te
rn

at
io

na
lB

us
in

es
s

M
ac

hi
ne

s
C

or
po

ra
tio

n
K

R
K

ro
ge

r
C

om
pa

ny
(T

he
)

JN
J

Jo
hn

so
n&

Jo
hn

so
n

IN
T

C
In

te
lC

or
po

ra
tio

n
E

ne
rg

y
(6

)
LL

Y
El

iL
ill

y
an

d
C

om
pa

ny
M

at
er

ia
ls

(3
)

A
PC

A
na

da
rk

o
Pe

tr
ol

eu
m

C
or

po
ra

tio
n

In
du

st
ri

al
s

(1
0)

A
A

A
lc

oa
C

or
po

ra
tio

n
B

H
I

B
la

ck
H

ill
s

C
or

p.
B

A
B

oe
in

g
C

om
pa

ny
(T

he
)

D
D

EI
du

Po
nt

de
N

em
ou

rs
&

C
o

C
H

K
C

he
sa

pe
ak

e
En

er
gy

C
or

po
ra

tio
n

C
AT

C
at

er
pi

lla
r,

In
c.

D
W

D
P

D
ow

D
uP

on
t

In
c.

C
O

P
C

on
oc

oP
hi

lli
ps

D
A

L
D

el
ta

A
ir

Li
ne

s,
In

c.
U

ti
lit

ie
s

(2
)

C
V

X
C

he
vr

on
C

or
po

ra
tio

n
D

H
R

D
an

ah
er

C
or

po
ra

tio
n

D
U

K
D

uk
e

En
er

gy
C

or
p.

H
A

L
H

al
lib

ur
to

n
C

om
pa

ny
FD

X
Fe

dE
x

C
or

po
ra

tio
n

EX
C

Ex
el

on
C

or
po

ra
tio

n

Ta
bl
e
C
.1
:
T
he

lis
t
of

th
e
st
oc
k
sy
m
bo

ls
an

d
th
e
co
rr
es
po

nd
in
g
co
m
pa

ny
na

m
es

gr
ou

pe
d
by

in
du

st
rie

s.

21



References

Belloni, A., Chernozhukov, V. and Kato, K. (2015a). Supplement material for "Uniform
post selection inference for least absolute deviation regression and other Z-estimation
problems", Available at Biometrika online.

Belloni, A., Chernozhukov, V. and Kato, K. (2015b). Uniform post selection inference
for least absolute deviation regression and other Z-estimation problems, Biometrika
102(1): 77–94.

Bollerslev, T., Engle, R. F. and Wooldridge, J. M. (1988). A capital asset pricing model
with time-varying covariances, Journal of political Economy 96(1): 116–131.

Burkholder, D. L. (1988). Sharp inequalities for martingales and stochastic integrals,
Astérisque (157-158): 75–94.

Chernozhukov, V., Chetverikov, D. and Kato, K. (2015). Comparison and anti-concentration
bounds for maxima of Gaussian random vectors, Probability Theory and Related Fields
162(1-2): 47–70.

El Machkouri, M., Volný, D. and Wu, W. B. (2013). A central limit theorem for stationary
random fields, Stochastic Processes and their Applications 123(1): 1–14.

Hafner, C. M. and Preminger, A. (2009). On asymptotic theory for multivariate garch
models, Journal of Multivariate Analysis 100(9): 2044–2054.

Hansen, E. and Rahbek, A. (1998). Stationarity and asymptotics of multivariate ARCH time
series with an application to robustness of cointegration analysis, Preprint. University of
Copenhagen .

Rudelson, M. and Zhou, S. (2012). Reconstruction from anisotropic random measurements,
Proceedings of the 25th Annual Conference on Learning Theory, Vol. 23, pp. 10.1–10.28.

Wu, W. B. (2005). Nonlinear system theory: Another look at dependence, Proceedings of the
National Academy of Sciences of the United States of America, Vol. 102, National Acad
Sciences, pp. 14150–14154.

Wu, W. B. and Shao, X. (2004). Limit theorems for iterated random functions, Journal of
Applied Probability 41(2): 425–436.

22



Wu, W.-B. and Wu, Y. N. (2016). Performance bounds for parameter estimates of
high-dimensional linear models with correlated errors, Electronic Journal of Statistics
10(1): 352–379.

Zhang, D. and Wu, W. B. (2017). Gaussian approximation for high dimensional time series,
The Annals of Statistics 45(5): 1895–1919.

23



 
 
 
 

IRTG 1792 Discussion Paper Series 2018 
 
For a complete list of Discussion Papers published, please visit 
irtg1792.hu-berlin.de. 
 
 
 
001 "Data Driven Value-at-Risk Forecasting using a SVR-GARCH-KDE Hybrid" 

by Marius Lux, Wolfgang Karl Härdle and Stefan Lessmann, January 
2018. 

002 "Nonparametric Variable Selection and Its Application to Additive 
Models" by Zheng-Hui Feng, Lu Lin, Ruo-Qing Zhu asnd Li-Xing Zhu, 
January 2018. 

003 "Systemic Risk in Global Volatility Spillover Networks: Evidence from 
Option-implied Volatility Indices " by Zihui Yang and Yinggang Zhou, 
January 2018. 

004 "Pricing Cryptocurrency options: the case of CRIX and Bitcoin" by Cathy 
YH Chen, Wolfgang Karl Härdle, Ai Jun Hou and Weining Wang, January 
2018. 

005 "Testing for bubbles in cryptocurrencies with time-varying volatility" by 
Christian M. Hafner, January 2018. 

006 "A Note on Cryptocurrencies and Currency Competition" by Anna 
Almosova, January 2018. 

007 "Knowing me, knowing you: inventor mobility and the formation of 
technology-oriented alliances" by Stefan Wagner and Martin C. Goossen, 
February 2018. 

008 "A Monetary Model of Blockchain" by Anna Almosova, February 2018. 
009 "Deregulated day-ahead electricity markets in Southeast Europe: Price 

forecasting and comparative structural analysis" by Antanina Hryshchuk, 
Stefan Lessmann, February 2018. 

010 "How Sensitive are Tail-related Risk Measures in a Contamination 
Neighbourhood?" by Wolfgang Karl Härdle, Chengxiu Ling, February 
2018. 

011 "How to Measure a Performance of a Collaborative Research Centre" by 
Alona Zharova, Janine Tellinger-Rice, Wolfgang Karl Härdle, February 
2018. 

012 "Targeting customers for profit: An ensemble learning framework to 
support marketing decision making" by Stefan Lessmann, Kristof 
Coussement, Koen W. De Bock, Johannes Haupt, February 2018. 

013 "Improving Crime Count Forecasts Using Twitter and Taxi Data" by Lara 
Vomfell, Wolfgang Karl Härdle, Stefan Lessmann, February 2018. 

014 "Price Discovery on Bitcoin Markets" by Paolo Pagnottoni, Dirk G. Baur, 
Thomas Dimpfl, March 2018. 

015 "Bitcoin is not the New Gold - A Comparison of Volatility, Correlation, 
and Portfolio Performance" by Tony Klein, Hien Pham Thu, Thomas 
Walther, March 2018. 

016 "Time-varying Limit Order Book Networks" by Wolfgang Karl Härdle, Shi 
Chen, Chong Liang, Melanie Schienle, April 2018. 

017 "Regularization Approach for NetworkModeling of German EnergyMarket" 
by Shi Chen, Wolfgang Karl Härdle, Brenda López Cabrera, May 2018. 

018 "Adaptive Nonparametric Clustering" by Kirill Efimov, Larisa Adamyan, 
Vladimir Spokoiny, May 2018. 

019 "Lasso, knockoff and Gaussian covariates: a comparison" by Laurie 
Davies, May 2018. 

 
 
 
 
 

IRTG 1792, Spandauer Straße 1, D-10178 Berlin 
http://irtg1792.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the IRTG 1792. 
 



 
 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 
 

IRTG 1792, Spandauer Straße 1, D-10178 Berlin 
http://irtg1792.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the IRTG 1792. 
 

IRTG 1792 Discussion Paper Series 2018 
 
For a complete list of Discussion Papers published, please visit 
irtg1792.hu-berlin.de. 
 
 
 
020 "A Regime Shift Model with Nonparametric Switching Mechanism" by 

Haiqiang Chen, Yingxing Li, Ming Lin and Yanli Zhu, May 2018. 
021 "LASSO-Driven Inference in Time and Space" by Victor Chernozhukov, 

Wolfgang K. Härdle, Chen Huang, Weining Wang, June 2018. 
 
 
 
 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 
 

IRTG 1792, Spandauer Straße 1, D-10178 Berlin 
http://irtg1792.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the IRTG 1792. 
 

IRTG 1792, Spandauer Straße 1, D-10178 Berlin 
http://irtg1792.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the IRTG 1792. 
 


	AA_Frontpage
	20180529_Vic_Wan_Huang_Hae
	Introduction
	The System Model
	Practical Examples

	Effective Prediction Using Sparsity Method
	Sparsity in SRE
	Multiplier Bootstrap for the Joint Penalty Level

	Valid Inference on the Coefficients
	Confidence Interval for a Single Coefficient
	Joint Confidence Region for Simultaneous Inference

	Main Theorems
	Near Oracle Inequalities under IC
	Gaussian Approximation for Dependent Data
	Multiplier Block Bootstrap Procedure
	Joint Penalty over Equations
	Post-Model Selection Estimation
	Simultaneous Inference

	Simulation Study
	Estimation with a Jointly Selected Penalty Level
	Simultaneous Inference

	Empirical Analysis: Textual Sentiment Spillover Effects
	Data Source
	Model Setting and Results


	proofsupplement20180519
	Proofs of Single Equation Estimation
	Proofs of Joint Equation Estimation
	Plausibility of RE and RSE Conditions
	Proofs of Simultaneous Inference
	Some Useful Lemmas
	Proofs of Section 5.6


	ZZ_Endpage

