Devoir à la Maison n°3

A rendre le lundi 18 décembre au plus tard

Exercice 1 : Récurrence

Soit (u_n) la suite réelle déterminée par $u_0 = 2$, $u_1 = 3$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 3u_{n+1} - 2u_n$ Montrer que $\forall n \in \mathbb{N}$, $u_n = 2^n + 1$

Exercice 2 : Suite géométrique

Soit (u_n) une suite géométrique. On note r sa raison. Exprimer simplement le produit $\prod_{i=0}^{n} u_i$ à l'aide de u_0 et r.

Exercice 3 : On définit la suite réelle (u_n) par :

$$\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N}, u_{n+1} = -2u_n + n^2 - 2 \end{cases}$$

Montrer qu'il existe des réels a,b,c tels que la suite (v_n) définie par l'équation suivante est géométrique : $\forall n \in \mathbb{N}, v_n = u_n + an^2 + bn + c$

En déduire une expression simple de u_n en fonction de n, puis calculer la somme u₀-u₁+...+u_n

Exercice 4 : Définition d la convergence

Soit (u_n) une suite réelle telle que : $\forall k, n \ge 1, 0 \le u_n \le \frac{k}{n} + \frac{1}{k}$

Le but de cet exercice est de montrer que (u_n) converge vers 0 de deux manières distinctes :

- 1. (a) Soit $\varepsilon > 0$. Montrer qu'il existe une constante C telle que $\forall n \ge 1, |u_n| \le \frac{C}{n} + \varepsilon$
 - (b) En déduire que (u_n) converge vers 0
- 2. Montrer directement ce résultat en choisissant judicieusement k en fonction de n.

Exercice 5 : Théorèmes généraux

Soit (u_n) et (v_n) deux suites réelles telles que $(u_n) + (v_n)$ et $(u_n) - (v_n)$ convergent. Montrer que (u_n) et (v_n) convergent.

Exercice 6: Exemples

Montrer que les suites suivantes, définies par leur terme général, convergent, et calculer leur limite.

$$\left(\frac{\sin{(n^3)}}{n}\right) \qquad \left(\sqrt[n]{3+\sin{n}}\right) \qquad \left(\frac{n^3+5n}{5\,n^3+\cos{n}+\frac{1}{n^2}}\right) \qquad \left(\frac{2n+(-1)^n}{5n+(-1)^{n+1}}\right)$$