Exercises

Vectors and Matrices — Solutions

Exercise 1.
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Exercise 3.
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a) We want to find a € R such that
a (_; )H ~|al (_; )H — alVT 9 =alVI0 =1
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and thus obtain the two solutions a = +——.
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} that are orthogonal to u, i.e. vectors that

‘ = 1. So we have to solve

X1
X2
satisfy (u,x) = 0. We have to solve
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which yields x, = 5x;. Thus all vectors x = [57;1 ] with x; € R are orthogo-
1

b) We want to find vectors x = [

nal to u.

c) We compute the norms of the vectors as
V| = V4 +16+25+4 =49 =7
and [[wi| = /2§ (171 3 = VT4

and thus obtain the normalized vectors
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d) The vectors orthogonal to (2,—3) " satisfy

2
0=(2,-3) ( s ) — 20 -3 = x=ox
X2 3
and are thus the vectors x = [272 } with x; € R. To be orthonormal, the
3X1
vectors x must satisfy 1 = ||x|| = \/(1X1)2 + (%M)z =/ 2x = @b{ﬂ.
Hence, x| = \/iﬁ which implies that x; = \/3_Ts or x| = _\/3_1? Thus,

x—Lﬂ or x—_Lﬂ
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Exercise 4.

1. Scheme of the process

2. Productionmatrices
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Quantity vectors:
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