Feuille d'exercices 6

Prof. Melanie Schienle, Michael Kreutz

27 novembre 2009

1. Exercice, 4 points

Montrer que

$$\forall n \ge 2, \qquad n! \le \left(\frac{n+1}{2}\right)^n$$

2. Exercice, 4 points

On considère la fonction $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ (dite d'Ackermann) définie par :

$$f(0,n) = n+1$$

 $f(m,0) = f(m-1,1)$ pour $m \ge 1$
 $f(m,n) = f(m-1,f(m,n-1))$ pour $m,n \ge 1$

Montrer:

$$\forall k \in \mathbb{N}, \qquad f(1,k) = k+2$$

$$\forall k \in \mathbb{N}, \qquad f(2,k) = 2k+3$$

$$\forall k \in \mathbb{N}, \qquad f(3,k) = 2^{k+3} - 3$$

3. Exercice, 4 points

Soient deux réels $a, b \in \mathbb{R}$ et un entier $n \in \mathbb{N}$. Alors

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

4. Exercice, 4 points

Déterminer que pour tous les nombres complexes $z_1,z_2\in\mathbb{C},$ on a :

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2|z_1|^2 + 2|z_2|^2.$$