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Abstract

In the present paper we propose a new method, the Penalized Adaptive
Method (PAM), for a data driven detection of structural changes in sparse linear
models. The method is able to allocate the longest homogeneous intervals over
the data sample and simultaneously choose the most proper variables with the
help of penalized regression models. The method is simple yet flexible and can
be safely applied in high-dimensional cases with different sources of parameter
changes. Comparing with the adaptive method in linear models, its combina-
tion with dimension reduction yields a method which properly selects significant
variables and detects structural breaks while steadily reduces the forecast error
in high-dimensional data.
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1 Introduction

Parameter instability is widely recognized as a crucial issue in forecasting. This insta-

bility is caused not only by time-variation of coefficients associated with predictors, but

also by varying significance of the predictors themselves. Variable selection is particu-

larly important when the true underlying model has a sparse representation. Ensuring

high prediction accuracy requires high quality of discovering the relevant variables and

an ability of adjusting for time-varying coefficient loadings. To handle such instabil-

ity it is common to use only the most recent rather than all available observations to

estimate the coefficients and identify significant predictors at each point of time.

In out-of-sample forecasting, model parameters are generally estimated using either

a recursive or rolling window estimation method. These methods are widespread in

many areas, especially in macroeconomics and finance, because structural changes

are often encountered. However, none of them answers the question of how to select

the proper intervals in which the coefficient loadings can be considered to be stable.

Chen and Niu (2014), Chen and Spokoiny (2015) and Niu et al. (2017), among others,

addressed this issue by applying a data driven adaptive window choice (Polzehl and

Spokoiny (2005), Polzehl and Spokoiny (2006)) to detect the longest homogeneous

intervals over the financial and macroeconomic data samples. The method enables us

to detect structural shifts and select large subsamples of constant coefficient loadings

for predictors, but switches to smaller sample sizes if a structure change is detected.

The procedure is fully data driven and parameters are tuned following a propagation-

separation approach.

As pointed out by Chen and Niu (2014) the short memory view is quite realistic

and easily understood in the context of business cycle dynamics, policy changes and

structural breaks. However, in this work we face another question, where we consider

the stability of the coefficient loadings and their significance.

Considering the variable selection problem, the traditional criteria such as AIC and

BIC become infeasible due to expensive computation in high-dimensional data (Zou

and Li, 2008). One of the possibilities at hand for dealing with large dimensions is

the LASSO introduced by Tibshirani (1996) and recently applied to a system of high-

dimensional regression equations by Chernozhukov et al. (2018). Further, Fan and Li

(2001) advocate the use of other penalty functions satisfying certain conditions so the

resulting penalized likelihood estimator possesses the properties of sparsity, continuity

and unbiasedness while introducing the Smoothly Clipped Absolute Deviation (SCAD)

penalty. Moreover, Fan and Li (2001) gave a comprehensive overview of feature selec-
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tion and proposed a unified penalized likelihood framework to approach the problem

of variable selection. Alternatively, the recent advances of variable selection enable us

to construct efficient estimation methods. Zou and Li (2008) developed the one-step

SCAD algorithm to solve the estimation procedures based on nonconcave penalized

likelihood problems. For the SCAD penalty it has been shown that for the appropriate

choice of the regularization parameter the nonconcave penalized likelihood estimates

perform as well as the oracle procedure in terms of selecting the correct subset of

covariates and consistent estimation of the true nonzero coefficients.

Although both the adaptive method and penalized regression models enjoying ora-

cle properties increase prediction accuracy compared with traditional least squares or

maximum likelihood methods, neither of them can provide a complete solution when

dealing with parameter instability. On one hand, the adaptive algorithm associates

nonzero coefficients to all of the predictors which may result in a too large model.

On the other hand, treating the whole sample size as a stationary data and perform-

ing variable selection and coefficient shrinkage to fit the model also contradicts the

economic background, since it is known that there are structural breaks and regime

switches observable throughout history. Thus, the whole sample size should not be

considered as homogeneous.

It seems unwise to directly use some of the penalized regression methods to deal with

the macroeconomic problems. It is because predictors can be important during partic-

ular periods of time and insignificant in others when the economic situation changes.

Therefore we propose to do the break point detection simultaneously with the variable

selection in a fully data driven way.

In this paper we derive a new method - the Penalized Adaptive Method (PAM) - which

can handle all of the previously described challenges. It provides a new way to per-

form variable selection and structural breaks detection at the same time, i.e. a way to

capture parameter instability. With the use of PAM one can detect the longest homoge-

neous intervals observable throughout the data sample and simultaneously identify the

relevant predictors which improves the performance of the out-of-sample forecasting.

In the derived approach we assume that the local model with homogeneous parame-

ters will hold with high probability for the forecast horizon and can be automatically

identified.

The advantages of PAM are documented by applying the method to the excess bond

risk premia modelling problem. Comparison of the in-sample and out-of-sample fit

of our proposed method with the baseline models from Cochrane and Piazzesi (2005)

and Ludvigson and Ng (2009) shows significant improvement in terms of various model
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accuracy measures when applying the former.

The rest of the paper is organized as follows. In Section 2 we shortly describe the

propagation-separation approach and the penalized regression method SCAD with its

one-step algorithm developed by Zou and Li (2008). Further into the section we then

combine those two methods into the so-called PAM. In Section 3 we perform the sim-

ulation study. Section 4 deals with the application of PAM to a real dataset consisting

of excess bond returns and macrovariables observed on the market. The theoretical

results are shown in Section 5 and Section 6 concludes.

Both simulation study and real data application were performed with help of R software

(R Core Team, 2014) and the codes are available on quantlet.de.

2 Penalized Adaptive Method

As mentioned previously, there are several approaches on how to model time-variation

in coefficient loadings. One can simply use rolling windows as it was done for example

in Härdle et al. (2016), where the authors modelled time variation observable on the

financial market. However, this approach has the drawback of selecting the window size

prior to model fitting. Although it may be done in some cases using external informa-

tion about the behaviour of the data, e.g observable business cycles or seasonality, in

general it stays an unsolved issue affecting the interpretability of the statistical results.

2.1 Propagation-Separation Approach

In the proposed framework we aim to circumvent the use of a priori assumptions about

the data behaviour by selecting the windows in a fully data driven way. We will do so

by implementing the propagation-separation approach of Polzehl and Spokoiny (2005)

and Polzehl and Spokoiny (2006) and its extension by Suvorikova et al. (2015). In the

context of model fitting, the propagation condition means that the local model can be

extended to a longer interval under an assumption of homogeneity. To the opposite,

separation means that the extension is restricted to the homogeneous interval. Let us

introduce the notation we are going to use throughout this paper, in order to denote

the propagation-separation approach from the mathematical point of view.

Assume a linear model with a vector of responses Y = (Y1, Y2, . . . , Yn)>, a vector of

parameters β = (β1, . . . , βp)
>, an (n× p) design matrix X and a vector of independent
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errors εi with zero mean and variance σ2. In this work we assume that the parameter

vector β is sparse, i.e. only some number q < p of the true coefficients are nonzero.

Now divide the sample of n observations into M nested subintervals. Then for each

time point t we have

I
(1)
t ⊂ I

(2)
t ⊂ I

(3)
t ⊂ . . . ⊂ I

(M)
t ,

with n
(m)
t observations in each subinterval I

(m)
t , for m = 1, . . . ,M . The number of

subintervals M is arbitrary, however it should be reasonably small, so that computation

and model fitting is feasible. Increments of observations between two adjacent intervals

do not have to be constant.

The considered problem of testing homogeneity can be stated in terms of hypothesis

testing as follows

H0 : Yt ∼ P1, for t ∈ I(m)
t

H1 :

{
Yt ∼ P1, for t ∈ I(m−1)

t

Yt ∼ P2, for t ∈ I(m)
t \ I(m−1)

t ,
(1)

for m = 2, . . . ,M and where P1,P2 are measures defined on a parametric family P(θ),

i.e. P1,P2 ∈ {P(θ), θ ∈ Θ ⊆ Rp}.

The algorithm starts with fitting a local model with the maximum likelihood (ML)

method for the shortest interval I
(1)
t

β̃
(1)
t = arg max

β
L(β, I

(1)
t ),

where L(·) stands for the joint log-likelihood function. The interval I
(1)
t is homogeneous

by assumption, therefore should be short enough so this assumption holds with high

probability. Let us denote the so called adaptive estimator of the m-th interval by

β̂
(m)
t . The adaptive estimator of the first subinterval I

(1)
t is equal to the ML estimator

β̃
(1)
t , which holds because of the previously stated assumption of local homogeneity

throughout the interval I
(1)
t .

The propagation-separation approach is then applied, meaning that we are testing for

significant changes across the neighbouring subsamples with the use of the following

generalized likelihood ratio test statistic adapted from Suvorikova et al. (2015)

T
(m)
Lt = max

β
L(β, I

(m−1)
t ) + max

β
L(β, I

(m)
t \ I(m−1)

t )−max
β

L(β, I
(m)
t ) (2)

A correctly calibrated set of critical values ζ1, . . . , ζM is crucial in quantifying the

significance level of the given test. We refer to Chen and Niu (2014) or Niu et al. (2017)
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for a calibration relevant for an unpenalized linear model without use of the generalized

likelihood ratio principle or to Suvorikova et al. (2015) for a calibration using multiplier

bootstrap method (Spokoiny and Zhilova, 2015) which will be described later.

Having the set of critical values ζ1, . . . , ζM , the algorithm proceeds as follows

Adaptive Algorithm

1. Initialization: β̂
(1)
t = β̃

(1)
t

2. m = 2

3. While T
(m)
Lt ≤ ζm and m ≤M

β̂
(m)
t = β̃

(m)
t = arg max

β
L(β, I

(m)
t )

m = m+ 1

4. Final estimate β̂
(l)
t = β̂

(m−1)
t , for l ≥ m

After detecting a structure change in the dataset using step 3 from the algorithm, the

final estimate from step 4 is the ML estimate from the longest identified homogeneous

interval and it is used as a valid estimate also for longer subsamples. Since we want

to correctly identify all of the possible change points in our data, after detecting the

change we initiate the algorithm from the beginning with a smaller data sample.

2.2 SCAD Penalty

So far we were dealing with a linear model, where the number of parameters is pre-

defined or chosen by one of the variable selection methods available. As mentioned

previously, variable selection with the use of BIC or AIC criteria might not be com-

putationally feasible when dealing with high-dimensional data. Therefore our aim is

to combine the foregoing adaptive algorithm with penalized regression methods, which

serves the objective of simultaneous dimension reduction and nonstationarity detection.

For this purpose we are using the smoothly clipped absolute deviation (SCAD) method

introduced by Fan and Li (2001). The reason why we choose the nonconcave SCAD

penalty is that this penalized method yields an oracle estimator under some conditions

on a shrinkage parameter λ. Moreover, SCAD estimators enjoy three important prop-

erties desirable in penalized regression model fitting, which are sparsity, continuity and

unbiasedness. All of them play a crucial role in PAM when it comes to calibration of

critical values and, finally, longest homogeneous subinterval identification.

However, a drawback of SCAD penalty is its nonconcavity. Fan and Li (2001) proposed
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an algorithm with local quadratic approximation (LQA) of SCAD penalty to be able

to perform the shrinkage and selection as a minimization problem. Zou and Li (2008)

revisited the task of finding the solution to penalized likelihood problem and devel-

oped an algorithm with local linear approximation (LLA) of the broad class of penalty

functions, with SCAD among others. In their work they showed the proposed method

outperforms the LQA approach, in a sense that it automatically adapts a sparse solu-

tion. What is more, the computational cost is significantly reduced by using only one

iteration step as the efficiency of the algorithm is the same as for the fully iterative

method. This holds under the assumption that the initial estimators are reasonably

chosen.

When one deals with a model where the number of parameters p is larger than the

number of observations n, LASSO serves as a good initial step of the iterative algo-

rithm and under the irrepresentable condition (Zhao and Yu, 2006) maintains oracle

properties. Kim et al. (2008) developed an efficient algorithm similar to LLA for the

case of high-dimensional data which always converges to a local minimum. Moreover,

they showed oracle properties of SCAD for this case.

In the present paper we perform the penalized (quasi) likelihood estimation of the

vector of parameters, i.e. we maximize the objective function

Q(β) =
n∑
i=1

li(β)− n
p∑
j=1

pλ(|βj|), (3)

with li(·) a non-penalized log-likelihood function for an observed (p+ 1)-tuple (Yi, Xi)

and pλ(·) a penalty function with parameter λ > 0. The SCAD penalty is defined as a

continuous differentiable function with a derivative

p′λ(|βj|) = λ

{
I(|βj| ≤ λ) +

(aλ− |βj|)+

(a− 1)λ
I(|βj| > λ)

}
,

for some a > 2 (a = 3.7 was suggested as a generally good choice) and λ > 0, where

by I(·) we denote an indicator function and (·)+ = max(0, ·).

Following the LLA approach by Zou and Li (2008), the general penalty function pλ(|βj|)
can be locally approximated by

pλ(|βj|) ≈ pλ(|β(0)
j |) + p′λ(|β

(0)
j |)(|βj| − |β

(0)
j |),

for some βj ≈ β
(0)
j . Then the k-th iteration step estimator of their proposed procedure

is defined as follows

β̂(k+1) = arg max
β

{
n∑
i=1

li(β)− n
p∑
j=1

p′λ(|β̂
(k)
j |)|βj|

}

7



for k = 0, 1, . . ., and β̂(0) being a non-penalized maximum likelihood estimator. The

iteration process stops if the sequence {β̂(k)} converges. We refer to Zou and Li (2008)

for the proof of convergence and oracle properties of the one-step SCAD estimator

under condition that the penalty parameter λ satisfies

√
nλn →∞ and λn → 0. (4)

Here we use a subscript n to denote the dependency of λn on number of observations

n in the model.

The choice of the parameter λ over a grid of values satisfying conditions (4) is performed

with the use of BIC modified for the penalized regression case as follows

BICλ = log(σ̂2
λ) + q

log(n)

n
Cn, (5)

where σ̂2
λ = n−1SSEλ = n−1‖Y −Xβ̂(λ)‖2

2 and Cn is some positive constant. Here we

denote β̂(λ) explicitly as a function of λ in order to indicate its dependency on the choice

of the penalization parameter. Consistency of (5) in selecting a true model was proved

by Wang and Leng (2007), where they discussed diverging number of parameters and

therefore proposed Cn = log{log(p)}. Chand (2012) discussed the choice of the constant

Cn in a greater detail. For moderate to large sample sizes with a fixed parameter

dimension p he showed the BIC performs best with Cn =
√
n/p.

2.3 Penalized Adaptive Method

As discussed before, both the propagation-separation approach and penalized SCAD

regression have their advantages in capturing non-stationarity and dimension reduc-

tion, respectively. To combine the properties of these two methods, we propose PAM.

In PAM we are building a procedure, which deals with non-stationary and high-

dimensional data simultaneously. The adaptive way of choosing a window size helps

us in determining a homogeneous subsample and the penalized regression reduces the

dimension.

One of the differences from the previously introduced propagation-separation approach

lies in using a penalized likelihood function Q(β) rather than its non-penalized coun-

terpart, i.e. the test statistic takes the form

T
(m)
t = max

β
Q(β, I

(m−1)
t ) + max

β
Q(β, I

(m)
t \ I(m−1)

t )

−max
β

Q(β, I
(m)
t ), m = 2, . . . ,M, (6)
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whereQ(β, ·) is defined as previously in equation (3) with the second argument denoting

the interval over which the function is evaluated. Here we also adapt the notation for

the penalized case; β̃
(m)
t now denotes a SCAD estimator over the subinterval I

(m)
t , i.e.

β̃
(m)
t = arg max Q(β, I

(m)
t ) and β̂

(m−1)
t = arg max Q(β, I

(m−1)
t ) is a SCAD estimator

from the previously accepted homogeneous subinterval I
(m−1)
t . Nevertheless, a major

difference comes into play when one focuses on calibration of the critical values as

a crucial part of the adaptive method itself. Non-asymptotic distribution of the test

statistic is unknown for the non-penalized case in (2) and for the penalized case (6) one

important question arises; how do we compute confidence sets for sparse estimators of

β?

Fan and Li (2001) derived a formula for variance approximation of the non-zero com-

ponents of the SCAD estimator of β. However, as pointed out in their work, estimated

standard deviations for zero components of the estimator are 0 and therefore one is

unable to do any inference related to those elements of vector β. This problem was

also mentioned in Tibshirani (1996), p. 273. Chatterjee and Lahiri (2011) proposed

a remedy developed a modified residual bootstrap which, under some mild conditions,

consistently estimates the mean squared error (MSE) of all of the parameter values,

both zero and nonzero, of the LASSO method. With this result one is then able to

quantify the uncertainty associated with the estimation procedure and construct con-

fidence regions for all of the values of vector β. Moreover, they showed that for the

adaptive LASSO (Zou, 2006) the residual bootstrap yields consistent MSE estimate

even without use of any modification. Since the one-step SCAD procedure can be eas-

ily related to the adaptive LASSO method by introducing a different set of weights for

the elements of β, those results apply also to this case. Stating the theoretical results

is, however, beyond the scope of this paper.

Despite the appealing conclusions about the applicability of the residual bootstrap, we

do not pursue the method in this work. Instead, we perform bootstrap on the observed

(p+ 1)-tuples (Yi, Xi), i = 1, . . . , n, where Xi ∈ Rp is the i-th row of the design matrix

X. Since we are interested in evaluating likelihood based confidence sets, one of the

possibilities at hand is a so-called wild or multiplier bootstrap (Härdle and Mammen,

1993). For the case of non-penalized likelihood Spokoiny and Zhilova (2015) developed

useful theoretical results valid even for small or moderate sample sizes with possible

model misspecification. Suvorikova et al. (2015) then extended the foregoing work into

change point detection problem. In this section we are going to relate those results

with the method used for critical values calibration in PAM.
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2.3.1 Multiplier Bootstrap for Penalized Likelihood

In order to describe the multiplier bootstrap procedure for likelihood based functions,

we closely follow Spokoiny and Zhilova (2015) slightly extending their notation for the

penalized likelihood case. Let us use the notation from previous sections for the non-

penalized log-likelihood function L(β) =
∑n

i=1 li(β), i.e. li(β) denotes the parametric

logarithmic density of the i-th observation in a given sample. Assume a set of i.i.d.

scalar random variables ui, i = 1, . . . , n, which are independent of Y and X, if X

is considered random. Further assumptions about the so-called multipliers are that

E(ui) = 1, Var(ui) = 1 and E{exp(ui)} <∞. Multiplying the elements of L(β) by the

defined random variables ui we get the bootstrap penalized log-likelihood function as

follows

Q◦(β) =
n∑
i=1

ui

{
li(β)−

p∑
j=1

pλ(|βj|)

}
. (7)

Denoting E◦(·) = E(·|Y, λ) we then can write that E◦Q◦(β) = EQ(β) and

arg max
β

E◦Q◦(β) = arg max
β

Q(β) = β̃,

which follows from the properties of the SCAD estimator and the LLA algorithm.

Please note that the target parameter in the bootstrap world coincides with the penal-

ized MLE of the real world. The penalized MLE of the bootstrap world is then defined

as

β̃◦ = arg max
β

Q◦(β).

It is important to note, that the parameter λ of the SCAD method is the same for

Q(β) and Q◦(β). Then one circumvents the problem of penalizing elements of vector β

by a different amount in the real and the bootstrap case, which could lead to unstable

results in a finite sample size situation. Asymptotically, the parameter λ approaches

zero, see (4), as needed for the oracle properties of the SCAD estimator, and therefore

the condition of equal λ’s is no longer required.

2.3.2 Critical Values Calibration

If one wishes to approximate the distribution of the test statistic from (6), it can be

done (up to some approximation error in finite samples) by using the bootstrapped

penalized likelihood ratio

T
◦(m)
t = max

β
Q◦(β, I

(m−1)
t ) + max

β
Q◦(β, I

(m)
t \ I(m−1)

t )

−max
β

Q◦(βts, I
(m)
t ), (8)
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where the maximization of the bootstrapped penalized likelihood function of the whole

interval I
(m)
t is taken over values of βts satisfying

βts =

 β for I
(m−1)
t ;

β + β̃t12 for I
(m)
t \ I(m−1)

t .

Here the term

β̃t12 = argmax
β

Q(β, I
(m)
t \ I(m−1)

t )− argmax
β

Q(β, I
(m−1)
t ) (9)

corrects a bias of the bootstrap calibration. One can then use this approximation for

finding critical values for the aforementioned test statistic under H0. Specifically, let

1−α ∈ (0, 1) be a determined confidence level of a testing procedure. It is then straight-

forward to follow, that the approximation of a desired quantile of the distribution of

the generalized penalized likelihood ratio test statistic from (6)

ζ
∗(m)
tα = inf{z ≥ 0 : P(T

(m)
t > z) ≤ α}

can be evaluated as

ζ
◦(m)
tα = inf{z ≥ 0 : P◦(T

◦(m)
t > z) ≤ α}, (10)

where P◦ denotes the conditional probability given observations of Y and values of λ. In

Section 5 we justify the embedding of the multiplier bootstrap into the approximation

of the distribution of our test statistic T
(m)
t from (6). For the theory of the non-

penalized likelihood setting in finite samples we refer the reader to Suvorikova et al.

(2015).

As discussed previously, SCAD penalty yields oracle properties only under some condi-

tions the parameter λ has to satisfy, mainly its dependence on the number of observa-

tions n in the sample. In order to assess the properties of the bootstrapped penalized

likelihood ratio from (8) which would mirror a homogeneous situation, the third right-

hand side term of (8) is evaluated with the use of λ from the first right-hand side term

adjusted for the longer sample size. Remember, the second parameter of the SCAD

penalty function, a, is kept constant and set to 3.7.

We implement the multiplier bootstrap into determining quantiles of the test statistic

from (6) by simulating a large number nb of i.i.d. multipliers ui, i = 1, . . . , n
(M)
t .

Computing

T
◦b(m)
t = max

β
Q◦b(β, I

(m−1)
t ) + max

β
Q◦b(β, I

(m)
t \ I(m−1)

t )

−max
β

Q◦b(βts, I
(m)
t ),

11



for each b = 1, . . . , nb we get an approximate distribution of T
(m)
t under the homoge-

neous situation and can evaluate the respective (1−α)% quantile as in (10). Comparing

the test statistic from (6) to the defined critical value we either reject the homogeneity

hypothesis H0, if T
(m)
t > ζ

◦(m)
tα , for the given confidence level, or move to the next step

in PAM and prolong the subsample regarded as homogeneous.

3 Simulation Study

In order to justify the use of multiplier bootstrap in critical values calibration for

the penalized likelihood ratio test we present a simulation study. Using the LLA

algorithm of Zou and Li (2008) combined with glmnet by Friedman et al. (2010), we

need multipliers ui, i = 1, . . . , n to be non-negative. Therefore we propose to use either

ui ∼ Exp(1), ui ∼ Pois(1) or ui having a bounded distribution on interval [0, 4] with a

pdf

f(ui) =


3

14
if 0 ≤ ui ≤ 1;

1

12
1 < ui ≤ 4.

(11)

In the simulation study we consider a linear model Y = Xβ + ε with a number of

observations n and a number of parameters p from which only q < p are nonzero.

Design matrix X is taken from a p-dimensional normal distribution as follows

{Xi}ni=1 ∼ Np(0,Σ),

with elements {σij}pi,j=1 of the covariance matrix Σ satisfying σij = 0.5|i−j|. Error

terms εi are simulated as i.i.d. from N(0, 1). We consider n = 100, 200, 400 to assess

performance for small to medium sized samples and for convenience we use M = 2

which splits the samples into two equally sized parts. Number of parameters p is set to

be p = 10 and for each n we define q = 3, 5 as number of real nonzero parameters, i.e.

β = (1, 1, 1, 0, . . . , 0)> or β = (1, 1, 1, 1, 1, 0 . . . , 0)>. For each of the studied settings we

simulated 1 000 scenarios and for each scenario we simulated 1 000 ui’s with the three

aforementioned distributions in order to obtain an approximation of the distribution

of the penalized likelihood ratio.

For the choice of the penalization parameter λ we defined BIC as in (5) with Cn =

max(1,
√
n/p). This was specified according to suggestions from Chand (2012) and our

own simulations, which are not reported here.

Summary of the simulations is given in Table 1. We set α = 0.1, 0.05, 0.025, 0.01 to

compute the upper quantiles of the bootstrap penalized likelihood ratio distribution.
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In Table 1 one can see the percentage of occurrences of the event, when the real like-

lihood ratio test statistic T was smaller than or equal to the respective quantile of its

approximated distribution.

Confidence level
n p q L(ui) 90 % 95 % 97.5 % 99 %

100 10 3
Bounded 73.2 81.6 86.2 90.8
Exp(1) 72.6 80.7 86.7 91.2
Pois(1) 83.7 89.3 93.5 96.7

100 10 5
Bounded 65.7 74.8 82.1 88.9
Exp(1) 64.8 74.3 81.9 89.3
Pois(1) 77.7 84.9 91.5 96.6

200 10 3
Bounded 90.6 94.5 97.3 98.6
Exp(1) 89.9 94.9 97.0 98.7
Pois(1) 93.2 96.2 98.4 99.2

200 10 5
Bounded 86.9 92.8 96.4 98.2
Exp(1) 86.0 92.7 96.3 98.2
Pois(1) 90.8 95.7 97.8 99.3

400 10 3
Bounded 96.9 98.1 99.4 99.8
Exp(1) 96.7 98.2 99.2 99.8
Pois(1) 97.1 98.4 99.4 99.9

400 10 5
Bounded 94.1 97.2 98.5 99.0
Exp(1) 93.4 97.2 98.5 99.2
Pois(1) 94.9 97.8 98.6 99.3

400 20 3
Bounded 96.7 98.6 99.6 99.8
Exp(1) 96.7 98.5 99.5 99.7
Pois(1) 97.8 99.3 99.6 99.9

400 20 5
Bounded 94.5 97.3 98.7 99.4
Exp(1) 93.9 97.0 98.7 99.5
Pois(1) 96.0 98.1 99.0 99.6

Table 1: Empirical coverage probabilities
PAMsimLR

As can be seen from Table 1 the performance of the quantiles obtained by multiplier

bootstrap method largely depends on the number of observations n in the respective pe-

nalized likelihood functions and on the number of active parameters q as well. Bounded

and exponentially distributed multipliers lead to very similar results, which are both

outperformed by the multipliers generated from Pois(1) distribution. This difference

is especially pronounced in cases of n = 100 and n = 200.

For small samples (n = 100), the SCAD method tends to overfit the true model and

therefore there is a larger variance of estimator of the vector of parameters β, both in

the real and the bootstrapped penalized likelihood case, which leads to underestimation

of the real quantiles of the penalized likelihood ratio statistic by the bootstrapped ones.
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With a growing sample size, the performance of the multiplier bootstrap improves

and finally leads to more conservative bootstrapped quantiles. This is a result of

combination of SCAD method and a bootstrap. As discussed before, when dealing

with sparse models, it is important to be able to perform statistical inference not only

for the nonzero parameters, but for the zero components of the parameter vector as well.

Here the multiplier bootstrapped quantiles, even if more conservative, are applicable,

as they cover the true confidence regions of the vector of parameters of the studied

model.

The issue of conservative quantiles can be seen as the case from Spokoiny and Zhilova

(2015) which was regarded as a misspecified model. Misspecification introduces bias

into the model of interest and so does SCAD. As discussed in previous sections and

proved in Zou and Li (2008), SCAD attains oracle properties only with a growing

sample size n, which is not always available in the real world data.

3.1 Change Point Detection

In the following we perform a simulation study regarding the use of bootstrapped

critical values in a change point detection, i.e. in the propagation-separation approach

to adaptive window choice. We again assume a linear model Y = Xβ + ε, with the

same design matrix X and the error term ε as before. For this study we use a number

of subintervals either M = 10 or M = 5 with n
(1)
t = 50 and n

(1)
t = 100, respectively.

The size of the increments between successive subinterval is an arbitrary choice as

PAM is in this matter a very flexible method. For simplicity we keep the increments

constant, i.e. n
(m+1)
t − n(m)

t = 50 or 100, for m = 1, . . . ,M − 1. Then we define the

true parameter vector β∗i ∈ Rp, p = 10, i = 1, . . . , n
(M)
t as

β∗i =

{
(1, 1, 1, 1, 1, 0, . . . , 0) if i < icp;

(1, 1, 1, 0, 0, 0, . . . , 0) i ≥ icp,

where icp denotes an observation with a change point. Further, for comparison, we

use multipliers ui with Exp(1), Pois(1) and bounded distributions, where the latter is

defined by (11). We generated 1 000 scenarios with four different icp’s in case of M = 10

and for three icp’s in case of M = 5. For each scenario there was only one change point

occurring throughout the set of all observations n
(M)
t = 500 and the confidence level

for the hypothesis testing was set to (1−α) = 95%. Results of the multiplier bootstrap

performance for the described settings are summarized in Table 2 and Table 3.

In the aforementioned tables we denote a percentage of correctly identified change

14



icp 50 100 200 400

Bounded
Corr 99.9 100.0 100.0 99.9
1stCorr 99.9 80.0 57.9 33.8

Exp(1)
Corr 99.9 100.0 100.0 100.0
1stCorr 99.9 78.9 57.1 33.6

Pois(1)
Corr 99.9 100.0 99.9 100.0
1stCorr 99.9 88.8 74.5 53.0

Table 2: Percentage of correctly identified change points in number of active parameters

at 95 % confidence level with use of ui
iid∼ bounded from (11), ui

iid∼ Exp(1) and ui
iid∼

Pois(1), n
(m−1)
t − n(m)

t = 50, M = 10.

PAMsimCP

icp 100 200 400

Bounded
Corr 100.0 99.8 100.0
1stCorr 100.0 93.3 84.9

Exp(1)
Corr 100.0 99.8 100.0
1stCorr 100.0 93.2 84.1

Pois(1)
Corr 100.0 99.9 100.0
1stCorr 100.0 95.1 88.8

Table 3: Percentage of correctly identified change points in number of active parameters

at 95 % confidence level with use of ui
iid∼ bounded from (11), ui

iid∼ Exp(1) and ui
iid∼

Pois(1), n
(m−1)
t − n(m)

t = 100, M = 5.

PAMsimCP

points by “Corr” and “1stCorr” stands for a percentage of correctly identified change

points, which were identified as the first ones occurring.

From Table 2 we can see that our proposed PAM identified the true change point in

almost all of the generated scenarios. However in the rows of “1stCorr” one can see

the consequences of the underestimated quantiles of the real penalized likelihood ratio.

In every prolongation of the subintervals, roughly 10 % (in case of Poisson distributed

multipliers) or 20 % (in case of other selected distributions) of scenarios are falsely

rejected to be homogeneous, which results in a worse performance of the PAM if the

true change point occurs in later sections of the data sample. This effect can be

partially overcome by using larger increments between the successive subintervals, as

can be seen from Table 3. The false rate in this case is significantly smaller and true

change points are again correctly identified in almost every generated scenario.

In the previous change point detection simulation, the parameters of the model were
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cut off abruptly and set to zero, which resulted in a change of the number of active

parameters. In a real world scenario, the case of smaller changes in parameters might

be more common. Therefore in the next simulation we investigate performance of the

multiplier bootstrap in a change point detection, where the L1-norm of the vector of

parameters β was the subject of change, while the number of active parameters stayed

constant. We kept all of the scenario settings the same and simulated the change point

in β as follows

β∗i =

{
(1, 1, 1, 1, 1, 0, . . . , 0) if i < icp;

(1, 0.8, 0.6, 0.4, 0.2, 0, . . . , 0) i ≥ icp.

Results of the simulations are stated in Table 4 and Table 5. Percentage of correctly

identified change points and their occurrence are very similar to those from the previ-

ously generated scenarios in Table 2 and Table 3 and thus confirm our inference from

above.

icp 50 100 200 400

Bounded
Corr 99.8 99.9 100.0 99.9
1stCorr 99.8 79.4 58.4 33.5

Exp(1)
Corr 99.9 99.8 99.9 99.8
1stCorr 99.9 79.5 57.1 33.8

Pois(1)
Corr 99.5 99.9 99.8 99.9
1stCorr 99.5 88.7 74.5 53.8

Table 4: Percentage of correctly identified change points in L1-norm of parameters at

95 % confidence level with use of ui
iid∼ bounded from (11), ui

iid∼ Exp(1) and ui
iid∼

Pois(1), n
(m−1)
t − n(m)

t = 50, M = 10.

PAMsimCP

4 Excess Bond Premia Modelling

In this section we use the previous results and apply PAM to the excess bond premia

modelling problem. Motivation for this application comes mainly from Cochrane and

Piazzesi (2005) and Ludvigson and Ng (2009), where they used linear model with macro

factors in order to forecast bond risk premium, which was regarded, by the expectation

hypothesis, as unforecastable in the past. Cochrane and Piazzesi (2005) reconsidered

the model of Fama and Bliss (1987), who proved that the expectation hypothesis does

not hold and compared it to their newly proposed factor model which was shown to

outperform the preceding one.
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icp 100 200 400

Bounded
Corr 100.0 99.9 100.0
1stCorr 100.0 93.2 84.5

Exp(1)
Corr 100.0 99.9 100.0
1stCorr 100.0 93.1 84.3

Pois(1)
Corr 100.0 99.9 100.0
1stCorr 100.0 95.2 88.8

Table 5: Percentage of correctly identified change points L1-norm of parameters at 95 %

confidence level with use of ui
iid∼ bounded from (11), ui

iid∼ Exp(1) and ui
iid∼ Pois(1),

n
(m−1)
t − n(m)

t = 100, M = 5.

PAMsimCP

However, all of the previous authors considered the coefficient loadings in their models

to be homogeneous throughout the whole sample size and if not, they assumed the

factor models compensate for the non-stationarity (Ludvigson and Ng, 2009). Our aim

is to introduce possible time-varying coefficient loadings into the modelling and also

propose a different dimension reduction which will not come from factor models, but

rather from a penalized regression. The advantage of the latter lies in direct association

of the modelled bond risk premia with actual macroeconomic variables, which simplifies

model interpretation. To the best of our knowledge such an approach has not yet been

implemented in the case of macroeconomic modelling.

As for the notation, we closely follow Cochrane and Piazzesi (2005) throughout the

chapter. Let us denote the log bond prices by p
(k)
t = log price of k-year discount bond

at time t. Then the log yield is determined by

y
(k)
t = −1

k
p

(k)
t .

Further, log forward rate for loans between time t+ k− 1 and t+ k specified at time t

is

f
(k)
t = p

(k−1)
t − p(k)

t

and the log holding period return from buying a k-year bond at time t and selling it

at time t+ 1 as a (k − 1)-year bond is denoted by

r
(k)
t+1 = p

(k−1)
t+1 − p(k)

t .

Finally, for the excess log returns we write

rx
(k)
t+1 = r

(k)
t+1 − y

(1)
t , for k = 2, 3, 4, 5.
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Cochrane and Piazzesi (2005) started with considering linear regressions with excess

log returns for all maturities as dependent variables and all of the related forward rates

as predictors, i.e.

rx
(k)
t+1 = β

(k)
0 + β

(k)
1 y

(1)
t + β

(k)
2 f

(2)
t + . . .+ β

(k)
5 f

(5)
t + ε

(k)
t+1, (12)

for k = 2, 3, 4, 5. Further they specified a single factor for modelling expected excess

returns for all k as follows

rx
(k)
t+1 = bk(γ0 + γ1y

(1)
t + γ2f

(2)
t + . . .+ γ5f

(5)
t ) + ε

(k)
t+1, (13)

where vector γ = (γ0, . . . , γ5)> is the same for all k = 2, 3, 4, 5 and bk satisfies
1
4

∑5
k=2 bk = 1 in order to allow for a separate identification of the given set of pa-

rameters.

In what follows we deviate from the cited work in the sense that we allow inclusion of

macro variables, or factors based on macro variables to be more specific, improves the

model fit and its forecasting performance. This serves our purpose, since with PAM

we can include a large number of covariates and reduce the dimension of the model

afterwards.

The factor model of Ludvigson and Ng (2009) is defined by the following

rx
(k)
t+1 = α>Ft + β>Zt + εt+1, (14)

where Ft is an (r×1) vector of latent common factors, α a corresponding vector of factor

loadings, Zt is a (s × 1) vector of directly observable covariates and βt its associated

parameter vector. For their empirical study, they chose the number of estimated factors

r = 8 and considered two models, one with the single forward factor of Cochrane and

Piazzesi (2005) included and one without. According to a minimized BIC criterion the

subset of either five, for the first case, or six, for the latter case, common factors was

selected. The description of their estimation method is omitted here and can be found

in the original work of Ludvigson and Ng (2009). Later in the section we take all of

the models (12), (13) and (14), both with five and six factors, as baselines with which

we compare the forecasting performance of PAM.

For our proposed model we use the raw data of Jurado et al. (2015), where we select

a subset of collected macro variables and for the sake of comparison with the models

of Ludvigson and Ng (2009) we follow their transformation suggestions and apply

them to the raw dataset. The selected predictors can be classified into three groups,

which capture the situation on the bond market, the stock market or describe the

macroeconomic environment. Complete list of the used macro variables and their
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transformations can be found in Table 6. In addition to the macroeconomic variables,

we also use log yield and log forward rates defined previously as explanatory variables.

Altogether the predictors yield a dimension of p = 36. The time span over which the

sample of covariates was taken is January 1960 to December 2010 and the observations

of bond risk premia as dependent variables were taken from January 1961 to December

2011.

Let us now specify the proposed model. For each k = 2, 3, 4, 5 we assume

rx
(k)
t+1 = β0t

(k) + β
(k)>
1t ft + β

(k)>
2t Mt + ε

(k)
t+1,

where ft = (y
(1)
t , f

(2)
t , . . . , f

(5)
t )>. Vector Mt then defines all of the macro variables from

Table 6. Apart from adding more predictors into the model, please note that we allow

for time-variation of the vector of parameters βt.

For our empirical study we consider increments between adjacent subintervals to be

4 years, i.e. nmt − nm−1
t = 48 for monthly observations. This comes from the fact,

that business cycles as defined by The National Bureau of Economic Research (NBER)

last on average around 5.5 years, therefore reducing this span and assuming it as

homogeneous sample is regarded as a reasonable choice. Moreover, from the ADNS

model of Chen and Niu (2014), where they focused on the short term explanation

of the macroeconomic situation, one can see that the average length of the stable

subsample is around 2.5-3.5 years. The specified length of the subintervals and their

increments should also yield better coverage probabilities of the multiplier bootstrap

based confidence regions for the estimated parameters.

As mentioned previously, in our study we compare the performance of PAM with

formerly described models of Cochrane and Piazzesi (2005) and Ludvigson and Ng

(2009). Authors of both works considered the time span ranging from January 1964

to December 2003, which might have influenced their results. Replicating the forward

factor from Cochrane and Piazzesi (2005) and the reasoning behind using it, we come

to a conclusion that time-variation of coefficients in this type of real data cannot be

omitted. The ‘tent-shape’ characteristic of the parameters corresponding to yields and

forward rates no longer holds if one considers a longer time span, as can be seen in

Figure 1. Moreover, the line shapes differ across the maturities of considered bonds.

Therefore, in order to thoroughly analyse and compare the performance of the stated

baseline models and PAM, we use both lengths of the data, January 1964 to December

2003 and January 1961 to December 2011.

Firstly, we compare the fitting performance of the used methods. As measures of the

model accuracy we compute the root mean squared error (RMSE), the mean absolute
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error (MAE), R2 and R2
adj for 1-year excess log returns of 2-, 3-, 4- and 5-year bonds

as dependent variables. For calculation of adjusted R2 we use the number of covariates

or factors as number of parameters in case of baseline models and average number

of nonzero coefficients over the whole time range in case of PAM model. For the

calibration of critical values, we use 1 000 multipliers with the Pois(1) distribution,

since in the simulation section they yielded the best coverage probability results in

the small sample case. For the homogeneity testing the confidence level of 95 % was

applied.

Number Description Notation Transform
1. Personal Income a0m52 ∆ log
2. Real Consumption a0m224 r ∆ log
3. Industrial Production Index (Total) ips10 ∆ log
4. NAPM Production Index (Percent) pmp –
5. Civilian Labor Force: Employed, Total lhem ∆ log
6. Unemployment Rate: All workers, 16 years & over (Percent) lhur ∆
7. NAPM Employment Index (Percent) pmemp –
8. Money Stock M1 fm1 ∆2 log
9. Money Stock M2 fm2 ∆2 log
10. Money Stock M3 fm3 ∆2 log
11. S&P500 Common Stock Price Index: Composite fspcom ∆ log
12. Interest Rate: Federal Funds (% p.a.) fyff ∆
13. Commercial Paper Rate cp90 ∆
14. Interest Rate: US Treasury Bill, Sec Mkt, 3-m (% p.a.) fygm3 ∆
15. Interest Rate: US Treasury Bill, Sec Mkt, 3-m (% p.a.) fygm6 ∆
16. Interest Rate: US Treasury Const Maturities, 1-y (% p.a.) fygt1 ∆
17. Interest Rate: US Treasury Const Maturities, 5-y (% p.a.) fygt5 ∆
18. Interest Rate: US Treasury Const Maturities, 10-y (% p.a.) fygt10 ∆
19. Bond Yield: Moody’s Aaa Corporate (% p.a.) fyaaac ∆
20. Bond Yield: Moody’s Baa Corporate (% p.a.) fybaac ∆
21. cp90 - fyff Spread scp90 –
22. fygm3 - fyff Spread sfygm3 –
23. fygm6 - fyff Spread sfygm6 –
24. fygt1 - fyff Spread sfygt1 –
25. fygt5 - fyff Spread sfygt5 –
26. fygt10 - fyff Spread sfygt10 –
27. fyaaac - fyff Spread sfyaaac –
28. fybaac- fyff Spread sfybaac –
29. Spot Market Price Index: all commodities psccom ∆2 log
30. NAPM Commodity Prices Index (Percent) pmcp –
31. CPI-U: All items punew ∆2 log

Table 6: List of macroeconomic variables from Ludvigson and Ng (2009), with the
same notation and transformations. Note that ∆ denotes the first difference of the
series and ∆ log and ∆2 log denote the first and second differences of the logarithm of
the series, respectively.

The fitting procedure summary can be found in Table 7, where we use abbreviations
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Figure 1: Regression coefficients of 1-year excess log returns on forward rates for
011964-122003 (left) and for 011961-122011 (right). Solid, dotted, dashed and dot-
dashed lines denote 2-, 3-, 4- and 5-year maturity of the bond, respectively.

PAMCocPia

CP, CP1F, LN5F and LN6F for models (12), (13) and (14), respectively, with five or

six factors used in the latter case. Here we omit the single factor representation of

five and six factor models of Ludvigson and Ng (2009) since, as shown by the authors,

they yield very similar results to those where each factor is considered as a separate

covariate. Graphical comparison for the case of 2-year bond excess returns is presented

in Figures 2 and 3.

As can be seen from Table 7, the PAM method performs the best in terms of used

fitting performance measures. On average it reduces the RMSE and MSE to one

fourth of the RMSE and MSE of the models used by Cochrane and Piazzesi (2005) and

Ludvigson and Ng (2009). The coefficient of determination R2 and its adjusted value

R2
adj attain values as high as 98 %, what greatly outperforms the baseline models. This

performance largely owes to the possibility of time variation in coefficients throughout

the whole time span of the data and use of many covariates without grouping them

into common factors.

For the shorter time span (from January 1964 to December 2003) the average length

of homogeneous time intervals is 4.4, 6.7, 6.7, 5.7 for the 2-, 3-, 4- and 5-year bond

excess returns, respectively. This is in agreement with the findings of Chen and Niu

(2014), where a short memory view of the yield curve modelling has been promoted.

For the 2-year bond excess returns, the homogeneous intervals were shortest, i.e. the

change point was found between all of the time intervals apart from the time spans
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Jan 1964 - Dec 2003 Jan1961 - Dec 2011

RMSE MAE R2 R2
adj RMSE MAE R2 R2

adj

rx
(2)
t+1

CP 0.007 0.005 0.322 0.315 0.007 0.005 0.215 0.208
CP1F 0.007 0.005 0.318 0.316 0.007 0.005 0.204 0.203
LN5F 0.007 0.005 0.365 0.357 0.006 0.004 0.377 0.371
LN6F 0.005 0.004 0.579 0.574 0.005 0.004 0.501 0.496
PAM 0.001 0.001 0.980 0.979 0.001 0.001 0.979 0.979

rx
(3)
t+1

CP 0.012 0.010 0.340 0.333 0.012 0.010 0.224 0.217
CP1F 0.012 0.010 0.338 0.336 0.012 0.010 0.220 0.219
LN5F 0.012 0.009 0.385 0.377 0.011 0.008 0.383 0.377
LN6F 0.010 0.008 0.532 0.526 0.010 0.008 0.463 0.458
PAM 0.003 0.002 0.970 0.970 0.002 0.002 0.970 0.970

rx
(4)
t+1

CP 0.017 0.013 0.370 0.363 0.017 0.013 0.253 0.247
CP1F 0.017 0.013 0.369 0.368 0.017 0.013 0.251 0.250
LN5F 0.016 0.013 0.414 0.407 0.015 0.012 0.401 0.395
LN6F 0.015 0.012 0.486 0.479 0.015 0.011 0.420 0.414
PAM 0.004 0.003 0.968 0.967 0.003 0.003 0.967 0.966

rx
(5)
t+1

CP 0.021 0.016 0.344 0.337 0.021 0.016 0.231 0.225
CP1F 0.021 0.016 0.344 0.343 0.021 0.016 0.229 0.228
LN5F 0.020 0.016 0.386 0.378 0.019 0.015 0.368 0.362
LN6F 0.019 0.015 0.461 0.454 0.018 0.014 0.398 0.392
PAM 0.005 0.003 0.965 0.964 0.005 0.003 0.962 0.961

Table 7: RMSE and MAE of fitted PAM, Cochrane and Piazzesi (2005) and Ludvigson
and Ng (2009) models. Model with the smallest values of RMSE and MAE and greatest
values of R2 and R2

adj is marked in bold.

PAMinsam

between the years of 1980-83 and 1984-87. The average number of selected covariates

was 11.5, with minimum 3 and maximum 19. In all of the sub-samples, the 2-year

forward rate f
(2)
t and spread between Moody’s Baa corporate bond yield and Federal

Funds interest rate were chosen as explanatory variables. From the rest of the possible

covariates, the ones with acronyms sfygt1, sfygt5, and sfyaaac were chosen in more than

80 % of the sub-samples, and thus, modelling the development of 2-year bond excess

returns mainly by spread between Moody’s corporate bond yield or US Treasury Bills

interest rates and Federal Funds interest rate.

The model for 3-year bond excess returns yields average significant parameter dimen-

sion of 13.8 with a minimum of 9 and maximum of 21. Number of change points

detected is 5 and the covariates selected in more than 80 % of cases are f
(2)
t , f

(3)
t ,

fygt5, sfygm6, sfygt1, sfygt5, sfygt10 and sfyaaac. Hence, the discussed model chooses

similar covariates to those for the 2-year bond excess returns with a use of different

maturities, which can be understood as the effect of longer time to maturity of the

dependent variable.
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Figure 2: Fitted PAM, CP1F and LN6F models (dashed) with observed values of 2-
year bond excess log returns (solid) for the time period 011964-122003.

PAMinsam

The results for 4- and 5-year bond excess returns are very similar to the previous

ones with an average number of chosen covariates 14.5 in both of the cases. The set

of chosen macro variables in most of the sub-samples was very similar to the models

above. However, the pattern of chosen forward rates broke down in case of the 5-year

bond excess returns, where the yield y
(1)
t together with the forward rates f

(2)
t , f

(3)
t were

23

https://github.com/QuantLet/PAM/tree/master/PAMinsam


Year

rx
 t+

1(2
)

1970 1980 1990 2000 2010

−
0.

02
0.

00
0.

02

(a) Forward factor model

Year

rx
 t+

1(2
)

1970 1980 1990 2000 2010

−
0.

02
0.

00
0.

02

(b) Model with six macro factors

Year

rx
 t+

1(2
)

1970 1980 1990 2000 2010

−
0.

03
−

0.
01

0.
01

0.
03

(c) PAM

Figure 3: Fitted PAM, CP1F and LN6F models (dashed) with observed values of 2-
year bond excess log returns (solid) for the time period 011961-122011.

PAMinsam

chosen in more than 80 % of the sub-samples. In case of 4-year bond excess return

these were the forward rates f
(2)
t and f

(4)
t .

Investigation of the longer time period spanning between January 1961 and December

2011 yields very similar results to those reported above and thus we omit its lengthy
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description.

Comparison of our model fitted by the PAM method to the baseline models (12),

(13) and (14) can be summarized in a few highlights. First of all, our findings align

with the assertion of Cochrane and Piazzesi (2005) by selecting forward rates as the

significant explanatory variables in most of the sub-samples and hence proving their

power in modelling the development of bond risk excess premia. However, we can see,

that the most significant are the forward rates over the periods which are included

in the maturity of the specified bond, in contrast to the single factor including all

of the forward rates. Second, the conclusions of Ludvigson and Ng (2009) are also

present in our model, since the specific macro variables are almost always included

in the homogeneous models providing us with a better fit compared to the single

forward factor model of Cochrane and Piazzesi (2005). Last, but not least, allowing

the coefficient loadings to vary over time we capture the unstable situation over the

markets, where the stationarity assumption is violated.

As the target of our interest lies rather in forecasting than in in-sample fitting perfor-

mance of PAM, we move our focus on prediction over a one-year horizon ahead. We use

the data sample over a period from January 1961 to December 2011 and we make an

out-of-sample forecast with a starting point December 2000. For the model fitting we

use all of the observed data prior to January 2001 and predict excess bond returns over

a one-year horizon, i.e. we predict the values corresponding to December 2001. Then

we recursively adjust the fitted models to the sample including January 2001 and pre-

dict over next year (January 2002), etc. For the evaluation of forecasting accuracy we

use root mean squared prediction error (RMSPE) and mean absolute prediction error

(MAPE) as suitable measures. For the calibration of PAM, we again use 1 000 mul-

tipliers generated from the Pois(1) distribution and choose 99 % as a confidence level

for the homogeneity testing. Table 8 collects all of the results for the three compared

methods. Graphical output can be seen in Figure 4.

From Table 8 it is visible that the PAM method outperforms all of the models (12),

(13) and (14) when one deals with forecasting of excess bond returns over a 1-year

period ahead. It achieves the best forecasting performance in terms of RMSPE and

MAPE, reducing it by 24 - 50 % depending on the baseline model chosen. This effect

owes to the possibility of time variation of coefficient loadings, which can capture the

instability over the financial markets. Particularly in the forecasting period used in this

section, where the global financial crisis of the years 2008 - 2009 is included. In Figure

4 the abrupt rise of the observed values of excess bond premia for all of the investigated

maturities related to the period of the early 2000s after the Dotcom Bubble and the
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RMSPE MAPE
RMSPEPAM

RMSPE

MAPEPAM

MAPE

rx
(2)
t+1

CP 0.008 0.007 0.50 0.43
CP1F 0.008 0.006 0.50 0.50
LN5F 0.008 0.006 0.50 0.50
LN6F 0.006 0.005 0.67 0.60
PAM 0.004 0.003 – –

rx
(3)
t+1

CP 0.015 0.013 0.47 0.46
CP1F 0.015 0.013 0.47 0.46
LN5F 0.015 0.013 0.47 0.46
LN6F 0.012 0.010 0.58 0.60
PAM 0.007 0.006 – –

rx
(4)
t+1

CP 0.021 0.017 0.57 0.59
CP1F 0.021 0.018 0.57 0.56
LN5F 0.021 0.018 0.57 0.56
LN6F 0.017 0.013 0.71 0.77
PAM 0.012 0.010 – –

rx
(5)
t+1

CP 0.025 0.021 0.64 0.62
CP1F 0.026 0.021 0.62 0.62
LN5F 0.026 0.022 0.62 0.59
LN6F 0.021 0.017 0.76 0.76
PAM 0.016 0.013 – –

Table 8: Forecasting performance of PAM, Cochrane and Piazzesi (2005) and Ludvig-
son and Ng (2009) models. Model with the smallest values of RMSPE and MAPE is
marked in bold.

PAMoutsam

years of the global financial crisis is detectable.

This is a natural behaviour of the market since the investors have to be compensated

for the risk with higher bond risk premia. Looking at the Figure 4 one can see that

whereas the model of Cochrane and Piazzesi (2005) fails to capture the structure change

completely, the six-factor model of Ludvigson and Ng (2009) and PAM react to the

development of the curve.

According to the Federal Reserve announcements, the Federal Reserve started buy-

ing billions of mortgage-backed securities in late 2008, and by June 2010, the amount

of bank debt, mortgage-backed securities, and Treasury notes reached its peak of 2.1

trillion USD. This kind of stimulation pushed the economy to grow and shifted the

expectations of the market, the bond risk premia stopped increasing and had a de-

creasing trend at the early stage of 2009. We can see that PAM manages to forecast

this period more promptly than the investigated alternative methods.

Concluding from Figure 4 we can say that PAM captures the upward and downward
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Figure 4: Predicted values of PAM (green), CP1F (red) and LN6F (blue) models
(dashed) with observed values of k-year bond excess log returns, k = 2, 3, 4, 5, (solid)
for the time period 122001-122011.

PAMoutsam

turns of the excess bond returns more efficiently than the alternatives used for compar-

ison, since its core assumption is the non-stationary of the modelled data. Indeed, the

average length of the homogeneous intervals used for the 1-year ahead prediction are
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4.8, 5.0, 5.4 and 5.3 years for the 2-, 3-, 4- and 5-year bond excess returns, respectively,

which is in a large contrast to the whole sample size of the Cochrane and Piazzesi

(2005) and Ludvigson and Ng (2009) methods. The covariates, which are mostly used

for the 1-year ahead prediction of the respective excess bond returns are the ones,

which were used for the in-sample fit, what is a natural result.

With the foregoing summary of the PAM performance at hand, we conclude that our

proposed method provides a useful tool for modelling time variation of the coefficient

loadings especially when dealing with forecasting of non-stationary and possibly high-

dimensional models.

5 Theoretical Results

In this section we aim to justify the use of multiplier bootstrap approach in case of the

SCAD penalized likelihood ratio. As we want to show the results in a quite general

setting, we adopt the approach of Kwon and Kim (2012) who showed that SCAD

penalized likelihood estimator has indeed oracle properties even for the case of growing

dimensions pn and qn. Here we take the notation from before, where we denoted the

parameter dimension by p and the number of true nonzero coefficients of the model by

q and indicate their dependence on the number of observations, n, by the subscript.

Kwon and Kim (2012) showed for the diverging pn = O(nk), where k ≥ 1, and qn that

the local maximizer of the SCAD penalized likelihood is asymptotically equal to the

oracle MLE, β̂MLE
n . They define the latter as the maximizer of the likelihood function

subject to the condition βnj = 0, for qn < j ≤ pn, which satisfies

‖β̂MLE
n − β∗n‖ = Op

(√
qn
n

)
,

where β∗n is the true parameter vector. Moreover, their results can be strengthened for

the global maximizer of the SCAD penalized likelihood in case of pn ≤ n and strictly

concave log-likelihood functions.

As we intend to show applicability of the multiplier bootstrap method for the penalized

likelihood, we will consider the latter case, i.e. asymptotic results for the global SCAD

penalized likelihood maximizer and thereby restrict ourselves to the case of pn ≤ n. In

what follows, we adopt and adjust the conditions of Kwon and Kim (2012) so we can

state our results.

For each n consider Yni, i ≤ n, to be i.i.d. random variables with a density fn(Yn1, β
∗
n)
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with β∗n ∈ Θn ⊆ Rpn . Elements of the true parameter β∗n can be, without loss of

generality, rearranged so that the first qn of them are nonzero and the rest is equal to

zero. Now, let us focus on the regularity conditions assuring oracle properties of the

SCAD penalized estimator. Adopting the notation from Kwon and Kim (2012), we

denote generic positive constants by M1, . . . ,M7.

Condition (A1). For some constants c1 and c2 which satisfy 0 < 6c1 < c2 ≤ 1, it holds

qn = O(nc1), min
1≤j≤qn

n(1−c2)/2|β∗nj| ≥M1.

Here we adjusted the condition for the smaller values of c1 as is needed for the results

for the penalized likelihood ratio from below.

Condition (A2). The first and second derivatives of the log-likelihood log fn(Yn1, βn)

satisfy

Eβ∗
n

{
∂ log fn(Yn1, β

∗
n)

∂βnj

}
= 0,

Eβ∗
n

{
∂2 log fn(Yn1, β

∗
n)

∂βnj∂βnl

}
= −Eβ∗

n

{
∂ log fn(Yn1, β

∗
n)

∂βnj

∂ log fn(Yn1, β
∗
n)

∂βnl

}
,

for all 1 ≤ j, l ≤ pn and n ≥ 1.

Condition (A3). The first qn× qn submatrix, In1(β∗n), of the Fisher information matrix

In(β∗n) = Eβ∗
n

[{
∂ log fn(Yn1, β

∗
n)

∂βn

}{
∂ log fn(Yn1, β

∗
n)

∂βn

}>]

is positive definite and it holds

0 < M2 < γmin{In1(β∗n)} ≤ γmax{In1(β∗n)} < M3 <∞,

for all n ≥ 1, with γmin(·) and γmax(·) denoting the smallest and largest eigenvalues of

the considered matrix.

Condition (A4). There exists a sufficiently large open subset Bn ⊂ Θn which contains

the true parameter β∗n such that for almost all Yni their density function is three times

differentiable for all βn ∈ Bn. Moreover, there exist functions Unjkl(·) satisfying∣∣∣∣∂3 log fn(Yn1, βn)

∂βnj∂βnk∂βnl

∣∣∣∣ < Unjkl(Yni),

for any βn ∈ Bn and for all 1 ≤ j, k, l ≤ pn and n ≥ 1.
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Condition (A5). For the second and fourth moments of the log-likelihood it holds

Eβ∗
n

{
∂ log fn(Yn1, β

∗
n)

∂βnj

}2

< M4, Eβ∗
n

{
∂2 log fn(Yn1, β

∗
n)

∂βnj∂βnl

}2

< M5,

E {Unjkl(Yni)}2 < M6,

for all 1 ≤ j, k, l ≤ pn and n ≥ 1.

Condition (A6). There exists a positive constantM7 and a convex open subset Ωn ⊂ Θn

such that both β̂MLE
n and β∗n belong to Ωn and

min
βn∈Ωn

γmin(βn) > M7,

for all sufficiently large n. Here γmin(βn) denotes the smallest eigenvalue of the matrix

of the second derivatives of the negative log-likelihood

− 1

2n

n∑
i=1

∂2 log fn(Yni, βn)

∂β2
n

at βn.

In their work (Theorem 2), Kwon and Kim (2012) show that P(β̃n = β̂MLE
n )→ 1 with

n tending to infinity, where β̃n denotes the global maximizer of the SCAD penalized

likelihood on the set Ωn. This holds under the conditions (A1) to (A6) and if λn =

O(n−(1−c2+c1)/2) and pn/(
√
nλn)2 → 0 as n→∞.

Their result is very important for the theory of the multiplier bootstrap combined

with the SCAD penalized likelihood and it shows that the SCAD estimator satisfies

‖β̃n − β∗n‖ = Op(
√
qn/n), where β̃nj = 0 for qn < j ≤ pn if n is large enough.

In the following we consider Fisher and Wilks type of expansions of the penalized

likelihood ratio similar to Spokoiny (2017), where the author dealt with a quadratic

penalization in a finite sample case.

For the purposes of this section we denote a vector of derivatives with respect to βn by

∇, where we omit the subscript βn for simplicity. A gradient vector of the penalty term

is denoted by ∇Pλn(βn) = (p′λn(|βn1|)sgn(βn1), . . . , p′λn(|βnpn|)sgn(βnpn))> and the diag-

onal matrix of its second derivatives by ∇2Pλn(βn) = diag
{
p′′λn(|βn1|), . . . , p′′λn(|βnpn|)

}
.

Further, we define the penalized information matrix as

D2
Q = −E∇2Q(β∗n) = −E∇2L(β∗n) + n∇2Pλn(β∗n).

For the ease of notation the subscript “1” will be used in the following to denote the

first qn elements or the first qn×qn submatrix of the vector or matrix, respectively. For

30



example, the first qn× qn submatrix of D2
Q will be denoted by D2

Q1 and analogously its

inverse D−2
Q1 which is defined for all n given the condition (A3). The proofs of theorems

are relegated to the Appendix.

Firstly, we come to the Wilks approximation type of result for the SCAD penalized

likelihood ratio.

Theorem 1. Assume a model with a dimension such that pn/(
√
nλn)2 → 0 as n→ 1

and that conditions (A1) to (A6) hold. Then

Q(β̃n)−Q(β∗n) =
1

2
‖D−1

Q1∇1Q(β∗n)‖2 + Op(1), (15)

if the SCAD penalty parameter satisfies λn = O(n−(1−c2+c1)/2).

In order to be able to obtain a similar approximation for the bootstrapped penalized

likelihood ratio, we need show the
√
n/qn-consistency and sparsity property of the

global maximizer of (7).

Note that the choice of the multipliers can affect the concavity of the log-likelihood

function, however, this is not the case of the present work, since the multipliers are

non-negative and for sufficiently large n there is almost surely at least one positive ui

for all of the discussed distributions. Thus, condition (A6) is valid also for the boot-

strapped log-likelihood function, where we shall replace the positive constant M7 by

M10 for the sake of correctness.

Theorem 2. Under the conditions of Theorem 1 the following holds for the global
maximizer of (7), β̃◦n,

‖β̃◦n − β∗n‖ = Op
(√

qn
n

)
as well as ‖β̃◦n − β̃n‖ = Op

(√
qn
n

)
.

Moreover, if n is sufficiently large, β̃◦nj = 0 for qn < j ≤ pn.

Now we can state the desired results.

Theorem 3. If the conditions from Theorem 1 are satisfied, we can write

Q◦(β̃◦n)−Q◦(β̃n) =
1

2
‖D−1

Q1 {∇1Q
◦(β∗n)−∇1Q(β∗n)} ‖2 + Op(1), (16)

for the multiplier bootstrapped SCAD penalized likelihood ratio.
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With the assertions of the previous theorems at hand we are able to show the asymp-

totic validity of the bootstrap approximation of the real world. Let us denote by

Gn(β̃n, β
∗
n) the cumulative distribution function of the SCAD penalized likelihood

Q(β̃n) − Q(β∗n) and by G◦n(β̃◦n, β̃n) its bootstrapped counterpart conditioned on the

data and the value of the parameter λn. Then we can summarize the previous theo-

rems into the following.

Theorem 4. Under the conditions of Theorem 1 it holds

ρ(Gn, G
◦
n)

P−→ 0, as n→∞,

with ρ(·, ·) denoting the Prokhorov metric on a set of all probability measures on
(Rpn ,B(Rpn)).

Moreover, if qn ≥ 1, then the statement of the last theorem can be applied to justify

the approximation of the quantiles of the penalized likelihood by their bootstrapped

variants, cf. Chatterjee and Lahiri (2011) and their conclusions about the bootstrap

confidence intervals. In their more recent work, Chatterjee and Lahiri (2013), showed,

that the residual bootstrap approximation of the distribution of their considered test

statistic is more efficient, in terms of convergence rates, than the usual asymptotic

inference based on the knowledge of its asymptotic distribution. Similar results con-

cerning multiplier bootstrap and the SCAD method might be of great interest, however

are beyond the scope of this paper.

Let us now come back to the case of the generalized penalized likelihood ratio from

Section 2. Consider the null hypothesis from (1) given as H0 : β̃
(m−1)
t = β̃

(m)
t . Then,

under H0, the foregoing theorems and their statements can be analogously applied to

the test statistic T
(m)
t and its bootstrapped version T

◦(m)
t from (6) and (8), respec-

tively. Furthermore, as already pointed out, the term β̃12 from (9) corrects the bias

of the bootstrapped version of the test statistics in case there is a structural change

in the considered subintervals. Owing to this fact, one gets the approximation of the

distribution of the SCAD penalized likelihood ratio as if the H0 was true.

6 Concluding Remarks

In the present paper we proposed a novel approach for dealing with a challenging

statistical inference arising with the occurrence of big data. The introduced Penalized

Adaptive Method (PAM) can capture the non-stationarity and conduct effective model

reduction simultaneously.
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The performance of PAM was argued theoretically as well as practically, where simu-

lation methods were implemented. For the real data application we chose the problem

of forecastability of excess bond risk premia modelling, where we compared PAM with

a several baseline models based on the work of Cochrane and Piazzesi (2005) and Lud-

vigson and Ng (2009). These authors developed a technique, which is useful from the

practitioner’s point of view because of its simplicity and good interpretability. How-

ever, exactly those two aspects of their models omit an important characteristic of

financial data and that is its time-variation.

It is well known that the expectations in the market together with the government

policies can shift the whole economic trend. Therefore, a new method which is not only

capable of providing higher forecasting accuracy but also able to identify the macro-

covariates useful in determining the bond excess returns will certainly have strong

economic implications. Our proposed Penalized Adaptive Method fits perfectly in the

gap between methods dealing with nonstationarity and methods of variable selection.

It is intuitive that the expectations and the government policies are changing in dif-

ferent periods of economic cycles and hence cause the time-variation of the economic

fundamentals. By using PAM, which is designed to identify significant variables and

detect homogeneous intervals simultaneously, the simplicity and interpretability of the

model is preserved whereas its fit and forecasting ability can be largely outperformed

as seen from its in-sample and out-of-sample performance. Mainly, it reduces the root

mean squared prediction error and mean absolute prediction error by up to 50 % of

the models using whole data sample for the model fitting. This improvement comes at

a cost of a more computationally intensive method, but its gains should be of interest

for any type of users.

The proposed PAM method is fully data-driven and therefore can be applied to variety

of problems occurring in the real world. Especially, its extensions for the case of

modelling time series, quantiles or both is of our interest in the future work.

Appendix

All of the proofs from section 5 together with the additional results of interest are

collected here.

For the proof of Theorem 1 we need the following Lemma.
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Lemma 1. Under the conditions of Theorem 1 we can write

Q(β̃n)−Q(β∗n) =
1

2
‖DQ1(β̃n1 − β∗n1)‖2 + Op(1). (17)

Proof of Lemma 1. By Taylor’s expansion of Q(β∗n) around β̃n we get

Q(β̃n)−Q(β∗n) =
1

2
(β∗n − β̃n)>

{
−∇2Q(β+

n )
}

(β∗n − β̃n), (18)

where the vector β+
n lies between β∗n and β̃n.

For sufficiently large n, as demonstrated by Kwon and Kim (2012), the vector (β∗n− β̃n)
has the last pn − qn elements equal to zero with probability tending to 1. Therefore,
assuming that the SCAD penalized estimator β̃n successfully recovers zero components
of the true parameter vector β∗n, it suffices to show the expansion from (18) only for
the nonzero part of the vector and the corresponding qn × qn submatrix of ∇2Q(β+

n ),
i.e.

Q(β̃n)−Q(β∗n) =
1

2
(β∗n1 − β̃n1)>

{
−∇2

1Q(β+
n )
}

(β∗n1 − β̃n1).

Further, we can write

∇2
1Q(β+

n ) = ∇2
1L(β+

n )− n∇2
1Pλn(β+

n )−∇2
1L(β∗n) +∇2

1L(β∗n)− E∇2
1Q(β∗n) + E∇2

1Q(β∗n)

= {∇2
1L(β+

n )−∇2
1L(β∗n)}+ {∇2

1L(β∗n)− E∇2
1L(β∗n)}

+ {n∇2
1Pλn(β∗n)− n∇2

1Pλn(β+
n )}+ E∇2

1Q(β∗n)

def
= I1 + I2 + I3 −D2

Q1.

For the term I1 and some β++
n lying between β∗n and β+

n we have

‖I1‖2 = ‖(β+
n1 − β∗n1)>∇1{∇2

1L(β++
n )}‖2 ≤

qn∑
j,k,l=1

{
∂3L(β++

n )

∂βnj∂βnk∂βnl

}2

‖β+
n − β∗n‖2

≤
qn∑

j,k,l=1

{
n∑
i=1

Unjlk(Yni)

}2

Op
(qn
n

)
= Op(q3

nn
2)Op

(qn
n

)
= Op(q4

nn),

with the functions Unjkl(Yni) taken from Condition (A4). From this we get

1

2
(β∗n1 − β̃n1)>I1(β∗n1 − β̃n1) ≤ ‖I1‖‖β∗n − β̃n‖2 = Op(q2

n

√
n)Op

(qn
n

)
= Op(1), (19)

where the last equation invokes (A1). The term I2 can be bounded by the Chebyshev’s
inequality as follows

P

{∥∥∥∥ 1

n
∇2

1L(β∗n)− 1

n
E∇2

1L(β∗n)

∥∥∥∥ ≥ ε

q2
n

}
≤ q4

n

n2ε2
E

qn∑
j,k=1

{
∂2L(β∗n)

∂βnj∂βnk
− E

∂2L(β∗n)

∂βnj∂βnk

}2

=
q4
n

n2ε2
O(q2

nn) = O(1).
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Hence, ∥∥∥∥ 1

n
∇2

1L(β∗n)− 1

n
E∇2

1L(β∗n)

∥∥∥∥ = Op

(
1

q2
n

)
(20)

and we have

1

2
(β∗n1− β̃n1)>I2(β∗n1− β̃n1) ≤ ‖I2‖‖β∗n− β̃n‖2 = Op

(
n

q2
n

)
Op
(qn
n

)
= Op

(
1

qn

)
= Op(1).

(21)
Having p′′λn(βnj) = 0 for all qn + 1 ≤ j ≤ pn, the norm of n−1I3 satisfies

‖∇2
1Pλn(β∗n)−∇2

1Pλn(β+
n )‖ =

[
qn∑
j=1

{
p′′λn(β∗nj)− p′′λn(β+

nj)
}2

]1/2

.

The term on the right hand side can be bounded due to the smoothness condition (D)
from Fan and Peng (2004), which is satisfied for SCAD if (A1) holds. It assumes that
there are positive constants M8 and M9 such that, if β1, β2 > M8λn, then |p′′λn(β1) −
p′′λn(β2)| ≤ M9|β1 − β2|. Thus, for n large enough, all of the nonzero coefficients are
larger than M8λn for some generic constant M8 and we can write[

qn∑
j=1

{
p′′λn(β∗nj)− p′′λn(β+

nj)
}2

]1/2

≤

[
qn∑
j=1

{
M9|β∗nj − β+

nj|
}2

]1/2

= M9‖β∗n − β+
n ‖

= Op
(√

qn
n

)
= Op

(
1

q
5/2
n

)
.

Further,

1

2
(β∗n1−β̃n1)>I3(β∗n1−β̃n1) ≤ 1

2
‖I3‖‖β∗n−β̃n‖2 = Op

(
n

q
5/2
n

)
Op
(√

qn
n

)
= Op(1). (22)

Combining (19), (21) and (22) yields

1

2
(β∗n1−β̃n1)>{−∇2

1Q(β+
n )}(β∗n1−β̃n1) =

1

2
(β∗n1−β̃n1)>{−E∇2

1Q(β∗n)}(β∗n1−β̃n1)+Op(1)

and with this the proof of (17) is complete.

With the result of Lemma 1 we can now show a type of Fisher expansion for the

penalized likelihood ratio.

Theorem 5. Under the conditions of Theorem 1 it holds

DQ1(β̃n1 − β∗n1) = D−1
Q1∇1Q(β∗n) + Op

(
1
√
qn

)
.
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Proof of Theorem 5. Using the fact that the term∇1Q(β̃n) = ∇1L(β̃n)−n∇1Pλn(β̃n) =
0 and its Taylor’s expansion around β∗n we get

0 = ∇1L(β∗n) + (β̃n1 − β∗n1)>∇2
1L(β∗n) +

1

2
(β̃n1 − β∗n1)>∇2

1{∇1L(β+
n )}(β̃n1 − β∗n1)

− n∇1Pλn(β∗n)− n(β̃n1 − β∗n1)>∇2
1Pλn(β++

n ),

where β+
n and β++

n lie between β̃n and β∗n. The equation can be rewritten into

(β̃n1 − β∗n1)>{∇2
1L(β∗n)− E∇2

1L(β∗n) + n∇2
1Pλn(β∗n)− n∇2

1Pλn(β++
n ) + E∇2

1Q(β∗n)}

= −∇1Q(β∗n)− 1

2
(β̃n1 − β∗n1)>∇2

1{∇1L(β+
n )}(β̃n1 − β∗n1) (23)

which is
(β̃n1 − β∗n1)>{I2 + I3 −D2

Q1} = −∇1Q(β∗n)− I4.

For the terms I2 and I3 it holds

(β̃n1 − β∗n1)>I2 ≤ ‖β̃n − β∗n‖‖I2‖ = Op
(√

qn
n

)
Op

(
n

q2
n

)
= Op

(√
n

q3
n

)
(24)

and

(β̃n1 − β∗n1)>I3 ≤ ‖β̃n − β∗n‖‖I3‖ = Op
(√

qn
n

)
Op

(
n

q
5/2
n

)
= Op

(√
n

q4
n

)
. (25)

Using the assumptions of the theorem we can write∥∥∥∥ 1

n
I4

∥∥∥∥2

≤ 1

n2

qn∑
j,k,l=1

{
∂3L(β+

n )

∂βnj∂βnk∂βnl

}2

‖β̃n − β∗n‖4 ≤ 1

n2

n∑
i=1

n

qn∑
j,k,l=1

U2
njkl(Yni)‖β̃n − β∗n‖4

= Op(q3
n)Op

(
q2
n

n2

)
= Op

(
1

nqn

)
and thus

‖I4‖ = Op

(√
n

qn

)
. (26)

Putting (23), (24), (25) and (26) together, we obtain

{−E∇2
1Q(β∗n)}(β̃n1 − β∗n1) = D2

Q1(β̃n1 − β∗n1) = ∇1Q(β∗n) + Op

(√
n

qn

)
.

From (A3) it now follows

DQ1(β̃n1 − β∗n1) = D−1
Q1∇1Q(β∗n) + Op

(
1
√
qn

)
,

which completes the proof.
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Now we can move to the proof of the Wilks type of approximation for the penalized

likelihood ratio.

Proof of Theorem 1. Here we use the Taylor’s expansion of Q(β̃n) around β∗n which is

Q(β̃n) = Q(β∗n) + (β̃n − β∗n)>∇Q(β∗n) +
1

2
(β̃n − β∗n)>∇2Q(β∗n)(β̃n − β∗n)

+
1

6
∇>{(β̃n − β∗n)>∇2Q(β+

n )(β̃n − β∗n)}(β̃n − β∗n)

def
= Q(β∗n) + (β̃n − β∗n)>∇Q(β∗n) + I5 + I6,

for some vector β+
n lying between β̃n and β∗n.

In order to prove the equation (15), we need to expand and bound the terms I5 and
I6. For I5 we get

∇2Q(β∗n)− E∇2Q(β∗n) + E∇2Q(β∗n) = ∇2L(β∗n)− E∇2L(β∗n) + E∇2Q(β∗n)

and hence
1

2
(β̃n − β∗n)>∇2Q(β∗n)(β̃n − β∗n) =

1

2
(β̃n1 − β∗n1)>∇2

1Q(β∗n)(β̃n1 − β∗n1)

≤ 1

2
‖∇2

1L(β∗n)−∇2
1 EL(β∗n)‖‖β̃n − β∗n‖2

+
1

2
(β̃n1 − β∗n1)> E∇2

1Q(β∗n)(β̃n1 − β∗n1)

≤ 1

2
(β̃n1 − β∗n1)> E∇2

1Q(β∗n)(β̃n1 − β∗n1) + Op(1)

= − 1

2
‖DQ1(β̃n1 − β∗n1)‖2 + Op(1), (27)

where the second inequality is based on (21).

Using Cauchy-Schwarz inequality and the fact that the third derivatives of the SCAD
penalty are zero for all of the values of the function’s argument, we can bound I6 by
the following

|I6| ≤
∣∣∣∣16∇>{(β̃n − β∗n)>∇2L(β+

n )(β̃n − β∗n)}(β̃n − β∗n)

∣∣∣∣
=

∣∣∣∣∣16
qn∑

j,k,l=1

∂3L(β+
n )

∂βnj∂βnk∂βnl
(β̃nj − β∗nj)(β̃nk − β∗nk)(β̃nl − β∗nl)

∣∣∣∣∣
≤ 1

6

[
qn∑

j,k,l=1

{
∂3L(β+

n )

∂βnj∂βnk∂βml

}2
]1/2

‖β̃n − β∗n‖3

≤ 1

6

[
n∑
i=1

n

qn∑
j,k,l=1

U2
njkl(Yni)

]1/2

‖β̃n − β∗n‖3 = Op(nq3/2
n )Op

(√
q3
n

n3

)

= Op

(√
q6
n

n

)
= Op(1). (28)
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Using (27) and (28) and the sparsity property of β̃n and β∗n we get

Op(1) = Q(β̃n)−Q(β∗n)− (β̃n1 − β∗n1)>∇1Q(β∗n) +
1

2
‖DQ1(β̃n1 − β∗n1)‖2

= Q(β̃n)−Q(β∗n)− 1

2
‖D−1

Q1∇1Q(β∗n)‖2 +
1

2
‖D−1

Q1∇1Q(β∗n)‖2

− (β̃n1 − β∗n1)>DQ1D
−1
Q1∇1Q(β∗n) +

1

2
‖DQ1(β̃n1 − β∗n1)‖2

≥ Q(β̃n)−Q(β∗n)− 1

2
‖D−1

Q1∇1Q(β∗n)‖2 +
1

2
‖DQ1(β̃n1 − β∗n1)−D−1

Q1∇1Q(β∗n)‖2,

(29)

where the last term on the right hand side of (29) is of order Op(1) as a consequence
of Theorem 5. Thus the identity (15) holds.

For the validity of the bootstrap method we firstly need to prove the assertion of

Theorem 2.

Proof of Theorem 2. In this proof we closely follow the technique of Fan and Peng
(2004) and Kwon and Kim (2012) to show the existence of a

√
n/qn-consistent local

(global) maximizer of L◦(βn) subject to βnj = 0 for all qn < j ≤ pn denoted by β̂◦n and
its asymptotic equivalence with the maximizer of Q◦(βn) denoted by β̃◦n.

Let us define a sequence αn =
√
qn/n and a vector ω ∈ Rpn such that ωj = 0 for

qn < j ≤ pn. Then, set ‖ω‖ = C, with C being a large enough constant. If we can
show that for any given ε there exists such a constant C that it holds

P

{
sup
‖ω‖=C

L◦(β∗n + αnω) < L◦(β∗n)

}
≥ 1− ε, (30)

for n large enough, then with a probability tending to 1 there is a local maximizer,
β̂◦n, satisfying ‖β̂◦n − β∗n‖ = Op(

√
qn/n) in the ball {β∗n + αnω, ‖ω‖ ≤ C}. For strictly

concave likelihood functions with respect to βnj, for j ≤ qn, this result is naturally
extended to a global maximizer of L◦(βn).

Define
Vn(ω) = L◦(β∗n + αnω)− L◦(β∗n)

and use the Taylor’s expansion to rewrite Vn(ω) as

Vn(ω) = αn∇>L◦(β∗n)ω +
1

2
ω>∇2L◦(β∗n)ωα2

n +
1

6
∇>{ω>∇2L◦(β+

n )ω}ωα3
n

def
= I◦1 + I◦2 + I◦3 ,

where β+
n lies between β∗n and β∗n + αnω.
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Knowing that ∂L(β∗n)/∂βnj = Op(
√
n) we can show the same result for ∂L◦(β∗n)/∂βnj,

where one can use the fact that ui’s are independent of the data. This further yields
that

|I◦1 | = |∇>L◦(β∗n)ω| ≤ αn‖∇>1 L◦(β∗n)‖‖ω‖ = Op(αn
√
nqn)‖ω‖ = Op(α2

nn)‖ω‖.

The term I◦2 can be expanded into the following

1

n
I◦2 =

1

2
ω>
{

1

n
∇2L◦(β∗n)− 1

n
E◦∇2L◦(β∗n)

}
ωα2

n

+
1

2
ω>
{

1

n
E◦∇2L◦(β∗n)− 1

n
E∇2L(β∗n)

}
ωα2

n

+
1

2
ω>
{

1

n
E∇2L(β∗n)

}
ωα2

n. (31)

In addition we have

P

{∥∥∥∥ 1

n
∇2

1L
◦(β∗n)− 1

n
E◦∇2

1L
◦(β∗n)

∥∥∥∥ ≥ ε

q2
n

}
≤ q4

n

ε2

qn∑
j,k=1

Var◦

{
1

n

n∑
i=1

∂2 log fn(Yni, β
∗
n)ui

∂βnj∂βnk

}

=
q4
n

ε2n2
O(q2

nn) = O(1).

In other words ∥∥∥∥ 1

n
∇2

1L
◦(β∗n)− 1

n
E◦∇2

1L
◦(β∗n)

∥∥∥∥ = Op

(
1

q2
n

)
. (32)

The same holds for the second part of (31) as was shown in (20). Thus,

I◦2 =
1

2
nα2

nOp

(
1

q2
n

)
‖ω‖2 +

1

2
α2
nω
>{E∇2

1L(β∗n)}ω = −1

2
nα2

nω
>In(β∗n)ω+Op(1)nα2

n‖ω‖2.

Subsequently, the term I◦3 can be bounded as

|I◦3 | =
∣∣∣∣16∇> {ω>∇2L◦(β∗n)ω

}
ωα3

n

∣∣∣∣ =

∣∣∣∣∣16
qn∑

j,k,l=1

∂3L◦(β∗n)

∂βnj∂βnk∂βnl
ωjωkωlα

3
n

∣∣∣∣∣
≤ 1

6

n∑
i=1

[
qn∑

j,k,l=1

{
∂3 log fn(Yni, β

∗
n)ui

∂βnj∂βnk∂βnl

}2
]1/2

‖ω‖3α3
n

≤ 1

6

n∑
i=1

{
qn∑

j,k,l=1

U2
njkl(Yni)u

2
i

}1/2

‖ω‖3α3
n = Op(q3/2

n αn)nα2
n‖ω‖3

= Op(nα
2
n)‖ω‖3. (33)

Hence, the results are analogous to the non-bootstrapped case and, for ‖ω‖ large
enough, the negative term I◦2 dominates the rest of Vn(ω), which proves (30) and the

existence of β̂◦n such that ‖β̂◦n − β∗n‖ = Op(
√
qn/n) as well as ‖β̂◦n − β̃n‖ = Op(

√
qn/n).
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Following the approach of Kwon and Kim (2012) and showing that

P

{
max
βn∈Ωn

Q◦(βn) ≤ Q◦(β̂◦n)

}
→ 1, as n→∞, (34)

we prove the asymptotic equivalence of β̂◦n and β̃◦n for the strictly concave log-likelihood
functions and thereby the

√
n/qn-consistency and sparsity of the latter.

Firstly, we need to show that for β̂◦n it holds

P

{
max

qn<j≤pn

∣∣∣∣∣∂L◦(β̂◦n)

∂βnj

∣∣∣∣∣ ≤ nλn

}
→ 1, as n→∞. (35)

We use Taylor’s expansion around β∗n for all qn < j ≤ pn

∂L◦(β̂◦n)

∂βnj
=
∂L◦(β∗n)

∂βnj
+ (β̂◦n1 − β∗n1)>∇1

∂L◦(β∗n)

∂βnj

+
1

2
(β̂◦n1 − β∗n1)>∇2

1

∂L◦(β+
n )

∂βnj
(β̂◦n1 − β∗n1),

where β+
n lies between β∗n and β̂◦n. Expanding the right-hand side and using the prop-

erties of β∗n and β̂◦n and Cauchy-Schwarz inequality, we can write

P

{
max

qn<j≤pn

∣∣∣∣∣∂L◦(β̂◦n)

∂βnj

∣∣∣∣∣ > nλn

}

≤ P

{
max

qn<j≤pn

∣∣∣∣∂L◦(β∗n)

∂βnj

∣∣∣∣ > nλn
5

}
+ P

{
max

qn<j≤pn

∥∥∥∥∇1
∂L◦(β∗n)

∂βnj
− E◦∇1

∂L◦(β∗n)

∂βnj

∥∥∥∥ ‖β̂◦n − β∗n‖ > nλn
5

}
+ P

{
max

qn<j≤pn

∥∥∥∥∇1
∂L(β∗n)

∂βnj
− E∇1

∂L◦(β∗n)

∂βnj

∥∥∥∥ ‖β̂◦n − β∗n‖ > nλn
5

}
+ P

{
max

qn<j≤pn

∥∥∥∥E∇1
∂L◦(β∗n)

∂βnj

∥∥∥∥ ‖β̂◦n − β∗n‖ > nλn
5

}
+ P

{
max

qn<j≤pn

∥∥∥∥∇2
1

∂L◦(β+
n )

∂βnj

∥∥∥∥ ‖β̂◦n − β∗n‖2 >
2nλn

5

}
def
= P1 + P2 + P3 + P4 + P5,

Following Lemma A.1 from Kwon and Kim (2012), we can bound the terms P1 - P5.

For P1 we have, due to conditions (A2), (A5) and Markov’s inequality, for any constant
κ that

P

{∣∣∣∣∂L◦(β∗n)

∂βnj

∣∣∣∣ > √nκ} ≤ (
√
nκ)−2 E

(
∂L◦(β∗n)

∂βnj

)2

= O(κ−2),

for all j ≤ pn. Thus,

P1 ≤
pn∑

j=qn+1

P

{∣∣∣∣∂L◦(β∗n)

∂βnj

∣∣∣∣ > nλn
5

}
= O

{
pn

(
√
nλn)2

}
→ 0,
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as n→∞. For the second term we need the following result

P

{∥∥∥∥∇1
∂L◦(β∗n)

∂βnj
− E◦∇1

∂L◦(β∗n)

∂βnj

∥∥∥∥ > √nqnκ} = O(κ−2),

for all j ≤ pn. Using Chebyshev’s inequality and condition (A5) we get

P

{∥∥∥∥∇1
∂L◦(β∗n)

∂βnj
− E◦∇1

∂L◦(β∗n)

∂βnj

∥∥∥∥ > √nqnκ}
≤ (
√
nqnκ)−2 Var◦

qn∑
k=1

{
n∑
i=1

∂2 log fn(Yni,β∗
n
)ui

∂βnk∂βnk

}
= O(κ−2),

for any positive constant κ. Then we can write

P2 ≤ P

(
‖β̂◦n − β∗n‖ >

qn√
n

)
+ P

{
max

qn<j≤pn

∥∥∥∥∇1
∂L◦(β∗n)

∂βnj
− E◦∇1

∂L◦(β∗n)

∂βnj

∥∥∥∥ > n
√
nλn

5qn

}
= O(1) +O

[
pn{

nλn/(qn
√
qn)
}2

]
→ 0,

for n→∞.

As already shown in Kwon and Kim (2012) in the proof of Theorem 1, the terms P3

and P4 both go to zero with n tending to infinity. Hence, the last term we need to
bound is P5 which can be done by showing that

P

{∥∥∥∥∇2
1

∂L◦(β+
n )

∂βnj

∥∥∥∥ > nqnκ

}
= O(κ−2),

for κ as before. Using conditions (A4), (A5) and Markov’s inequality we get

P

{∥∥∥∥∇2
1

∂L◦(β+
n )

∂βnj

∥∥∥∥ > nqnκ

}
≤ (nqnκ)−2 E

{∥∥∥∥∇2
1

∂L◦(β+
n )

∂βnj

∥∥∥∥}2

= (nqnκ)−2

qn∑
k,l=1

E

{
n∑
i=1

∂3 log fn(Yni, β
+
n )ui

∂βnj∂βnk∂βnl

}2

= O(κ−2).

Now it follows that

P5 ≤ P

(
‖β̂◦n − β∗n‖2 >

qn
√
qn

n

)
+ P

{
max

qn<j≤pn

∥∥∥∥∇2
1

∂L◦(β+
n )

∂βnj

∥∥∥∥ > 2n2λn
5qn
√
qn

}
= O(1) +O

[
pn{

nλn/(q2
n

√
qn)
}2

]
→ 0,
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as n→∞, what proves (35).

Hence, we can move on to prove (34), where we firstly use Taylor’s expansion as follows

L◦(βn)− L◦(β̂◦n) = (βn − β̂◦n)>∇L◦(β̂◦n) +
1

2
(βn − β̂◦n)>∇2L◦(β+

n )(βn − β̂◦n),

for some β+
n lying between β∗n and β̂◦n. Using (35) and the definition of β̂◦n we get

(βn − β̂◦n)>∇L◦(β̂◦n) =

pn∑
j=1

∂L◦(β̂◦n)

∂βnj
(βnj − β̂◦nj) ≤

pn∑
j=qn+1

Op(nλn)|βnj|.

Further, from the bootstrapped equivalent of (A6) with the positive constant M10 and
the Cauchy-Schwarz inequality it follows

1

2
(βn − β̂◦n)>∇2L◦(β+

n )(βn − β̂◦n) ≤ −nM10‖βn − β̂◦n‖2,

which implies that

Q◦(βn)−Q◦(β̂◦n) ≤
pn∑
j=1

nwnj,

where

wnj = Op(λn)|βnj| I(j > qn)−M10(βnj − β̂◦nj)2

+ n−1

n∑
i=1

ui

pn∑
j=1

pλn(|β̂◦nj|)− n−1

n∑
i=1

ui

pn∑
j=1

pλn(|βnj|).

Using the fact that n−1
n∑
i=1

ui = Op(1) and the rest of the arguments from the proof of

Theorem 2 in Kwon and Kim (2012), we can conclude that for all large enough n it
holds

∑pn
j=1wnj ≤ 0, which proves (34) and subsequently the assertions of the theorem.

Let us now show the Fisher type of expansion for the bootstrapped penalized likelihood

function and its maximizer.

Theorem 6. Under the conditions of Theorem 1 it holds

DQ1(β̃◦n1 − β∗n1) = D−1
Q1∇1Q

◦(β∗n) + Op

(
1
√
qn

)
.

Proof of Theorem 6. By Taylor’s expansion of ∇1Q
◦(β̃◦n), which is equal to zero by
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definition, around β∗n we have

0 = ∇1Q
◦(β̃◦n) = ∇1L

◦(β̃◦n)−
n∑
i=1

ui∇1Pλn(β̃◦n)

= ∇1L
◦(β∗n) + (β̃◦n1 − β∗n1)>∇2

1L
◦(β∗n) +

1

2
(β̃◦n1 − β∗n1)>∇2

1{∇1L
◦(β+

n )}(β̃◦n1 − β∗n1)

−
n∑
i=1

ui∇1Pλn(β∗n)− (β̃◦n1 − β∗n1)>
n∑
i=1

ui∇2
1Pλn(β++

n ),

where β+
n and β++

n lie between β̃◦n and β∗n. We can rewrite this into

(β̃◦n1 − β∗n1)>

{
∇2

1L
◦(β∗n)−

n∑
i=1

ui∇2
1Pλn(β++

n )

}
= −∇1Q

◦(β∗n)− 1

2
(β̃◦n1 − β∗n1)>∇2

1{∇1L
◦(β+

n )}(β̃◦n1 − β∗n1). (36)

Subsequently, the term on the left-hand side can be expanded as

∇2
1L
◦(β∗n)−

n∑
i=1

ui∇2
1Pλn(β++

n ) = ∇2
1L
◦(β∗n)− E◦∇2

1L
◦(β∗n)

+∇2
1L(β∗n)− E∇2

1L(β∗n)

+ n∇2
1Pλn(β∗n)−

n∑
i=1

ui∇2
1Pλn(β++

n )

+ E∇2
1Q(β∗n)

def
= I◦4 + I2 + I◦5 −D2

Q1,

where ‖I◦4‖ = Op(n/q
2
n) and ‖I2‖ = Op(n/q

2
n) as shown in (32) and (20), respectively.

Subsequently, both terms of I◦5 tend to zero in probability, due to the properties of β∗n,
β++
n and the SCAD penalty with parameter λ, i.e. we can write ‖I◦5‖ = Op(1). Thus,

(β̃◦n1 − β∗n1)>

{
∇2

1L
◦(β∗n)−

n∑
i=1

ui∇2
1Pλn(β++

n )

}
= (β̃◦n1 − β∗n1)>D2

Q1 + Op

(√
n

q3
n

)
.

Next we have, for sufficiently large n,∥∥∥∥ 1

2n
(β̃◦n1 − β∗n1)>∇2

1{∇1L
◦(β+

n )}(β̃◦n1 − β∗n1)

∥∥∥∥2

≤ 1

n2

qn∑
j,k,l=1

{
∂3L◦(β+

n )

∂βnj∂βnk∂βnl

}2

‖β̃◦n − β∗n‖4

≤ 1

n2

n∑
i=1

n

qn∑
j,k,l=1

{
U2
njkl(Yni)u

2
i

}
‖β̃◦n − β∗n‖4

= Op(q3
n)Op

(
q2
n

n2

)
= Op

(
1

nqn

)
.
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Hence, it follows that the norm of the last term on the right-hand side of (36) is of
order Op(

√
n/qn) and we can rewrite the equation into

D2
Q1(β̃◦n1 − β∗n1) = ∇1Q

◦(β∗n) + Op

(√
n

qn

)
,

from which it follows

DQ1(β̃◦n1 − β∗n1) = D−1
Q1∇1Q

◦(β∗n) + Op

(√
1

qn

)
,

what completes the proof.

Combining theorems 5 and 6 we get the following Fisher type of expansion for the

SCAD estimator β̃n and its bootstrapped counterpart β̃◦n

DQ1(β̃◦n1 − β̃n1) = D−1
Q1 {∇1Q

◦(β∗n)−∇1Q(β∗n)}+ Op

(
1
√
qn

)
. (37)

Collected results together with the following Lemma lead to the proofs of theorems 3

and 4.

Lemma 2. Under the conditions of Theorem 1 we can write

Q◦(β̃◦n)−Q◦(β̃n) =
1

2
‖DQ1(β̃◦n1 − β̃n1)‖2 + Op(1). (38)

Proof of Lemma 2. By Taylor’s expansion of Q◦(β̃n) around β̃◦n we get

Q◦(β̃◦n)−Q◦(β̃n) =
1

2
(β̃n − β̃◦n)>

{
−∇2Q◦(β+

n )
}

(β̃n − β̃◦n), (39)

for some β+
n lying between β̃n and β̃◦n. Assuming that n is large enough we can, similarly

as in the proof of Lemma 1, use the sparsity property of β̃n and β̃◦n and write

Q◦(β̃◦n)−Q◦(β̃n) =
1

2
(β̃n1 − β̃◦n1)>

{
−∇2

1Q
◦(β+

n )
}

(β̃n1 − β̃◦n1).

Then we have

∇2
1Q
◦(β+

n ) = ∇2
1L
◦(β+

n )−∇2
1L
◦(β∗n) +

n∑
i=1

ui∇2
1Pλn(β∗n)−

n∑
i=1

ui∇2
1Pλn(β+

n )

+∇2
1L
◦(β∗n)− E◦∇2

1L
◦(β∗n) +

n∑
i=1

(1− ui)∇2
1Pλn(β∗n)

+∇2
1L(β∗n)− E∇2

1L(β∗n) + E∇2
1L(β∗n)

def
= I◦6 + n−1

n∑
i=1

uiI3 + I◦4 + I◦7 + I2 −D2
Q1.
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From (20), (22) and (32), it follows that

1

2
(β̃n1 − β̃◦n1)>

(
n−1

n∑
i=1

uiI3 + I◦4 + I2

)
(β̃n1 − β̃◦n1) = Op(1) (40)

and we need to show the same for I◦6 and I◦7 .

Let us consider the term I◦6 first. Its norm can be bounded for some β++
n lying between

β+
n and β∗n accordingly

‖I◦6‖2 = ‖(β+
n1 − β∗n1)>∇>1

{
∇2

1L
◦(β++

n )
}
‖2 ≤

qn∑
j,k,l=1

{
∂3L◦(β++

n )

∂βnj∂βnk∂βnl

}2

‖β+
n − β∗n‖2

≤ Op
(qn
n

) qn∑
j,k,l=1

n
n∑
i=1

U2
njkl(Yni)u

2
i = Op(q4

nn).

Then

1

2
(β̃n1 − β̃◦n1)>I◦6 (β̃n1 − β̃◦n1) ≤ 1

2
‖I◦6‖‖β̃n − β̃◦n‖2 = Op(q2

n

√
n)Op

(qn
n

)
= Op(1), (41)

due to conditions (A1), (A1) and assertion of Theorem 2.

For the term I◦7 it holds

1

2
(β̃n1 − β̃◦n1)>I◦7 (β̃n1 − β̃◦n1)

P−→ 0, as n→∞, (42)

because of the properties of the SCAD penalty and our assumptions on λ and non-zero
coefficients of the parameter vector β∗n.

Finally, by the same arguments as in Lemma 1, the combination of (40), (41) and (42)
completes the proof of (38).

Proof of Theorem 3. In order to prove the Wilks type of expansion for the bootstrapped
penalized likelihood ratio, we use the Taylor’s expansion of Q◦(β̃◦n) around β̃n

Q◦(β̃◦n) = Q◦(β̃n) + (β̃◦n − β̃)>∇Q◦(β̃n) +
1

2
(β̃◦n − β̃n)>∇2Q◦(β̃n)(β̃◦n − β̃n)

+
1

6
∇>

{
(β̃◦n − β̃n)>∇2Q◦(β+

n )(β̃◦n − β̃n)
}

(β̃◦n − β̃n), (43)

with β+
n lying between β̃n and β̃◦n.

The second last term of the right-hand side can be expanded and bounded in a similar
fashion as the right-hand side term of the equation (39) and thus can be set to be equal
to −1

2
‖DQ1(β̃◦n1 − β̃n1)‖2 + Op(1).

Knowing that the third derivatives of the SCAD penalty function are zero for all of
the values of the coefficients βnj, we can relate the last term from the expansion to the
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term I◦3 from (33), where we set αn = 1 and ω = β̃◦n − β̃n. This means that the last
term from (43) is of order Op(1).

Thus, invoking the sparsity property, we have

Op(1) = Q◦(β̃◦n)−Q◦(β̃n)− (β̃◦n1 − β̃n1)>∇1Q
◦(β̃n) +

1

2

∥∥∥DQ1(β̃◦n1 − β̃n1)
∥∥∥2

= Q◦(β̃◦n)−Q◦(β̃n)− (β̃◦n1 − β̃n1)>
{
∇1Q

◦(β̃n)−∇1Q(β̃n)
}

+
1

2

∥∥∥DQ1(β̃◦n1 − β̃n1)
∥∥∥2

= Q◦(β̃◦n)−Q◦(β̃n)− (β̃◦n1 − β̃n1)>DQ1D
−1
Q1

{
∇1Q

◦(β̃n)−∇1Q(β̃n)
}

− 1

2

∥∥∥D−1
Q1

{
∇1Q

◦(β̃n)−∇1Q(β̃n)
}∥∥∥2

+
1

2

∥∥∥D−1
Q1

{
∇1Q

◦(β̃n)−∇1Q(β̃n)
}∥∥∥2

+
1

2

∥∥∥DQ1(β̃◦n1 − β̃n1)
∥∥∥2

≥ Q◦(β̃◦n)−Q◦(β̃n)− 1

2

∥∥∥D−1
Q1

{
∇1Q

◦(β̃n)−∇1Q(β̃n)
}∥∥∥2

+
1

2

∥∥∥DQ1(β̃◦n1 − β̃n1)−D−1
Q1

{
∇1Q

◦(β̃n)−∇1Q(β̃n)
}∥∥∥2

+ Op(1),

where the second last term from the inequality is of order Op(1) as shown in (37).
Hence, (16) holds.

Proof of Theorem 4. If we can show that Gn(·) and G◦n(·) have the same limiting dis-
tribution Ωn, the assertion of Theorem 4 will follow.

By the conclusion of Theorem 1 we have that Q(β̃n) − Q(β∗n) = 1
2
‖D−1

Q1∇1Q(β∗n)‖2 +

Op(1). Using the notation D2
L = −E∇2L(β∗n) and further D2

L1 and D−2
L1 for its first

qn × qn submatrix and the corresponding inverse, we can rewrite the formula into

Q(β̃n)−Q(β∗n) =
1

2
‖D−1

L1∇1L(β∗n)‖2 + Op(1).

This holds because of the properties of the SCAD penalty function and our assumptions
on the true coefficients β∗n, see condition (A1), and the penalty parameter λn. By the
same arguments, for the bootstrapped penalized likelihood ratio it follows that

Q◦(β̃◦n)−Q◦(β̃n) =
1

2
‖D−1

L1 {∇1L
◦(β∗n)−∇1L(β∗n)} ‖2 + Op(1).

Similarly as in Fan and Peng (2004) one can show that

2
{
Q(β̃n)−Q(β∗n)

}
L−→ χ2

qn ,

which follows from the fact that D−1
L1∇1L(β∗n) is asymptotically normally distributed,

i.e.
D−1
L1∇1L(β∗n)

L−→ Nqn(0, Iqn).
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For the conditional distribution of the bootstrapped penalized likelihood ratio con-
ditioned on the data and the penalty parameter λn, the procedure of showing the
asymptotic distribution is analogous.

For D−1
L1 {∇1L

◦(β∗n)−∇1L(β∗n)} we have

E◦
[
D−1
L1 {∇1L

◦(β∗n)−∇1L(β∗n)}
]

= E◦
n∑
i=1

D−1
L1∇1 log fn(Yni, β

∗
n)(ui − 1) = 0.

In order to show that the variance of G◦(·) tends to Iqn in probability, we firstly need
to show that ∥∥∥∥ 1

n
∇1L(β∗n)∇>1 L(β∗n) +

1

n
E∇2

1L(β∗n)

∥∥∥∥ = Op

(
1

q2
n

)
.

This can be proved analogously to the bound in (20).

Then it follows

Var◦
[
D−1
L1 {∇1L

◦(β∗n)−∇1L(β∗n)}
]

= Var◦

[
n∑
i=1

D−1
L1∇1 log fn(Yni, β

∗
n)(ui − 1)

]

=
n∑
i=1

D−1
L1∇1 log fn(Yni, β

∗
n)∇>1 log fn(Yni, β

∗
n)D−1

L1

= D−1
L1

{
n∑
i=1

∇1 log fn(Yni, β
∗
n)∇>1 log fn(Yni, β

∗
n)−DL1 +DL1

}
D−1
L1

≤ γmax {In1(β∗n)}
∥∥∥∥ 1

n
∇1L(β∗n)∇>1 L(β∗n) +

1

n
E∇2

1L(β∗n)

∥∥∥∥+ Iqn

= Iqn + Op(1).

Now it suffices to show that the random variable D−1
L1∇1 log fn(Yni, β

∗
n)(ui− 1) satisfies

Lindeberg’s condition, which is done analogously as in Fan and Peng (2004) for the
non-bootstrapped case, and by the central limit theorem it then holds that

D−1
L1 {∇1L

◦(β∗n)−∇1L(β∗n)} L−→ Nqn(0, Iqn).

Thus, we can conclude that

2
{
Q◦(β̃◦n)−Q◦(β̃n)

}
L−→ χ2

qn ,

which we needed to prove.
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