Exercises

Sequences and Limits

Exercise 1. Determine if the following sequences converge and compute the limit if it exists.

1.
$$a_n = \frac{4n^2 + 3n - 27}{8n^2 - 24n + 108}$$

2. $b_n = \frac{5n^3 - 6n}{8n^4 - 3}$
3. $c_n = \frac{n^2 - n + 5}{n + 8}$

4.
$$d_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 + 1}$$

Hint: Multiply the sequence by $\frac{\sqrt{n^2 + n + 1} + \sqrt{n^2 + 1}}{\sqrt{n^2 + n + 1} + \sqrt{n^2 + 1}}$ and use the continuity of the root function (i.e. $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{\lim_{n\to\infty} x_n}$).

Exercise 2. The following statements are **not true**! Find counterexamples.

- 1. If a_n and b_n are divergent, then $a_n + b_n$ is also divergent.
- $\text{2. If } \lim_{n \to \infty} a_n = +\infty \text{ and } \lim_{n \to \infty} b_n = -\infty \text{ then } \lim_{n \to \infty} (a_n + b_n) = 0.$
- 3. If a_n is strictly increasing (i.e. $a_{n+1} > a_n$ for all $n \in \mathbb{N}$) then $\lim_{n \to \infty} a_n = \infty$.
- 4. If $\lim_{n\to\infty} a_n = 0$ then for every sequence $(b_n)_n$ we have $\lim_{n\to\infty} a_n b_n = 0$
- 5. If a_n is bounded, i.e. there is $M \in R$ such that $|a_n| \leq M$, then a_n is convergent.

Exercise 3. A customer wants to invest an amount C_0 for some fixed annual interest rate of p.

- 1. Give a sequence a_n such that a_n is the capital after n years.
- 2. How much money C_0 has to be invested if the customer wants to have 10000 \in after 10 years when the interest rate is p = 5%.
- 3. If the customer invests C₀ = 10000 € and the interest rate is p = 4% what is the capital after 20 years?

- 4. (a) How many years does it take to double the capital if p = 3%?
 - (b) How many years does it take to double the capital if p = 6%?
 - (c) How many years does it take to double the capital depending on p?

Exercise 4. A sequence is called a **recursive sequence** if a_{n+1} is given implicitly as a function of a_0, \ldots, a_n .

1. Consider the Fibonacci numbers defined by

$$a_0 = 1, a_1 = 1$$

 $a_{n+1} = a_n + a_{n-1}$ for $n \ge 1$

Compute the Fibonacci numbers a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_9 , a_{10} .

2. Consider the recursive sequence defined by

$$a_0 = 0, \quad a_{n+1} = \frac{1}{2}(a_n + 1)$$

- (a) Prove that $a_n \leq 1$ for all $n \in \mathbb{N}$ via induction.
- (b) Use (a) to show that $a_{n+1} \ge a_n$ for all $n \in \mathbb{N}$, i.e. to show that a_n is increasing.
- (c) (a) and (b) imply that a_n is convergent (Can you give a brief explanation why?). Compute $a = \lim_{n \to \infty} a_n$ by using the recursive definition, the rules for the computation of limits and the fact that

$$\lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}a_n=a.$$