
Exercises
Vectors and Matrices – Solutions
Exercise 1.
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Exercise 2.

a) A+ B =

(
9 −6 0

−18 2 4

)
b) AB is unde�ned.
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d) g>A> = (1, 3,−2)
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Exercise 3.

a) We want to �nd a ∈ R such that
∥∥∥∥[ a
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and thus obtain the two solutions a = ± 1√
10

.

b) We want to �nd vectors x =

[
x1
x2

]
that are orthogonal to u, i.e. vectors that

satisfy 〈u, x〉 = 0. We have to solve

0
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]
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[
x1
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]〉
= 5x1 − x2

which yields x2 = 5x1. Thus all vectors x =

[
x1
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]
with x1 ∈ R are orthogo-

nal to u.

c) We compute the norms of the vectors as

‖v‖ =
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and thus obtain the normalized vectors

vnorm =
v

‖v‖
=

1

7


−2

4

−5

2


wnorm =

w

‖w‖
=

1√
14

 2

−1

3


2



d) The vectors orthogonal to (2,−3)> satisfy

0 = (2,−3)

(
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)
= 2x1 − 3x2 =⇒ x2 =
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3
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and are thus the vectors x =

[
x1
2
3
x1

]
with x1 ∈ R. To be orthonormal, the

vectors x must satisfy 1 = ‖x‖ =
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Hence, |x1| = 3√
13

which implies that x1 = 3√
13

or x1 = − 3√
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. Thus,
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Exercise 4.

1. Scheme of the process

2. Productionmatrices

V (0, 1) =


0 3 1

1 2 2

3 1 1

2 0 2

 V (1, 2) =

 1 2 1

0 3 2

4 1 2
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Quantity vectors:
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This implies

x(0) = V (0,1) x(1) = V (0,1) V (1, 2) x(2)

For x(2) =

 50

100
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 we get

x(1) =

 1 2 1
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 Quantity of required inter-
mediate products
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x(0) =


0 3 1

1 2 2

3 1 1

2 0 2


 450

700

700

 =


2800
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2750

2300

 Quantity of required re-
sources
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