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Abstract

Electricity load forecasts are an integral part of many decision-making pro-

cesses in the electricity market. However, most literature on electricity load

forecasting concentrates on deterministic forecasts, neglecting possibly impor-

tant information about uncertainty. A more complete picture of future demand

can be obtained by using distributional forecasts, allowing for a more e�cient

decision-making. A predictive density can be fully characterized by tail mea-

sures such as quantiles and expectiles. Furthermore, interest often lies in the

accurate estimation of tail events rather than in the mean or median. We pro-

pose a new methodology to obtain probabilistic forecasts of electricity load,

that is based on functional data analysis of generalized quantile curves. The

core of the methodology is dimension reduction based on functional principal

components of tail curves with dependence structure. The approach has sev-

eral advantages, such as �exible inclusion of explanatory variables including

meteorological forecasts and no distributional assumptions. The methodol-

ogy is applied to load data from a transmission system operator (TSO) and

a balancing unit in Germany. Our forecast method is evaluated against other

models including the TSO forecast model. It outperforms them in terms of

mean absolute percentage error (MAPE) and achieves a MAPE of 2.7% for

the TSO.

Keywords: Electricity, Load forecasting, FPCA
JEL classi�cation: G19, G29, G22, Q14, Q49, Q59

1. INTRODUCTION

With the liberalization of energy markets, the amount of risk borne by operators and
market participants has increased substantially. Statistical tools can be bene�cial to
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Risiko�, Humboldt-Universität zu Berlin is gratefully acknowledged.
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Straÿe 1, 10178 Berlin, Germany. Email:lopezcab@wiwi.hu-berlin.de,sulzfran@hu-berlin.de
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assess and manage their risk. Amongst energy, electricity stands out due to its lim-
ited storability. Supply and demand have to be balanced out at every point in time.
Since electricity is mainly traded in a day-ahead market, short term adjustments in
supply due to forecasting errors can lead to enormous �nancial losses. Therefore,
load forecasting is extremely important for energy suppliers, transmission system
operators, �nancial institutions and other participants in electricity market and a
crucial process in the planning and operation of electric utilities.

There is a vast literature on how to forecast electricity load, most of them concen-
trating on deterministic forecasts. For an overview on common methods see Weron
(2007) or Taylor and McSharry (2007). However, for a sustainable risk management
of utility operators not only a forecast of expected demand, but also knowledge
about the uncertainty and dispersion of future load plays an important role. This
points towards the use of probabilistic forecasts. While in di�erent areas of fore-
casting such as macro-economics and �nance (Tay and Wallis 2000), meteorology
(Leutbecher and Palmer 2008) or renewable energy production (Bremnes 2004; Pin-
son et al. 2007) probabilistic forecasts are already well established, there is a lack in
literature on probabilistic forecasts for electricity demand. A notable exception is
the work by Hyndman and Fan (2010) which uses a mixture of temperature simu-
lation, economic scenarios, and residual bootstrapping to obtain long-term density
forecasts of electricity demand. Others like Cottet and Smith (2003) use Bayesian
modeling in a multi-equation regression model to forecast intraday electricity load
and brie�y discuss model averaging for probabilistic forecasts.

Short-term probabilistic forecasts yield important information for utility opera-
tors for decisions e.g. on purchasing and generating electricity and load scheduling.
They are crucial for risk management and can be used to derive risk measures such
as probability of exceedance levels (Taylor 2008; Bellini et al. 2014). In this article
we propose a methodology to obtain probabilistic forecasts by employing functional
data analysis of generalized quantile curves.

With generalized quantiles we refer to quantiles (Koenker and Bassett Jr 1978)
and expectiles (Newey and Powell 1987). Both are tail measures and uniquely
characterize the conditional distribution of a random variable. Furthermore, for a
large class of decision-making problems, optimal solutions correspond to quantiles of
a conditional predictive distribution (Gneiting 2011). In fact, in a wide range of �elds
including weather events, extreme natural hazards, genomics, risk management,
energy demand and portfolio allocation among others, tail indices provide useful
information that goes beyond the mean and median. These tail indices constitute
curves that can be treated in a functional principal component analysis (FPCA)
context.

The idea of FPCA is to identify the main risk drivers by a small number of factors
combined with random noise. The resulting factors are then to be (cor)related with
exogenous variables, which will allow us to study phenomena contingent to extreme
risks. Functional data analysis (see Ramsay and Silverman (2005)) is an extension
of multivariate data analysis to functional data. There are few studies that apply
methods from functional data analysis to load forecasting, amongst which are Shang
(2013), Goia et al. (2010) and Antoch et al. (2008). Others like Cho et al. (2013)
reduce dimension using a hybrid approach that combines a generalized additive
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model for the weekly averages of the load and curve linear regression models for the
dependence structure across consecutive daily loads.

Two recent studies on functional data analysis of tail events are Guo et al. (2013),
who do the dimension reduction with weighted L1 and L2 norm, where the weights
are sign sensitive, and Tran et al. (2014) who develop an analogue of PCA of tail
curves in an asymmetric norm. However, both studies rely on independence between
functional observations. In many �elds however, such as energy demand modeling,
the dependency between curves needs to be taken into account at the core of the
modeling. In our study we allow for temporal dependence between functional obser-
vations and refer to results from Hörmann and Kokoszka (2010). The dependence
between tail curves can be exploited for forecasting, which provides useful informa-
tion to support modeling, pricing and trading. Our approach has several advantages:
It allows for �exible inclusion of explanatory variables and does not require distri-
butional assumptions for the tails curves. Furthermore, treating load curves as
functional data has the advantage that one step ahead forecasts yield forecasts for
the whole next day and that forecasts are continuous functions and thus available
for every point in time. We expect that exogenous variables like meteorological fac-
tors do not only e�ect the amount of electricity consumed, but also the distribution
over the day and thus the shape of the load curves (Engel et al. 1986; Harvey and
Koopman 1993; Taylor and McSharry 2007).

We illustrate our approach with data on quarter-hourly electricity consumption
of a transmission system operator (TSO) and a balancing unit (BU) in western
Germany. Variations in the intradaily pattern are explained using weather variables
and meteorological forecasts. The proposed model is shown to perform better than
well-known methods, such as a deterministic similar-day approach, the Holt-Winter
Exponential smoothing and the forecast provided by TSO Amprion. It achieves on
average 2.7% mean absolute percentage error (MAPE) in the one-day forecasting
period for the TSO.

Our article is structured as follows. Section 2 gives a brief introduction of the load
data. In Section 3 we de�ne FPCA of generalized quantiles that will be used to pro-
duce probabilistic load forecasts, together with its estimation algorithm. Section 4
discusses the modeling and estimation of the electricity demand data. Section 5 de-
scribes the forecast performance with respect to other methods. Section 6 concludes
the paper. All computations in this paper were carried out in R. The electricity load
data and forecast electricity load data was obtained from TSO Amprion and the
balancing unit Stadtwerke Saarbrücken. The data source for the temperature data
is Deutscher Wetterdienst (DWD); for the meteorological weather forecast data the
data source is WeatherOnline. We thank Dr. Ulrich Römer and Herrad Werner for
providing us the data. To simplify notation, in the following dates are denoted with
yyyymmdd format. Supplementary materials for this article are available online.

2. ELECTRICITY DEMAND DATA

The German electricity market, which was liberalized in 1998, is Europe's largest,
with annual power consumption of around 500 TWh and a generation capacity of
125 GW (Eurostat 2014). The four German TSOs (Amprion, Tennet TSO, 50Hertz

3



Transmission and TransnetBW) are responsible for maintaining a stable and reliable
system and to maintain balance between electricity generation and consumption.
All market participants are organized in balancing units (BU). Each BU has a BU
manager who is responsible for the balance within the unit. Electricity is traded
mainly in the day-ahead market, which closes at 12pm. Before, each BU manager
has to submit a load schedule to the corresponding TSO specifying the expected
load for each quarter hour of the next day. Deviations from the speci�ed load can
still be adjusted in the intra-day market. The intra-day market is a continuous mar-
ket where contracts can be traded until 45 minutes before delivery. However, the
intra-day market is less liquid than the day-ahead market and therefore neglected
in this study. The TSOs balance out di�erences between the forecasted load of the
BU and actual consumption in order to ensure a stable system. Precise forecasts
of the area's consumption are essential in order to have su�cient capacity avail-
able. For deviations between forecasted and actual load BUs have to pay a price
which usually greatly exceeds the price at the spot market. Therefore, for BU man-
agers improvements in their forecasting performance directly leads to enormous cost
reductions.

For the empirical work of this article, we use electricity demand data of the TSO
Amprion and the BU Stadtwerke Saarbrücken. Both datasets are freely accessible
on their websites. The TSO Amprion operates in the west of Germany. The BU
is located within the balancing area of Amprion. The analysis is based on quar-
ter hourly data of electricity consumption from 20100101 to 20123112. Summary
statistics are given in Table (1). The �rst two years of the data are used for in-
sample �tting and the third year for an out-of-sample forecasting evaluation, given
in Section 5. Figure (1) displays the two load data sets from 2010 to 2012. It is
clearly visible that electricity consumption exhibits seasonal features over time and
at di�erent times of the day.

Median Mean SD Min Max

TSO 22020 22050 4054.35 11850 34870
BU 402 401 95.71 152 630

Table 1: Summary Statistics of the load data (in MW)

It is a stylized fact that it contains yearly, weekly and intraday seasonal cycles
and is sensitive to temperature changes (Engel et al. 1986; Taylor and Buizza 2002).
During winter electricity consumption in Germany is higher than during the summer.
Additionally, at weekends electricity consumption is usually lower than during the
week. The typical intraday load pro�le shows a peak around noon, followed by valley
in the afternoon and another peak in the evening at around 7pm. These seasonal
patterns are quite predictable and therefore usually modeled deterministically. We
express the observed load Ỹs as

Ỹs = Λs + Ys, s = 1, . . . , S, (1)

where Λs is a deterministic seasonal component and Ys is a stochastic component.
We estimate the deterministic seasonal component separately for every quarter hour
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Figure 1: Electricity load curves of TSO - Amprion (left) and BU - Stadtwerke
Saarbrücken (right) from 20100101 to 20123112.

of a day. It is speci�ed as

Λt,k = at + bt · k + c1,t sin

(
2πk

365

)
+ c2,t cos

(
2πk

365

)
+

7∑
i=1

di,t ·Di,k, (2)

where t = 1, . . . , 96 denotes the quarter hours of a day and k = 1, . . . , K the day,
such that t · k = s. The parameters at,bt,c1,t,c2,t and di,t are estimated by ordinary
least square regression. Di,k is a set of dummy variables consisting of six dummies
for the weekdays and one dummy for public holidays. They capture weekly seasonal
behavior, while the sine and cosine functions capture yearly seasonalities. This
approach is very close to the so called similar-day approach, which is a commonly
used approach in industry to model and forecast electricity load.

As covariates for load modeling we include average daily temperature and hours
of sunshine. The time series of both variables are displayed in Figure (??). For
Saarbrücken temperature and hours of sunshine are measures from a weather station
in Saarbrücken. For the TSO the average measures of three stations located in their
area are taken. For forecasting we use meteorological day-ahead forecasts of the
covariates, which are provided by WeatherOnline. For our analysis all covariates are
deseasonalized.

3. METHODOLOGY

We propose a methodology that combines methods from generalized quantile regres-
sion and functional data analysis (FDA) in order to obtain probabilistic forecasts of
electricity demand. FDA has gained importance with the advances in storing large
sets of multivariate data. It has been applied in various �elds of research ranging
from bioscience to medicine and econometrics. For an overview on applications of
FDA we refer to Ramsay and Silverman (2002) or Ferraty and Vieu (2006).
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Figure 2: Average daily temperature and hours of sunshine for the area of the TSO
Amprion (left) and Saarbrücken (right)

3.1 Generalized Quantiles

The distribution of a random variable Y can be characterized by its cdf FY (y). The
quantile functions of Y are de�ned as

QY (τ) = F−1Y (τ) = inf{y : F (y) ≤ τ}, τ ∈ (0, 1). (3)

Like the cdf, the quantile function provides a full characterization of the random
variable Y . For each τ ∈ (0, 1) the quantile function can be formulated as the
solution of a minimization problem:

QY (τ) = arg min
y

E{ρτ (Y − y)}, (4)

where ρτ (·) is a loss function de�ned as

ρτ (u) = u{τ − I(u < 0)}, (5)

which is in general asymmetric (Koenker 2005). A special case is the median, which
corresponds to τ = 0.5. The quantile function conditional on a (one-dimensional)
covariate X is given by

QY |X(τ) = arg min
f∈F

E{ρτ (Y − f(X)}, (6)
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where f(·) is a nonparametric function of the covariate X from a set of functions F ,
such that the expectation is well de�ned. Closely related to quantiles are expectiles
introduced by Newey and Powell (1987), which can be obtained by a generalization
of the loss function ρτ (·):

lτ (X) = arg min
f∈F

E{ρατ (Y − f(X)}, α ∈ {1, 2} (7)

ρατ (u) = |u|α|τ − I(u < 0)|. (8)

We call the solution of (7) a generalized quantile function. For α = 1 we obtain
the loss function in (5) and the solution to (7) is a conditional quantile function.
For α = 2 the solution to (7) is a conditional expectile function. Note that the
conditional expectile corresponding to τ = 0.5 is the expected value E(Y |X). Like
quantiles, expectiles characterize the distribution of a random variable. While they
are less intuitive to interpret than quantiles, they have the advantage of a better
computational e�ciency (Newey and Powell 1987) and are a coherent risk measure
(Bellini et al. 2014).

If one is not only interested in estimating a single generalized quantile, but in
estimating a collection of generalized quantiles, one faces the problem of crossing
quantiles/expectiles. This is unfavorable, since it is theoretically impossible. We use
an algorithm proposed by Schnabel (2011), that estimates the generalized quantile
functions lτ (X) jointly as a surface on the domain of the independent variable X
and the asymmetry parameter τ , called expectile sheet. The algorithm is based on
a least asymmetrically weighted squares (LAWS) criterion combined with P-splines.
The expectile sheet can be expressed as

µ(X, τ) =
K∑
k=1

L∑
l=1

aklBk(X)B̃l(τ), (9)

where B is a B-spline basis for the covariate X, B̃ is a B-spline basis for the asym-
metry parameter τ and A = [akl] is a matrix of coe�cients. It is estimated by
minimizing

n∑
i=1

J∑
j=1

wi(τj){Yi − µ(Xi, τj)}2 + P, (10)

where wi(τ) is a weight function and µ(X, τ) is the expectile sheet. P is a penalty
term de�ned as P = λx||DA||F + λτ ||AD̃||F , where|| · ||F is the Frobenius norm

and D and D̃ are second order di�erence matrices. The penalty term controls the
smoothness of the estimates and λx and λp are smoothing parameters. The algorithm
was originally developed for expectiles and the weight function wi(τ) is given by

wi(τj) =

{
τj if Yi > µ(Xi, τj)
1− τj if Yi ≤ µ(Xi, τj).

(11)

With a slight modi�cation the algorithm can be adapted for quantiles as well. Fol-
lowing Schnabel and Eilers (2013) the modi�ed weight function is given by

wi(τj) =


τj√

{Yi−µ(Xi,τj)}2+δ2
if Yt > µ(Xi, τj)

1−τj√
{Yi−µ(Xi,τj)}2+δ2

if Yt ≤ µ(Xi, τj),
(12)
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where δ is a small constant which is used to avoid numerical problems. In the
following the covariate X used is time of the day and will be denoted by t.

3.2 Time series of functional data

Electricity demand is recorded in sequential form and shows a similar pattern each
day. Naturally, metered demand can be divided into time intervals of one day.
We are interested in generalized quantiles of metered intra-daily electricity demand.
The generalized quantile functions de�ned in the previous section can be treated
as realizations lτ,k(t) of a functional time series (lτ,k, k ∈ Z) de�ned on a compact
set T and for a �xed τ ∈ (0, 1). For notational convenience we supress τ in the
following, i.e. lτ,k(t) := lk(t). Under stationarity lk(t) have a common mean function
E{l(t)} = µ(t) and a common covariance function C(s, t) = Cov{l(s), l(t)} with
s, t ∈ T . Note that functional observations are intrinsically in�nite dimensional. A
common tool to reduce dimensionality is functional principal component analysis
(FPCA). For a survey on FPCA we refer the reader to Shang (2014).
FPCA yields the directions of largest variability in the data and expresses the data as
a weighted sum of the orthogonal principal component functions. If

∫
T C(t, t)dt <

∞, the covariance function induces the Kernel operator K : φ 7→ Kφ de�ned by
(Kφ)(s) =

∫
T C(s, t)φ(t)dt. Then, C has the representation

C(s, t) =
∞∑
i=0

λiφi(s)φi(t), (13)

where φi for i = 1, 2, . . . are the orthogonal eigenfunctions and λi the corresponding
non-increasing and non-negative sequence of eigenvalues of the operator K. The
eigenfunctions are also called principal component functions. The principal com-
ponent scores αi, i = 1, 2, . . . are given by 〈l(t), φi〉, where 〈·, ·〉 denotes the inner
product. That is, the principal component scores are the projection of l(t) in the di-
rection of the corresponding principal component, with E(αi) = 0 and Var(αi) = λi.
Using the Karhuhen-Loève expansion we can express each function lk(t) as

lk(t) = µ(t) +
∞∑
i=1

αikφi(t). (14)

The functions lk(t) can be approximated by a �nite sum of the �rst m principal
components, called truncated Karhuhen-Loève expansion:

lk(t) ≈ µ(t) +
m∑
i=1

αikφi(t) (15)

Note that only the principal component scores are varying over time, whereas the
mean and principal component functions are time invariant. This observation is
exploited for forecasting.

8



3.3 Estimating FPCA for generalized quantiles

In practice the mean, eigenvalues and eigenfunctions are unknown and have to be
estimated from the sample. The mean of the functions is estimated by

µ̂(t) =
1

n

n∑
k=1

lk(t), (16)

where n is the sample size. We estimate the kernel operator by

(K̂φ)(s) =

∫
T
Ĉ(s, t)φ(t)dt, (17)

where

Ĉ(s, t) =
1

n

n∑
k=1

{lk(s)− µ̂(s)}{lk(t)− µ̂(t)}. (18)

Estimates of the eigenfunctions and scores are computed from (17) and denoted by φ̂i
and α̂ik, i = 1, . . . ,m. Hörmann and Kokoszka (2010) show that these estimates are√
n-consistent for a large group of stationary functional time series, which includes in

particular linear functional processes. To choose the number of principal component
functions m in Equation (3.2) there exist various rules. Here, the number is chosen
such that at least an a priori �xed amount of variation in the data is explained by
the principal component functions.

3.4 Forecasting functional time series

As noted above, in Equation (14) only the principal component scores α depend on
time, while the common mean function µ and the principal component functions
φ are time-invariant. Hence, the dynamics over time of the load curves are fully
captured by the dynamics of the principal component scores. The time dynamics of
the �rst m estimated principal component scores can be modeled using time series
analysis (Aue et al. (2014)). The problem of modelling the in�nite dimensional
functional data objects reduces thus to modeling a multivariate time series.

In our analysis a vector autoregressive model including exogeneous variables
(VARX) turned out to be suitable to capture the dynamics of the principal compo-
nent scores. The VARX model of order p is given by

α̂k =

p∑
i=1

Φiα̂k−i + βxk + ηk (19)

where α̂k is the vector of estimated principal component scores, Φi is a coe�cient
matrix, xk are exogenous variables and ηk is a white noise process (Lütkepohl 2005).

A forecast of the principal component scores directly yields a forecast of the load
curve:

̂̃
lK+h(t) = µ̂(t) +

m∑
i=1

̂̃αi,K+hφ̂i(t), (20)
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where ̂̃αi,K+h denotes the h-step ahead forecast of the principal component scores

at time K and
̂̃
lK+h(t) is the h-step ahead forecast of the load curve. Although

suitable here, in a more general setting forecast models for the principal component
scores are not retricted to VAR models and can be replaced by many other time
series models. The next algorithm summarizes the aforementioned steps:
Algorithm

1. For �xed τ ∈ (0, 1) and each k = 1, . . . , K, use the data Yt,k, t = 1, . . . , 96 to
estimate the k − th generalized quantile curve lτ,k(t) by LAWS

2. Fix m and apply FPCA to lτ,1, . . . , lτ,K :

(a) Compute the empirical mean µ̂, FPCs φ̂i and FPC scores α̂k = (α̂1,k, . . . , α̂m,k)
>,

k = 1, . . . , K, i = 1, . . . ,m

3. For �xed h, use the m−variate time series of empirical FPC scores α̂ =
(α̂1 . . . α̂m)

>
to obtain h−step ahead forecast ̂̃αK+h = (̂̃αK+h,1 . . . ̂̃αK+h,m)

>

(a) Use a multivariate time series model, e.g. VAR model

(b) Include information from exogenous variables

4. Use ̂̃αK+h to compute h−step ahead forecast of lK+h as

̂̃
lK+h(t) = µ̂(t) +

m∑
i=1

̂̃αi,K+hφ̂j(t)

3.5 Simulation Study

In this section simualtions are used for illustrating the performance of the proposed
method for FPCA with generalized quantiles. We run the simulation for indepen-
dent as well as autocorrelated functional observations to demonstrate robustness to
temporal dependence. For comparison, we follow the simulation setup of Guo et al.
(2013) and Tran et al. (2014), who both suggest alternative approaches for modeling
functional tail event curves. The data Yt,k, k = 1, . . . , K, j = 1, . . . , T is simulated
from the model

Yj,k = µ(tj) + α1,kf1(tj) + α2,kf2(tj) + εk,j (21)

where tj are equidistant sampling points in [0, 1] with tj = j/T , µ(t) = 1 +
t + exp{−(t − 0.6)2/0.05} is the mean function, f1(t) =

√
2 sin(2πt) and f2(t) =√

2 cos(2πt) are the principal component functions and α1,k and α2,k are principal
component scores. The principal component scores are generated either (1) indepen-
dently from a N(0, 36) and N(0, 9) distribution, respectively or (2) from a VAR(1)
process with

Φ1 =

(
−0.5 −0.2
0.2 0.5

)
.
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The error εk,t is generated from three di�erent distributions as speci�ed in Table
(2), where the �rst one is a light-tailed distribution, the second one is heavy-tailed
and the third one exhibits heteroscedasticity. The simulation is run 200 times with
two di�erent setups: (1) T = 100 grid points per curve and K = 20 curves and
(2) T = 150 data points per curve and K = 50 curves. Summary statistics of the
mean squared errors (MSE) and the average run time in seconds of the simulations
are given in Table (2). The magnitude of the average MSE does not di�er sub-
stantially between the independent and the autocorrelated case. This con�rms that
the quality of the proposed methodology is not sensitive to temporal dependence
between functional observations. The methodology performs worst for the fat tailed
distribution, but well handles heteroscedasticity. Overall, the results are at least as
good in terms of average MSE than those reported by Guo et al. (2013) and Tran
et al. (2014).

N = 20, T = 100 N = 50, T = 150
(1) (2) (1) (2)

τ = 0.95
ε ∼ N(0, 0.5) Mean 0.0448 0.0400 0.0254 0.0233

SD 0.0295 0.0271 0.0174 0.0170
AT 3.4400 3.7200 10.1300 11.0100

ε ∼ t(5) Mean 0.2444 0.2290 0.1465 0.1428
SD 0.2565 0.2396 0.1590 0.1729
AT 3.7500 4.2300 10.3700 12.2500

ε ∼ N(0, µ(t)0.5) Mean 0.0564 0.0518 0.0416 0.0500
SD 0.0381 0.0340 0.0286 0.0389
AT 3.5100 3.8200 10.2100 11.8000

τ = 0.05
ε ∼ N(0, 0.5) Mean 0.0433 0.0407 0.0259 0.0234

SD 0.0285 0.0281 0.0177 0.0168
AT 3.3900 3.7200 9.8000 10.3200

ε ∼ t(5) Mean 0.2447 0.2242 0.1480 0.1401
SD 0.2508 0.2407 0.1644 0.1571
AT 3.7100 4.6600 11.6200 12.0700

ε ∼ N(0, µ(t)0.5) Mean 0.0521 0.0518 0.0499 0.0501
SD 0.0379 0.0354 0.0385 0.0393
AT 3.2600 3.7700 9.8700 12.2000

Table 2: Mean and standard deviation (SD) of MSE and average run time in seconds
(AT) based on K = 200 simulation runs
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4. MODELING DYNAMICS OF ELECTRICITY

DEMAND

As noted above the generalized quantile functions fully characterize the distribu-
tion of electricity demand and they are an alternative to modeling the distribution
function directly. We model the dynamics of the 1%, 5%, 25%, 50%, 75%, 95% and
99% expectile functions using the described functional data approach for the two
year insample period from 20100101 to 20113112. The expectile functions are ob-
tained based on the LAWS algorithm with penalty terms λx and λτ estimated by
asymmetric cross validation.

The number of principal components is chosen such that at least 95% of the
variation in the data is explained. Tables (3) and (4) show the explained variation of
each principal component for all considered expectile levels τ for the BU Saarbrücken
and the TSO Amprion, respectively. With four principal components slightly more
than 95% of the variation is captured. For all expectile levels the �rst PC is the
dominant factor, explaining roughly three quarter of the variation in the curves.

Expectile level τ
PC 1% 5% 25% 50% 75% 95% 99%

1 0.7221 0.7223 0.7232 0.7195 0.7247 0.7129 0.7233
2 0.1209 0.1213 0.1215 0.1220 0.1199 0.1241 0.1227
3 0.0695 0.0690 0.0687 0.0687 0.0698 0.0691 0.0722
4 0.0394 0.0409 0.0404 0.0420 0.0416 0.0410 0.0409

Total 0.9521 0.9536 0.9540 0.9524 0.9562 0.9572 0.9593

Table 3: Explained variance of the �rst four principal components for the BU Saar-
brücken

Expectile level τ
PC 1% 5% 25% 50% 75% 95% 99%

1 0.7985 0.7942 0.8007 0.7946 0.7952 0.7956 0.7892
2 0.0878 0.0893 0.0864 0.0883 0.0892 0.0887 0.0920
3 0.0583 0.0586 0.0553 0.0559 0.0547 0.0553 0.0541
4 0.0222 0.0237 0.0240 0.0255 0.0253 0.0252 0.0261

Total 0.9670 0.9659 0.9667 0.9644 0.9645 0.9650 0.9615

Table 4: Explained variance of the �rst four principal components for the TSO
Amprion

Figure (3) shows the �rst four principal components for TSO and the BU. For
both data sets the extracted PCs exhibit similar shapes. The �rst principal compo-
nent re�ects variations in the level of electricity load. A positive score on the �rst
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principal component implies above average consumption, a negative score below av-
erage consumption (see Figure (4) for the scores). The second and third principal
component capture variations in the height and location of peak load. The steepness
of the load curves is modeled by the fourth principal component.
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Figure 3: First four principal components corresponding to τ = 50% of the TSO
Amprion (dashed) and the BU (solid)

The load of the TSO is the aggregated load of all BUs located in their area
of responsibility. We compare the dynamics of the principal component scores for
τ = 0.5 of the TSO and of the BU Saarbrücken in order to investigate to which
degree the quantity risk in the BU is driven by the same factors as the overall
market. The scores of the �rst factor of the TSO and the BU have a correlation
of only 0.3 indicating that the level of electricity load of both is only moderately
correlated. The correlation of the other scores and di�erent levels of τ is of similar
magnitude.

The dynamics of the principal component scores are modeled by a VARX(p)
model. The lag order p is chosen by the Akaike information criterion and equals
p = 7 for all expectile levels. Table (5) shows the estimation results of the exogenous
variables for the TSO. Note that the values refer to deseasonalized data.

Both, daily average temperature and hours of sunshine have a strong negative
e�ect on all four principal component scores, implying that they do not only a�ect
the amount of electricity used, but also the allocation over the day. As expected, an
increase in temperature results in lower electricity consumption, since in the area of
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Figure 4: The scores corresponding to the �rst four principal components ant τ =
50% of the TSO Amprion (left) and the BU Saarbrücken (right)

the TSO Amprion there is a high commonness of electric heating in form of night-
storage heaters. Similary, more hours of sunshine decrease electricity demand, for
instance due to less demand for lighting and in-house consumption of solar energy.
Peak demand is a�ected di�erently by temperature and hours of sunshine as re�ected
in the sign of the coe�cients. While higher temperature causes more pronounced
peaks, more hours of sunshine �atten the load curve.

For the BU (Table (6)) temperature does not have any e�ect on electricity load.
This may be explained by the fact, that the share of electric heating is much lower
in Saarbrücken than in the total area of the TSO. Therefore, demand is less sensitive
to temperature.

In order to test the validity of our model, a multivariate portmanteau test (Hosk-
ing 1980) is performed, which suggests to reject the overall signi�cance of residual
autocorrelation for lag orders up to 50.

5. FORECAST EVALUATION

In this section we conduct an out-of sample forecast evaluation for the third year of
electricity consumption data (2012) for the BU and the TSO.
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α1 α2 α3 α4

τ = 5%
Temperature −22.314∗∗∗ −14.805∗∗∗ −11.665∗∗∗ −3.629∗∗

(7.175) (2.903) (2.620) (1.564)
Sunshine −24.912∗∗∗ 38.058∗∗∗ 20.184∗∗∗ −6.308∗∗∗

(8.895) (3.599) (3.248) (1.939)
τ = 50%

Temperature −22.156∗∗∗ −14.708∗∗∗ −11.276∗∗∗ −3.940∗∗

(7.141) (2.896) (2.591) (1.576)
Sunshine −24.563∗∗∗ 38.198∗∗∗ 20.208∗∗∗ −6.059∗∗∗

(8.834) (3.582) (3.205) (1.949)
τ = 95%

Temperature −21.892∗∗∗ −13.771∗∗∗ −11.587∗∗∗ −3.790∗∗

(7.187) (2.930) (2.593) (1.557)
Sunshine −25.244∗∗∗ 37.850∗∗∗ 21.095∗∗∗ −5.633∗∗∗

(8.877) (3.619) (3.202) (1.923)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: Estimation Results TSO Amprion. Standard deviation in parenthesis.

α1 α2 α3 α4

τ = 5%
Temperature −0.038 −0.039 −0.016 −0.039

(0.154) (0.058) (0.054) (0.041)
Sunshine −0.950∗∗∗ 0.633∗∗∗ 0.194∗∗∗ −0.204∗∗∗

(0.191) (0.072) (0.067) (0.051)
τ = 50%

Temperature −0.039 −0.037 −0.017 −0.041
(0.154) (0.058) (0.054) (0.041)

Sunshine −0.958∗∗∗ 0.631∗∗∗ 0.210∗∗∗ −0.200∗∗∗

(0.190) (0.072) (0.067) (0.051)
τ = 95%

Temperature −0.048 −0.036 −0.022 −0.043
(0.154) (0.058) (0.055) (0.041)

Sunshine −0.978∗∗∗ 0.627∗∗∗ 0.228∗∗∗ −0.171∗∗∗

(0.190) (0.072) (0.068) (0.050)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6: Estimation Results BU Saarbrücken. Standard deviation in parenthesis ().
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5.1 Prediction comparison methods

In order to assess the performance of our forecasting approach we compare it to
the results of three di�erent benchmark models. As a �rst benchmark we choose
the simple Deterministic Seasonal Component (DSC) (Eq. 2). The deterministic
seasonal component is straightforward to estimate and in modi�ed forms frequently
used in industry. As a further benchmark we use forecasts that are provided by
the TSO Amprion for their area of responsibility. Additionally, we compare our
model to the triple seasonal Holt-Winter exponential smoothing (TSHW) model,
which was proposed and applied to short-term load forecasting by Taylor (2010).
The latter model accomodates yearly, weekly and daily seasonal cycles and has the
advantage that no speci�cation of the functional form is required. Furthermore,
Taylor (2010) shows in an application to data from the UK that the TSHW model
outperforms simpler exponential smoothing models and performs at least as well as
seasonal ARMA models. The formulation of the TSHW model is given by

lt = α(yt − dt−s1 − wt−s2 − at−s3) + (1− α)lt−1 (22)

dt = δ(yt − lt − wt−s2 − at−s3) + (1− δ)dt−s1 (23)

wt = ω(yt − lt − dt−s1 − at−s3) + (1− ω)wt−s2 (24)

at = λ(yt − lt − dt−s1 − wt−s2) + (1− λ)at−s2 (25)

ŷt+h = lt + dt−s1+h+ wt−s2+h + at−s3+h + φk(yt − lt−1 − dt−s1 − wt−s2 − at−s3) (26)

where lt is the smoothed load, dt, wt and at are seasonal indices for daily, weekly
and annual cycles and α, δ, ω, λ are smoothing parameters. ŷt+h denotes the h−step
ahead forecast at time t and the term including φ is an adjustment for �rst-order
autocorrelation.

5.2 Forecast Results

We evaluate the performance of the proposed forecasting methodology based on the
root mean squared error (RMSE) de�ned as

RMSEh =

√√√√ 1

96

96∑
t=1

{lh(t)−
̂̃
lh(t)}2

and the mean absolute percentage error (MAPE) given by

MAPEh =
1

96

96∑
t=1

| lh(t)−
̂̃
lh(t)

lh(t)
|,

where h = 1, . . . , H denotes the day-ahead forecasts. Table (7) reports the mean of
the RMSE and MAPE based on H = 351 out-of-sample day-ahead forecasts over
the year 2012. Meteorological forecasts of the explanatory variables are used as
covariates. The proposed methodology clearly outperforms the benchmark models
in terms of the given measures. Surprisingly, also the simple DSC performs relatively
good and yields results similar to those of the TSHW exponential smoothing model.
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FDA DSC TSHW TSO

TSO
RMSE 711.72 1021.16 932.81 3064.97
MAPE 0.027 0.045 0.043 0.13

Balancing Unit
RMSE 23.16 30.30 34.71 �
MAPE 0.043 0.062 0.066 �

Table 7: Mean of RMSE and MAPE for the TSO and the BU of functional data
approach (FDA) with τ = 0.5, deterministic seasonal component (DSC), triple
seasonal Holt-Winter exponential smoothing (TSHW) and forecast provided by the
transmision system operator (TSO).

This underlines the very regular structure in intra-daily electricity consumption.
Figure (5) shows boxplots of the MAPE. The distribution of MAPE of the FDA is
most narrow, however it contains several extreme values at the right tail. Overall,
the �gures indicate that our model performs quite well in point forecasting and
results in forecasts with an average absolute deviation of only 2.7% for the TSO and
4.3% for the BU.

In order to evaluate the performance of the distributional forecasts, we look at
the accuracy of the expectile estimates for τ = 0.01, 0.05, 0.25, 0.75, 0.95, 0.99. As
pointed out by Guler et al. (2014) a performance measure should be used that re�ects
the asymmetric loss function of expectiles. We choose the root mean weighted
squared error (RMWSE) de�ned as

RMWSEτ
h =

√√√√ 1

96

96∑
t=1

|τ − I
{lh(t)<̂l̃τ,h(t)}

|{lh(t)−
̂̃
lτ,h(t)}2, (27)

where
̂̃
lτ denotes the forecasted τ -expectile curve. Summary statistics of the RMWSE

for the di�erent expectile levels based on H = 351 day-ahead forecasts are given in
Table (8). The results indicate high precision of the estimated tail curves. Figure
(6) shows a plot of the forecasted mean together with forecast intervals correspond-
ing to various expectile levels and the observed load for the TSO Amprion. The
intervals spanned by the expectile curves provide information about the dispersion
and asymmetry of next day's load. Furthermore, as pointed out above, quantiles
and expectiles can be optimal point forecasts if the forecasters loss function is asym-
metric. In energy demand forecasting, asymmetric loss functions occur if the cost
for positive and negative imbalance is asymmetric, as it is the case in Scandina-
vian countries (Linnet 2005). In that case trading strategies based on quantiles and
expectiles can be bene�cial.
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Expectile level τ
1% 5% 25% 50% 75% 95% 99%

TSO
Mean 566.83 685.42 700.51 711.72 673.97 611.88 496.68
SD 440.98 494.81 420.20 416.40 391.32 432.82 373.50

BU
Mean 13.93 16.82 20.90 23.16 24.47 24.20 23.36
SD 6.57 6.71 6.49 7.61 9.31 10.93 11.41

Table 8: Summary Statistics of RMWSE and MAWPE
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Figure 5: Boxplot of the mean absolute percentage forecasting error for the TSO
(left) and the BU (right) of the functional data approach (FDA), the deterministic
seasonal component (DSC), the triple seasonal Holt-Winter exponential smooth-
ing model (TSHW) and the forecast provided by the transmission system operator
(TSO).

6. CONCLUSION

In this article we show how to get powerful probabilistic short-term forecasts of
intradaily electricity load employing functional data analysis methods with general-
ized quantile regression. Probabilistic forecasts yield important information about
the uncertainty of future demand and are crucial for sustainable operation of electric
utilities and for traders in the electricity market. This novel approach has several
advantages: It allows for �exible inclusion of explanatory variables and does not
require distributional assumptions for neither the tails nor the functional form of
the tail time varying curves. The empirical analysis is based on quarter-hourly data
from a TSO and a BU in western Germany. The proposed methodology identi�es
the main risk drivers of the electricity load by a number of factors: variations in the
level of electricity load, variation in the height and location of peak load and the
steepness of the load curves. We show how these factors are then to be (cor)related
with climate e�ects.
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Figure 6: Forecasted expected load (black solid line) together with forecasts of
τ = 0.01, 0.05, 0.25, 0.75, 0.95, 0.99 expectiles (gray shades) and observed load (red
dashed line) for TSO Amprion on 20120125.

In a forecast comparison study we �nd that our methodology outperforms fore-
casts (a MAPE of 2.7%) provided by the TSO as well as those of the benchmark
models.
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