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We study the existence of pure Nash equilibria in weighted congestion games. Let € denote a set of cost functions. We say
that ‘€ is consistent if every weighted congestion game with cost functions in ‘€ possesses a pure Nash equilibrium. Our main
contribution is a complete characterization of consistency of continuous cost functions. We prove that a set € of continuous
functions is consistent for two-player games if and only if € contains only monotonic functions and for all nonconstant
functions ¢, ¢, € €, there are constants a, b € R such that ¢, (x) = ac,(x) + b for all x € R.,. For games with at least three
players, we prove that € is consistent if and only if exactly one of the following cases holds: (a) € contains only affine
functions; (b) € contains only exponential functions such that ¢(x) = a,e?* + b, for some a., b,, ¢ € R, where a, and b,
may depend on ¢, while ¢ must be equal for every ¢ € 6. The latter characterization is even valid for three-player games.
Finally, we derive several characterizations of consistency of cost functions for games with restricted strategy spaces, such as
weighted network congestion games or weighted congestion games with singleton strategies.
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1. Introduction. In many situations, the state of a system is determined by a finite number of independent
players, each optimizing an individual objective function. A natural framework for analyzing such decentralized
systems are noncooperative games. While it is well known that for finite noncooperative games a Nash equilib-
rium in mixed strategies always exists, this need not be true for Nash equilibria in pure strategies (PNE for short).
One of the fundamental goals in game theory is to characterize conditions under which a Nash equilibrium in
pure strategies exists. In this paper, we study this question for weighted congestion games.

Congestion games, as introduced by Rosenthal [32], model the interaction of a finite set of players that
compete over a finite set of facilities. A pure strategy of each player is a set of facilities. The cost of facility f
is given by a real-valued cost function c, that depends on the number of players using f, and the private cost of
every player equals the sum of the costs of the facilities in the strategy that she chooses. Rosenthal [32] proved
in a seminal paper that such congestion games always admit a PNE by showing that these games possess an
exact potential function. In a weighted congestion game, every player has a demand d; € R_, that she places
on the chosen facilities. The cost of a facility is then a function of the total load on the facility. An important
subclass of weighted congestion games are weighted network congestion games. Here, every player is associated
with a positive demand that she wants to route from her origin to her destination on a path of minimum cost.
In contrast to unweighted congestion games, weighted congestion games do not always admit a PNE. Fotakis
et al. [16] and Libman and Orda [24] each constructed a single-commodity network instance with two players
having demands one and two, respectively, and showed that these games do not have a PNE. Their instances
use different nondecreasing cost values per edge that are defined at the three possible loads, 1, 2, 3. Goemans
et al. [19] constructed a two-player single-commodity instance without a PNE that uses different polynomial cost
functions with nonnegative coefficients and degree of at most two. Interestingly, Anshelevich et al. [5] showed
that for cost functions of the form ¢,(x) =¢,/x, ¢, € R, every two-player game possesses a PNE. For games
with affine cost functions, Fotakis et al. [16, 17] proved that every weighted congestion game possesses a PNE.
Later, Panagopoulou and Spirakis [30] proved that PNE always exist for instances with uniform exponential
cost functions (c,(x) = e*). Harks et al. [22] generalized this existence result to nonuniform exponential cost
functions of the form c¢;(x) = a, et + b, for some a;, b, ¢ € R, where a, and b, may depend on the facility f,
while ¢ must be equal for all facilities. It is worth noting that the positive results of Fotakis et al. [16, 17],
Harks et al. [22], and Panagopoulou and Spirakis [30] are particularly important as they establish existence of
PNE for the respective sets of cost functions independent of the underlying game structure, that is, independent
of the underlying strategy set, demand vector, and number of players, respectively.
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In this paper, we further explore the equilibrium existence problem in weighted congestion games. Our goal
is to precisely characterize which types of cost functions actually guarantee the existence of PNE. To formally
capture this issue, we introduce the notion of PNE-consistency or simply consistency of a set of cost functions.
Let € be a set of cost functions and let G(€) be the set of all weighted congestion games with cost functions
in ‘€. We say that € is consistent if every game in G(‘€) possesses a PNE. Using this terminology, the results
of Fotakis et al. [16, 17], Harks et al. [22], and Panagopoulou and Spirakis [30] yield that € is consistent
if € contains either affine functions or certain exponential functions. A natural open question is to decide
whether there are further consistent functions, that is, functions guaranteeing the existence of a PNE. We thus
investigate the following question: How large is the set € of consistent cost functions? We also introduce a
stricter notion of consistency which we term FIP-consistency. Formally, we say that a set € of cost functions
is FIP-consistent, if every game in 6(€) possesses the finite improvement property, that is, every sequence of
unilateral improvements is finite; see Monderer and Shapley [28].

1.1. Our results. To obtain a complete characterization of the equilibrium existence problem in weighted
congestion games, we first derive necessary conditions. Let € be a set of continuous functions. We show that
if ‘€ is consistent, then € may only contain monotonic functions. We here use “monotonic” in the literal sense;
i.e., every function ¢ € € is either nondecreasing or nonincreasing. We further show that monotonicity of cost
functions is necessary for consistency even in singleton games with only two players, two facilities, identical
cost, functions, and symmetric strategies. As our first main result we show that a set of continuous cost functions
€ is consistent for two-player games if and only if € contains only monotonic functions and for all nonconstant
¢y, ¢, € G, there are constants a, b € R such that ¢,(x) = ac,(x) 4+ b for all x € R.,. This characterization
precisely explains the seeming dichotomy between the positive result of Anshelevich et al. [5] for two-player
games and the two-player instances without PNE given by Fotakis et al. [16], Goemans et al. [19], and Libman
and Orda [24]. Our second main result establishes a characterization for the general case. We prove that a set
‘€ of continuous functions is consistent for games with at least three players if and only if exactly one of the
following cases holds: (a) € contains only affine functions; (b) € contains only exponential functions such that
c(x)=a,e®* + b, for some a_, b, ¢ €R, where a. and b, may depend on ¢, while ¢ must be equal for every
¢ € 6. This characterization is even valid for three-player games. We further show that for both two player
games and games with at least three players, consistency of € is equivalent to FIP-consistency.

While the above characterizations hold for arbitrary strategy spaces, we also study consistency of cost func-
tions for restricted strategy spaces. First, we consider weighted network congestion games. Assuming strictly
positive costs, we show that essentially all results translate to directed network congestion games. For games
on undirected networks, we give respective characterizations for games with two players and at least four play-
ers leaving a gap for three-player games. For singleton weighted congestion games with two players we show
that € is consistent if and only if € contains only monotonic functions. This characterization does not extend
to games with three players. We give an instance with three players and monotonic cost functions without a
PNE. For symmetric singleton weighted congestion games, however, we prove that € is consistent if and only
if € contains only monotonic functions. In contrast to the characterizations for arbitrary strategy spaces, both
characterizations do not carry over to FIP-consistency. We provide corresponding instances with improvement
cycles.

1.2. Techniques and outline of the paper. The proofs of our main results essentially rely on two ingredi-
ents. First, we derive in §3 for continuous and consistent cost functions two necessary conditions (Monotonicity
Lemma (Lemma 3.3) and Extended Monotonicity Lemma (Lemma 3.4)). The Monotonicity Lemma states that
any continuous and consistent cost function must be monotonic. The lemma is proved by constructing a generic
two-player weighted congestion game in which we identify a unique 4-cycle of deviations of two players. Then,
we show that for any nonmonotonic cost function, there is a weighted congestion game with a unique improve-
ment cycle. By adding additional players and carefully choosing the players’ weights and strategy spaces, we
then derive the Extended Monotonicity Lemma, which ensures that the set of cost functions contained in a
certain finite integer linear hull of the considered cost functions must be monotonic. By analyzing functions
contained in the finite integer linear hull corresponding to two-player games, we prove in §4 that a set of con-
tinuous cost functions is consistent for two-player games if and only if all cost functions are monotone and
every two nonconstant cost functions are affine transformations of each other. In §5, we consider games with
at least three players. We show that the Extended Monotonicity Lemma for games with at least three players
implies that consistent and continuous cost functions must be either affine or exponential. In §§6 and 7, we
derive characterizations of consistency and FIP-consistency of cost functions for games with restricted strategy
spaces, such as weighted network congestion games and weighted singleton congestion games, respectively.
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1.3. Significance. Weighted congestion games are among the core topics in the game theory, operations
research, computer science, and economics literature. This class of games has several applications such as
scheduling games, routing games, facility location games, network design games, etc; see Ackermann et al. [1],
Anshelevich et al. [5], Chen and Roughgarden [11], Gairing et al. [18], Ieong et al. [23], and Milchtaich [27].
In all of the above applications there are two fundamental goals from a system design perspective: (i) the
system must be stabilizable, that is, there must exist a stable point (PNE) from which no player wants to
unilaterally deviate; (ii) myopic play of the players should guide the system to a stable state. Because the
number of players and their types (expressed by the demands and the strategy spaces) are only known to
the players and not available to the system designer, it is very natural to study the above two issues with
respect to the used cost functions. In fact, in most of the above-mentioned applications, the cost functions
are under control of the system designer since they represent the technology associated with the resources,
e.g., queuing discipline at routers, latency function in transportation networks, etc. Therefore, our results may
help to predict and explain unstable traffic distributions in telecommunication networks and road networks. For
instance in telecommunication networks, relevant cost functions are the so-called M /M /1-delay functions (see
also Roughgarden and Tardos [35]). These functions are of the form c,(x) = 1/(u, — x), where u, represents the
capacity of arc a. In road networks, for instance, the most frequently used functions are monomials of degree 4
put forward by the U.S. Bureau of Public Roads [10]. Our results imply that, for these special types of cost
functions, there is always a multi-commodity instance (with three players and identical cost functions) that is
unstable in the sense that a PNE does not exist. On the other hand, our characterizations can be used to design
a stable system: for instance, uniform M /M /1-delay functions are consistent for two-player games.

Our results are also relevant for the large body of work quantifying the worst-case efficiency loss of PNE
for different sets of cost functions; see Awerbuch et al. [6], Christodoulou and Koutsoupias [12], and Aland
et al. [3]. While mixed Nash equilibria are guaranteed to exist, their use is often unrealistic in practice. On the
other hand, our work reveals that for most classes of cost functions pure Nash equilibria as the stronger solution
concept may fail to exist in weighted congestion games. Thus, our work provides additional justification to
study the worst-case efficiency loss for different solution concepts, such as sink equilibria (Goemans et al. [19]),
correlated and coarse correlated equilibria (Bhawalkar et al. [9], Roughgarden [34]).

1.4. Related work. In contrast to ordinary congestion games as introduced by Rosenthal [32], games with
weighted players and/or player-specific cost functions need not possess a PNE. As for weighted players, even
two-player games may fail to admit a PNE; see the examples given by Fotakis et al. [16], Goemans et al. [19]
and Libman and Orda [24]. Also related is the early work of Rosenthal [33] who showed that in weighted
congestion games where players are allowed to split their demand integrally, a PNE need not exist. On the
positive side, Fotakis et al. [16] and Panagopoulou and Spirakis [30] proved the existence of a PNE in games
with affine and exponential costs, respectively. Dunkel and Schulz [13] showed that it is strongly NP-hard to
decide whether or not a weighted congestion game with nonlinear cost functions possesses a PNE. If the strategy
of every player contains a single facility only (singleton games), Fotakis et al. [15] showed the existence of
PNE for linear cost functions (without a constant). Even-Dar et al. [14] derived the existence of PNE for load
balancing games on parallel unrelated machines. Andelman et al. [4] proved even the existence of a strong
Nash equilibrium—a strengthening of the pure Nash equilibrium to resilience against coalitional deviations—in
scheduling games on unrelated machines. In fact, strong Nash equilibria exist in all singleton weighted congestion
games with nondecreasing costs; see Harks et al. [21]. This also holds for nonincreasing cost functions as proven
by Rozenfeld and Tennenholtz [36]. Allowing for player-specific cost functions, Milchtaich [25] showed that
unweighted singleton congestion games with player-specific cost functions possess at least one PNE. He also
presented an instance with weighted players and player-specific cost functions without a PNE. Gairing et al. [18]
showed that best response dynamics do not cycle if the player-specific cost functions are linear without a
constant term. Milchtaich [27] further showed that general network games with player-specific costs need not
admit a PNE in general. In fact, the corresponding decision problem turns out to be NP-complete, as shown
by Ackermann and Skopalik [2]. Ieong et al. [23] proved that in congestion games with singleton strategies
and nondecreasing cost functions, best response dynamics converge in polynomial time to a PNE. Ackermann
et al. [1] extended this result to weighted congestion games with a so-called matroid property, that is, the
strategy of every player forms a basis of a matroid. In the same paper, they showed that the matroid property
is the maximal property that gives rise to a PNE for all nondecreasing cost functions, that is, for any strategy
space not satisfying the matroid property, there is an instance of a weighted congestion game not having a PNE.
The consistency approach that we pursue in this paper is orthogonal to that of Ackermann et al. [1]. While
they characterize the structure of the strategy space guaranteeing the existence of a PNE assuming arbitrary
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positive and nondecreasing costs, we characterize the structure of cost functions guaranteeing the existence of
a PNE assuming arbitrary strategy spaces. Orda et al. [29] study the issue of uniqueness of PNE in weighted
network congestion games with splittable demands (see also Bhaskar et al. [8], Milchtaich [26], Richman and
Shimkin [31], and Yang and Zhang [37]). They give sufficient conditions for uniqueness of PNE for several
classes of cost functions. Interestingly, in the final section of their paper, the authors raise the issue of the
existence of pure Nash equilibria in such games (depending on the cost functions) under the assumption that
the flow is unsplittable. The results in this paper give a complete answer to their question.

An extended abstract of parts of this paper appeared in the Proceedings of the 37th International Colloquium
on Automata, Languages, and Programming, 2010; see Harks and Klimm [20].

2. Preliminaries. We consider finite strategic games G = (N, S, 7), where N = {1, ..., n} is the nonempty
and finite set of players, S =X,y S; is the nonempty strategy space, and 7: S — R” is the combined private cost
function that assigns a private cost vector 7 (s) to each strategy profile s € S. We consider cost minimization
games, and (unless specified otherwise) we allow private cost functions to be negative or positive. We call an
element s € S a strategy profile. For i € N, we write S_; =X,_;S; and s = (s;, s_;) meaning that s, € S; and
s_; €S_;. A strategy profile s is a pure Nash equilibrium (PNE) if m;(s) < m;(t;,s_;) for all i € N and ¢, € S,.
A pair (s, (t;,5_;)) € S x S is called an improving move (or profitable deviation) of player i if m,(s;,s_;) >
a;(t;,5_;). We call a sequence of strategy profiles y = (s!, s2,...) an improvement path if for every k the
tuple (s*, s¥*!) is an improving move for some player i. A closed path (s',...,s',s') is referred to as an
l-improvement cycle. A game has the finite improvement property (FIP) if no such cycle exists. A function
P: S — R with P(s) > P(t) for all improving moves (s, t) is called a potential function. As noticed by Monderer
and Shapley [28], every game that admits a potential function has the FIP and every finite game with the FIP
possesses a PNE.

A tuple M= (N, F,S =X;cyS;, (¢f)ser) is called a congestion model, where N is the set of players, F is a
nonempty, finite set of facilities, and for each player i € N, her collection of pure strategies S; is a nonempty,
finite set of subsets of F. A cost function c¢,: R,y — R is associated with every facility f € F. In contrast
to most previous works, we neither assume monotonicity nor positivity of costs. In the following, we define
weighted congestion games similar to Goemans et al. [19].

DEFINITION 2.1 (WEIGHTED CONGESTION GAME). Let Ml = (N, F, S, (¢;);cr) be a congestion model and
(d;);cn be a vector of demands with d; € R_,,. The corresponding weighted congestion game is the strategic game
G(M)=(N,S, ), where 7 is defined as 7 =Xy, m,(s) =3 jes d; ¢, (£,(s)) and £(s) =3 ey pey, d;-

We sometimes write G instead of G(J/). Let € be a set of cost functions and let G(€) be the set of all
weighted congestion games with cost functions in ‘€. Then, we say that € is consistent if every G € G(6)
admits a PNE; we call € FIP-consistent if every G € 6(%€) has the FIP. If the set G(€) is restricted, for instance
to two player games etc., we say that € is consistent for G(€) if every G € 6(€) possesses a PNE.

3. Necessary conditions on the existence of a PNE. As a first result, we prove that if ‘€ is consistent, then
every function ¢ € € is monotonic. We first need a technical lemma.

LeEmMA 3.1, Let c: R,y — R be a continuous function. Then, the following two statements are equivalent:
(i) c is monotonic on R.,,.
(ii) The following two conditions hold:

(a) For all x >0 with c¢(x) > c(0) there is € > 0 such that c(y) > c(x) for all y € (x, x + €).

(b) For all x >0 with c¢(x) < c(0) there is € > 0 such that c¢(y) < c(x) for all y € (x, x + €).

ProOF. (i) = (ii): Trivial.

For proving (ii) = (i), we first derive a useful property of functions satisfying (ii). Let c: R., — R be a
continuous function satisfying (ii). Moreover, assume that there is an open interval (a, w) with c(x) # c(0)
for all x € (a, w). We claim that ¢ is nondecreasing on (e, w) if ¢(x) > c(0) for all x € (a, w) and that c is
nonincreasing on (@, w) if ¢(x) < ¢(0) for all x € (a, w). We prove only the first case because the second
follows by the same arguments. Let c¢(x) > ¢(0) for all x € («, w). For a contradiction, assume that there are
D1 P> € (a, w) with p; < p, and c(p,) > c(p,). We define p| = max{x € [p,, p,]: ¢(x) > ¢(p,)}. Note that
the set {x € [p;, p,]: c(x) = c(p,)} is nonempty because it contains p, and closed because ¢ is continuous.
Using (ii), there is € = €(p}) > 0 such that c(y) > c(p]) = c(p,) for all y € (p}, p| + €), contradicting the
maximality of p;.

Now we prove (ii) = (i). Let @ = inf{x > 0: c¢(x) # ¢(0)}. If @ = o0, we are done as c is constant. Oth-
erwise, we claim that c(x) # ¢(0) for all x > @. For a contradiction, let @ = min{x > a : ¢(x) = ¢(0)} and

—_~
@,
S
o
24
5 €
:L
T o
Rel
o c
=%
©
=
S
22
23
= fer
O
o <
",
© ©
n 2
iz
b
2T
8=
02
£y
B
S
'-QQ-
= C
® .9
S 3
52
2 E
c O
02
o¢
T ©
T o
i)
<
c D2
el
()}
2c
- O
< >
O O
T C
E -
c
[e]
@ e
S =
[ele)
<E
w_
[}
= C
e o
=
35
z-c
=<




Harks and Klimm: Pure Nash Equilibria in Weighted Congestion Games
Mathematics of Operations Research 37(3), pp. 419-436, ©2012 INFORMS 423

0=c((w+ a)/2) (the minimum is attained because c¢ is continuous). By construction, c(x) # ¢(0) for all
x € (a, ). If c(x) > ¢(0) for all x € (o, w), we have c(x) > 6 > ¢(0) for all x € ((w+ @)/2, w) and thus
c(0) = c(w) =lim, ,, c(x) > & > ¢(0), a contradiction. If, on the other hand, c¢(x) < ¢(0) for all x € (a, w),
we get ¢(0) = c(w) =lim, ,,c(x) <& < ¢(0), again a contradiction. We conclude that c(x) # c(0) for all
x > . Thus, for every w > «, the function ¢ is monotonic on the open interval («, w) and thus, ¢ is monotonic
onR.,. 0O

The following existence result for continuous, nonmonotonic functions can be derived directly from
Lemma 3.1 and will be very useful in the remainder of this paper.

LemMA 3.2, Let c: R,y — R be a continuous, nonmonotonic function. Then, there are x,y € R_, with y > x
such that either c(y — x) < c(y) < c(x) or c(y —x) > c(y) > c(x).

ProoF. Using the characterization of monotonic functions of Lemma 3.1, for every continuous nonmonotonic
function ¢, there is x > 0 such that one of the following holds: c¢(x) > ¢(0) and for every € > O there is
y=y(€) € (x, x+€) such that c(y) < c(x); or c¢(x) < ¢(0) and for every € > 0 there is y = y(€) € (x, x+€) such
that ¢(y) > ¢(x). Fix such x. Because of the continuity of ¢, we have c(y(e) — x) — ¢(0) and c(y(€)) = c(x)
for € — 0. For sufficiently small €, x and y(e) have the desired property. [

The two cases occurring in Lemma 3.2 are depicted in Figure 1. Now consider a facility f with a nonmono-
tonic cost function and two players with demands d, =y — x and d, = x, where x and y are as in Lemma 3.2.
Clearly, in case c(y — x) < ¢(y) < c¢(x) player 1 prefers to be alone on f while player 2 would like to share the
facility with player 1. If c(y — x) > ¢(¥) > ¢(x), the argumentation works the other way around. This observation
is the key to construct a two-player weighted congestion game with singleton strategies that does not admit a
PNE.

LEMMA 3.3 (MONOTONICITY LEMMA). Let € be a set of continuous functions. If € is consistent, then every
c € C is monotonic.

Proor. For a contradiction, suppose that ¢ € € is a nonmonotonic function and consider the congestion
model M = (N, F,S,(c)sep) wWith N ={1,2}, F ={f,g}, S, =8, ={{f}. {g}}, ¢, = ¢, = c. Since c is
nonmonotonic, by Lemma 3.2 we can find x,y € R_, with y > x such that either ¢(y — x) < ¢(y) < ¢(x) or
c(y—x) > c(y) > c(x). Regard the game G (/M) with d, =y — x and d, = x. Calculating the differences of the
deviating players’ private costs along the 4-cycle v = (({f}. {f}). ({g}. {/}). ({g}. {g)). ({/}. {eD). {f} {1,

we obtain

7 (e ) - M) D = 0 = 2 (el — 1) — ().
() gh) — mlgh g) = (v — ) (c(y — x) — e(x), O

m({gh {gh) —m({g}, {fH) =x(c(y) —c(®)), m{f} D —m{f} {gh =x(c(y) —c(x). @)

If c(y —x) < c(y) < c(x), the differences (1)—(2) are negative and vy is an improvement cycle. If c(y — x) >
¢(y) > c(x), we can reverse the direction of y and still get an improvement cycle. Using that every strategy
combination is contained in vy, the claimed result follows. O

Besides the continuity of the functions in €, the proof of Lemma 3.3 relies on rather mild assumptions and
thus, this result can be strengthened in the following way.

c
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FIGURE 1. As shown in Lemma 3.2, for every continuous nonmonotonic function there are x,y € R_, with y > x such that one of the
following cases holds: (a) c(y — x) < c(y) < ¢(x); (b) c(y — x) > ¢(y) > c(x).
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COROLLARY 3.1. Let G be a set of continuous functions. Let ‘G(€) be the set of weighted congestion games
with cost functions in G satisfying one or more of the following properties: (i) Each game G € 6(6) has two
players; (ii) Each game G € 6(€) has two facilities; (iil) For each game G € ‘6(€) and each player i € N,
the set of her strategies S; contains a single facility only; (iv) Each game G € G(€) has symmetric strategies;
(v) Cost functions are identical, that is, c; = c, for all f, g € F. If ‘€ is consistent for G(‘€), then each c € €
must be monotonic.

We now extend the Monotonicity Lemma to obtain an even stronger result by regarding more players and
more complex strategies. To this end, for K € N we consider those functions that can be written as the integral
linear combination of K functions in €, possibly with an offset. Formally, we define the finite integer linear
hull of € as

K
Z,(6)= {c: Roo—>R:c(x)=>aic(x+b): KeN,a, eZ, b eR.y, ¢, € C@}, 3)

k=1
and show that consistency of € implies that &,(€) contains only monotonic functions.

LEMMA 3.4 (EXTENDED MONOTONICITY LEMMA). Let € be a set of continuous functions. If G is consistent,
then < ,(€) contains only monotonic functions.

PrROOF. Assume by contradiction that ¢ € £,(€) is not monotonic. By allowing ¢, = ¢, for k # I, we
can omit the integer coefficients @, and rewrite ¢ as c(x) = Y o, c,(x + b,) — Yi=, & (x + b,) for some
cr, €€, my,m_eN, and b, b, € R.,.

We define the congestion model /L = (N, F, S, (¢;) ;er), where N =N,UNTUN~ and F = F'UF*UF?UF*.
The set of players N* contains for each ¢, | <k <m +» a player with demand b, and the set of players N~
contains for each ¢,, 1 <k < m_, a player with demand b,. We call the players in N~ UN™ offset players. The set
N, ={1,2} contains two additional (nontrivial) players. Offset players with demand equal to 0 can be removed
from the game. For ease of exposition, we assume that all offsets b,, k=1,...,m,, and l_Jk, k=1,...,m_,
are strictly positive.

We now explain the strategy spaces and the sets F', F2, F?, F*. For each function ¢, 1 <k <m,, we
introduce two facilities sz, f,f with cost function ¢;. For each function ¢, 1 <k < m_, we introduce two
facilities f;', f; with cost function ¢,. To model the offsets b, in (3), for each offset player k € N*, we define
Sy ={fZ. f2}. Similarly, for each offset player k € N~, we set S; = {f{!, f'}. The nontrivial players in N, have
strategies S, = {F'UF?, FPUF*} and S, = {F'UF*, FPUF*}, where F' ={f,.... f, L, F>?={fl,....f2 },
Fy={f . f) ) and Fé={fi. .. fi).

As c is assumed to be nonmonotonic, by Lemma 3.2, there are x,y € R_, with y > x such that either
c(y—x) <c(y) <c(x) or c(y —x) > c(y) > c(x). We consider the weighted congestion game G(./) with
dy=y—x and d,=x for 1,2 € N,. For the 4-cycle

y=(F'UF ,F'UF,...),(FFUF*" F'UF?,...),(FPUF* F*UF* ...),
(F'UF?, FPUF*, .. .),(F'UF*,F'UF? ...)),
it is straightforward to calculate that
m(FPUFY, F'UF?,...)—m(F'UF*, F'UF?,...)
my m_ _ m_ _ my
z(y_x)<zck(dl+d2+bk)_25k(dl+d2+bk)+25k(dl+bk)_zck(dl+bk))z(y_x)(c(y)_c(y_x))’

k=1 k=1 k=1 k=1
m(FPUF, FAUF*, .. .)—m(FPUF, F'UF?, . ..)
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m_ m

=x(— %Ck(dl +d,+b)+ Zék(dl +d, +l_7k) + %Ck(dz +b;) — X_:Ek(dz +l_7k)> =x(c(x) —c(y)),

k=1 k=1 k=1 k=1
m(F'UF?, FPUF*, .. ) —m(FPUF*, F2UF*,...)
z(y_x)<1§6'k(dl+d2+bk)_:i_:15k(dl+d2+l_7k)+]§5k(dl +Bk)_]§ck(dl+bk)) = —x)(c(y)—c(y—x)),
m(F'UF, F'UF?, .. .)—m(F'UF*, F2UF*,...)
=x(— %ck(d1 +d,+ b))+ %Ek(dl +d,+by) - '"Z’wz +by) + gjck(d2 +bk)) =x(c(x) = c(y)).

k=1 k=1 k=1 k=1
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If c(y — x) > ¢(y) > c(x), all private cost differences are negative and vy is an improvement cycle; if on the
other hand c(y — x) < ¢(y) < ¢(x), the 4-cycle in the other direction is an improvement cycle. Because every
strategy combination is contained in y we get the claimed result. O

4. A characterization for two-player games. We analyze implications of the Extended Monotonicity
Lemma (Lemma 3.4) for two-player weighted congestion games. First, for ease of exposition, we restrict our-
selves to the case K = 2; that is, we only regard those functions that can be written as an integral linear
combination of two functions in € without offset. We define the following set of functions

Z3(E)={c: Ry > R: c(x)=a,c;(x) +ayc,(x),a,,a, €Z, ¢;, ¢ € B} S Ly (6).

We remark that by setting all offsets b, in (3) equal to zero, the construction in the proof of Lemma 3.4 only
involves two players. Thus, we immediately obtain the following result.

PROPOSITION 4.1. Let € be a set of continuous functions. If € is consistent for two-player games, then
SL%(€) contains only monotonic functions.
z y

We proceed to investigate sets of functions € that guarantee that #%(€) contains only monotonic functions.

LeEmMA 4.1, Let c;, ¢c;: Ry — R be two continuous, monotonic, and nonconstant functions. Then, the fol-
lowing are equivalent.

(i) For all a,, a, € Z the function a, ¢, + a, ¢, is monotonic on R..

(ii) There are a, b € R such that c¢y(x) =ac,(x)+ b for all x > 0.

ProoF. (ii) = (i): Calculus.

(i) = (ii): Without loss of generality, we may assume that ¢, and ¢, are nondecreasing because multiplying
functions with —1 has no impact on either statement of the lemma. As ¢, is nonconstant and nondecreasing,
there is x; > 0 with ¢,(x;) = ¢,(0) and ¢,(x) > ¢,(0) for all x > x,. Fix such x > x,. For all a,,a, € Z,
the function a, ¢, + a, ¢, is monotonic. This implies that for every y > x, and every «a € Q the expressions
ac (x)+cy(x) —ac;(0) —c,(0) and ac,(¥) + ¢, (y) — @ ¢;(0) — ¢,(0) have identical signs. Thus, for all y > x,
and all @ € Q at least one of the following two cases holds:

_ ¢(x) — ¢,(0) _ e(y) — 02(0).

) az ¢ (x) —¢,(0) and a= ¢ (y) = ¢, (0)’
.. & (x) — ¢,(0) & (y) — (0
B U AT DErT0)

This clearly implies
e (y) — ¢, (0) _ 6 (x) — ¢,(0)
() = ¢ (0) ¢ (x) — ¢, (0)

for all y > x,, because otherwise any rational

S Rl R )

would violate both constraints. From (4), we obtain

_ & (x) — ¢, (0) e (x) —6,(0)
ci(x) —¢(0) ¢i(x) —¢,(0)

for all y > x,. This shows the existence of a,b € R with ¢,(x) = ac,(x) + b for all x > x,. Exchanging the
roles of ¢, and c,, we may also derive the existence of a’, b’ € R such that ¢, (x) =a’ c,(x) + b’ for all x > x,,
where x, is such that ¢,(x,) = ¢,(0) and ¢,(x) > ¢,(0) for all x > x,. This implies x; = x,. Using the fact that
¢, and ¢, are continuous and constant on [0, x,] finishes the proof. O

We are now ready to prove our first main result.
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THEOREM 4.1. Let € be a set of continuous functions. Let G*(‘€) be the set of two-player games such that
cost functions are in €. Then, the following conditions are equivalent.
(i) € is consistent for G*(6).
(ii) € is FIP-consistent for G*(‘€).
(iii) € contains only monotonic functions and for all nonconstant c,, c, € 6, there are constants a,b € R
such that ¢, (x) = acy(x) 4+ b for all x > 0.

PrOOF.  (ii) = (i) is trivial.

(i) = (iii): Using Proposition 4.1 we get that #%(‘€) contains only monotonic functions. As € C &2 (€), this
implies in particular that ‘¢ contains only monotonic functions. For all nonconstant functions c¢,, ¢, € € and all
a,, a, € Z, the function a, ¢, + a, ¢, € £%(€) is monotonic. Applying Lemma 4.1 then yields the result.

(iii) = (ii): Let € be as specified in (iii). Trivially, the claimed result holds if ¢ contains only constant
functions. If € contains a nonconstant function ¢, consider the set € = {ac(x) + b: a,b € R} D €. We show
that € is consistent for €2 ((é). To this end, consider an arbitrary two-player game with costs in € and demands
d, < d,. We distinguish the following three cases.

First case: ¢(d,) < c(d,) < ¢(d, + d,), or ¢(d,) > ¢(d,) > c(d, + d,). Since c is strictly monotonic with
respect to the points d,, d,, and d, + d,, there is a strictly monotonic function ¢ with ¢(d,) = c¢(d,), ¢(d,) =
c(d,), and &(d, + d,) = c(d, + d,). Consequently, we can replace every cost function ¢ € C = {a c(x) + b:
a, b € R} by a cost function ¢ € €= {ac(x)+b: a, b € R} without changing the players’ private costs. As shown
by Harks et al. [22], for any strictly monotonic function ¢, every weighted congestion game G with two players
and cost functions in € = {a &(x) + b: a, b € R} admits a potential function and, thus, has the FIP.

Second case: ¢(d,) = c(d,). We set d, = d, =1 and choose for every facility f € F a new cost function Cr
with éf(1)~= cj(dl) =c;(d,) and ¢;(2) = c¢;(d, + d,). By construction, the unweighted congestion game: with
demands d,, d, and costs (C;) . has the same private costs as the original game. Rosenthal [32] showed the
existence of a potential function in all unweighted congestion games; thus, the game has the FIP.

Third case: ¢(d,) = c¢(d, + d,). We have &(d,) = &(d, + d,) for all ¢ € € and thus player 2 is always
indifferent whether player 1 shares a facility with her or not. For the FIP and the existence of a PNE, we argue
as follows: Consider the vector-valued function ¢: S — R, s+ (m,(s), 7, (s)) which assigns to every strategy
profile the vector which has the private cost of players 2 and 1 in first and second component respectively.
We claim that ¢ decreases lexicographically along any improvement path. This is trivial for improvement moves
of player 2. Since player 2 is indifferent whether player 1 shares with her a facility or not, every improvement
move of player 1 does not affect the private cost of player 2 but decreases the private cost of player 1. This
implies that the lexicographical order of ¢(s) decreases along any improvement path; thus, every such path is
finite. O

5. A characterization for the general case. We now consider the case n > 3; that is, we consider weighted
congestion games with at least three players. We will show that a set of continuous cost functions is consistent if
and only if this set contains either only linear or only certain exponential functions. Our main tool for proving this
result is to analyze implications of the Extended Monotonicity Lemma (Lemma 3.4) for three-player weighted
congestion games. Formally, define

Z(E)={c: Ry > R: c(x)=a,c;(x) +ayc,(x+8):a,,a, €Z,c; €€, €R_o} € L,(€).

Note that &3 (€) involves a single offset 8 > 0, which requires only three players in the construction of the proof
of the Extended Monotonicity Lemma. However, regarding three-player games in which the strategy available to
the third player does not intersect with the strategies of the first two players we still get as a necessary condition
that #2%(€) may only contain monotonic functions. We, thus, obtain the following result.
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PROPOSITION 5.1.  Let € be a set of continuous functions. If € is consistent for three-player games, then
both &% (€) and <3(€) contain only monotonic functions.

We proceed to characterize the set of cost functions € for which &3 () contains only monotonic functions.

LEMMA 5.1. Let 6 be a set of continuous functions. Then, the following two are equivalent:
(i) Z3(€) contains only monotonic functions.
(ii) For every c € € either c(x) = ae®* + b for some a, b, d €R, or c(x) =ax+ b for some a, b €R.
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PrOOF. (ii) = (i): Let ¢ € € be an exponential or an affine function. By simple calculus one can verify that
every function ¢(x) = a, ¢(x)+a, c(x+ ) with a,, a, € Z, 6 € R_, is exponential if ¢ is exponential and affine
if ¢ is affine.

(i) = (ii): By contradiction, assume that ¢ € € is neither affine nor exponential. As #3(€) contains only
monotonic functions, for all 6 > 0 and all a,, a, € Z the function ¢: R.; — R, x = a, c(x) + a,c(x + 0) is
monotonic. Referring to Lemma 4.1, this implies that for all 6 > 0 there are a, b € R such that for all x > 0:

c(x+086)=ac(x)+b. 5)

As c € € is neither affine nor exponential on R., there must exist four points 0 < p, < p, < p; < p, following
neither an exponential nor an affine law; i.e. there are neither «, 8, ¢ € R such that ¢(p;) = ae?®” + B for all
i €{1,2, 3,4} nor are there «, 8 € R such that c¢(p;) = a p;+ B for all i € {1, 2, 3, 4}. As ¢ is continuous, we may
assume without loss of generality that p,, p,, p;, p, are rational and we write them as p, =2m,/(2k), ..., p, =
2my/(2k) for some m,, m,, my, my, k € N. For 6 = 1/k we derive from (5) that there are a, b € R such that for
all neN:

c((n+1)/k)=ac(n/k)+b, (6)
c((n+2)/k)=ac((n+1)/k)+b. 7

Subtracting (6) from (7) and rearranging terms, we obtain for all n € N:
c((n+2)/k) = (a+ 1) e((n+1)/k) + ac(n/k)) =0. (8)

This defines a second-order linear homogeneous recurrence relation on the sequence c(n/k),.y. Such recurrence
relations can be solved with the method of characteristic equations; see Balakrishnan [7, §3.2] for more details.
The characteristic equation of the recurrence relation equals x> — (a+ 1) x+a=(x — 1)(x —a). If a # 1, then
the characteristic equation has two distinct roots and we obtain for even m that

cim/k)=B-1"+a-a"=B+a-|a|"=a-exp(mIn|a|) + B
for some constants «, 8 € R. If on the other hand a = 1, we can evaluate c(m/k) as
cim/ky=B-1"+am-1"=a-m+f3

for some constants o, BeR. O
We are now ready to state our second main theorem.

THEOREM 5.1. Let € be a set of continuous functions. Then, the following three are equivalent:
(1) G is consistent.
(ii) € is FIP-consistent.
(iii) € contains only affine functions or € contains only functions of type c(x) = a, e®* +b,, where a,, b, € R
may depend on ¢ while ¢ € R is independent of c.

Proor. (ii) = (i) is trivial.

(iii) = (ii) follows because every weighted congestion games with such cost functions possesses a weighted
potential; see Fotakis et al. [16], Harks et al. [22], and Panagopoulou and Spirakis [30].

(i) = (iii): By Proposition 5.1 both &2(€) and ¥3(€) may only contain monotonic functions. Applying
Lemma 5.1 we obtain that every ¢ € € is either affine or exponential. In addition, as shown in Lemma 4.1 for
each two nonconstant functions c,, ¢, € €, there are a, b € R such that ¢,(x) = ac,(x) + b for all x > 0. Both
results together imply (iii). O

We conclude this section by giving an example that illustrates the main ideas presented so far. Recall, that
Theorem 5.1 establishes that for each continuous, nonaffine and nonexponential cost function c, there is a
weighted congestion game G with uniform cost function ¢ on all facilities that does not admit a PNE. In the
following example, we show how such a game for c(x) = x* is constructed.

EXAMPLE 5.1. As the function ¢(x) = x? is neither affine nor exponential, there are a,,a, € Z and 6 e R_,
such that ¢(x) = a, ¢(x) + a, c(x + 8) has a strict local extremum. In fact, we can choose a;, =2, a, = —1, and
8 =1, that is, the function &(x) =2c¢(x) — c(x+ 1) =2x> — (x4 1)° has a strict local minimum at x, = 1 4+ /2.
In particular, we can choose d; =1 and d, =2 such that ¢(d,) = —6 > ¢(d,) = —11 < ¢é(d, + d,) = —10. The
weighted congestion game without PNE is now constructed as follows: We introduce 2(|a,| + |a,|) facilities

fis- .., fo and the following strategies s{ = {fi, fo, fs}, 57 = {fu, fs. fo}s 55 ={f1. o, fu}s 85 ={fs, fs. [}, and
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(a) Strategies (b) Improvement cycle y
P - \\
| fi | , fa !
Sél // - Z
S \
sy L m(s{, 55, 53) = (62, 2- 81, 35) «— sy, 5, 53) = (66, 2 - 80, 65)
- - ’
- / _
55 o7 / fs l Y
Ados S s ] (st 54, 53) = (66,2 - 80, 65) —> m(s?, 52, 53) = (62,2 - 81, 35)
\ —-
~— ~——
a b

FIGURE 2. (a) The players’ strategies and (b) the improvement cycle y of the game constructed in Example 5.1 that does not admit a PNE.

sy ={fs» f1}. We then set S; = {s¢, s}, S, = {5¢, s%}, and S; = {s;}; see Figure 2(a) for an illustration of the
strategies. The so-defined game has four strategy profiles, namely (s¢, 55, s3), (s{, 55, 53), (57,55, 53), (s7, 55, s3).
As Player 3 is an offset player, she has a single strategy only; thus, the players’ private costs depend only on
the choice of players 1 and 2. We derive that the 4-cycle y shown in Figure 2(b) is a best-reply cycle in G.
As there are no strategy profiles outside y we conclude that G has no PNE.

6. Weighted network congestion games. In this section, we discuss the implications of our characteriza-
tions to the important subclass of weighted network congestion games. In these games, the facilities correspond
to edges of a directed or undirected graph. Every player is associated with a positive demand that she wants
to route from her origin to her destination on a path of minimum cost. We consider directed and undirected
networks separately, starting with directed networks.

6.1. Directed networks. We first give a version of the Extended Monotonicity Lemma for directed networks
with two players and strictly positive costs.

LEMMA 6.1 (EXTENDED MONOTONICITY LEMMA FOR TWO-PLAYER GAMES ON DIRECTED NETWORKS). Let
‘€ be a set of strictly positive and continuous functions. If € is consistent for two-player directed network
congestion games, then &%(€) contains only monotonic functions.

PrOOF. Because singleton congestion games are a subclass of directed network congestion games, by Corol-
lary 3.1 every set € of consistent functions contains only monotonic functions. For a contradiction, assume
that there are a,,a, € Z and monotonic functions ¢, ¢, € € such that the function c¢: R., — R defined as
¢(x) = a,c,(x) + aycy(x) is not monotonic. By Lemma 3.2 there are x,y € R_, with y > x such that either
c(y—x)<c(y) <c(x) or c(y —x) > c(y) > c(x). We choose the demands equal to d, =y — x and d, = x.
Note that ¢ is monotonic if and only if —c is monotonic; thus we may assume w.l.o.g. that a, > 0. To define
the players’ strategies we distinguish the following two cases.

(b) Case a; >0
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FIGURE 3. Directed network congestion games used in the proof of the Extended Monotonicity Lemma for Two-Player Directed Networks
(Lemma 6.1).
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First case: a; < 0: We use a construction similar to the proof of Lemma 3.4. To define the players’ strategy
spaces, consider the network in Figure 3. The two players are represented by the two source-terminal pairs
(s;, 1), i =1,2. The set of strategies available to player i equals the set of directed (s;, t;)-paths. The dashed
edges in Figure 3(a) correspond to directed paths P,, ..., P,, which we choose as follows: the directed path
P, from v, to v, contains |a,| edges with cost function ¢,, the directed path P, from v; to v, contains a,
edges with cost function c,, the directed path P; from v5 to vy contains a, edges with cost function ¢,, and
the directed path P, from v, to vg contains |a,| edges with cost function c,. All other edges have an arbitrary
cost function in €, say c,. Because all costs are strictly positive, for player 1 all strategies except the upper
path P, = {s;, — v, P,, v, > v5, P,, v, — t,} and the lower path P, = {s; — vs, Py, vg — vy, Py, vg — 1,} are
strictly dominated in the sense that they have strictly higher costs than either P, or P, regardless of the strategy
played by player 2. For player 2, all strategies except the left path P, = {s, — v,, P, v, = vs, P;, vy — 1,}
and the right path P, = {s, — v;, P,, v, — vy, P,, v — 1,} are strictly dominated. We consider the 4-cycle
y=((P,,P).(P;, P),(P;, P,), (P, P,), (P, P)), and calculate that

T (Pys P) = m (P P) = (v =) (e1(y = %) + ar0,(3) + ¢4 (y = %) —aye(y = %) + ¢, (y = x)
—a(y=x)+a,c,(y) =iy = x) = a,6(y = x) — ¢, (y = %))
= (y—=x0)(a;¢,(y) + a6, (y) — ay¢,(y = x) — ay6,(y — x))
= (=) (c(y) = ey —x)).

In the same fashion, we obtain m,(P,, P,) — 7, (P,;, P,) = x(c(x) — ¢(y)), m (P,, P,) — m(P;, P,) = (y — x) -
(c(y) = c(y = x)), and my(P,, ;) — my(P,, P,) = x(c(x) — ¢(y)). If c(y —x) > ¢(y) > c(x), then y is an
improvement cycle which gives that none of the strategy profiles contained in y is a PNE. If, on the other hand,
c(y—x) < c(y) < c(x), we can reverse the direction of y and get an improvement cycle. Because every strategy
profile that uses only nondominated strategies is contained in 7y, the constructed directed network congestion
game does not admit a PNE.

Second case: a, > 0: Consider the network shown in Figure 3(b). Here, both players want to route from s
to £; that is, S, = S, = {P|, P;}. The directed paths P and P, each contain a, edges with cost function ¢, and a,
edges with cost function c,. If c¢(y — x) < ¢(y) < c(x), player 1 prefers to be alone on an (s, f)-path while
player 2 wants to share the path with player 1. If c¢(y — x) > ¢(y) > c(x), the argumentation works the other
way round. We conclude that the game does not admit a PNE. O

Together with Lemma 4.1 and Theorem 4.1, we obtain the following characterization of consistency for
two-player network congestion games on directed networks.

THEOREM 6.1. Let € be a set of strictly positive and continuous functions and let G2 (‘€) be the set of two-
player directed network games such that cost functions are in €. Then, the following conditions are equivalent.
(i) € is consistent for G (€).
(i) € is FIP-consistent for G2 (€).
(iii) € contains only monotonic functions and for all nonconstant c,, c, € G, there are constants a, b € R
with ¢, (x) =ac,(x)+ b for all x eR_,.

Using similar ideas as in the case of two players, we can also prove a version of the Extended Monotonicity
Lemma for directed network games with three or more players.

LEMMA 6.2 (EXTENDED MONOTONICITY LEMMA FOR DIRECTED NETWORKS). Let € be a set of strictly positive
and continuous functions. If € is consistent for three-player directed network congestion games, then %3 (6)
contains only monotonic functions.
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PrOOF. Assume by contradiction that there are a,,a, € Z, 6 € R_, and a monotonic function ¢, € ‘€ such
that the function c: R., — R defined as ¢(x) = a,c,(x) + a,c¢,(x + 8) is not monotonic. We may again assume
w.l.0.g. that ¢, is monotonic and that a, > 0. Note that because ¢, is monotonic, this implies a; < 0.

Consider the network in Figure 4 where again the directed paths P, and P, contain |a,| edges each, and
the directed paths P, and P; contains a, edges each. In addition to the players i = 1,2 corresponding to the
pairs (s;,t;),i = 1,2, we now have a third player corresponding to the pair (s;,%;) with a single strategy
Py ={P;,Q, P,} and demand d; = 0. Moreover, we set d; =y — x, d, = x for x,y € R_; with y > x such that
either c(y —x) < c¢(y) < ¢(x) or ¢(y — x) > ¢(y) > ¢(x) holds (by Lemma 3.2 such values exist). We design
the directed path Q from v4 to v; so as to contain a sufficiently large number of edges, such that for play-
ers 1 and 2, all (s;, #;)-paths not containing Q are strictly less costly than every path that contains Q. As every
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FIGURE 4. Multi-commodity directed network instance used in the proof of the Extended Monotonicity Lemma for Directed Networks
(Lemma 6.2).

(s;, t;)-path that does not contain Q has costs less than 2(a, —a, +6) ¢;(y + &) and every edge in Q has cost at
least ¢,(6), it is sufficient to let Q contain 2(a, — a, +6)[(c;(y +6))/c,(6)] + 1 edges. By construction of Q,
for player 1, all strategies except the upper path P, = {s, — v, P,, v, = vs, P,, t; — t,;} and the lower path
P, ={s; = s3, P;, v = vy, P,, vy — 1} are strictly dominated in the sense that they have strictly higher costs
than either P, or P, regardless of the strategies played by players 2 and 3. For player 2, all strategies except
the left path P, = {s, — v, P, v, = 5, Py, us — 1,} and the right path P, = {5, — v;, P, t; > vy, Py, vy > 1,}
are strictly dominated. With the same calculations as in Lemma 6.1 one can show that the 4-cycle y =
((P, P, Py), (Py, P, Py), (Py, P, Py), (P,, P., Py), (P,, P, Py)) is an improvement cycle when traversed in the
right direction. Because every strategy profile that uses only nondominated strategies is contained in 7y, we
conclude that the thus constructed network congestion game does not admit a PNE. 0O

Using Lemma 5.1, we obtain the following characterization of cost functions that are consistent for weighted
directed network congestion games.

THEOREM 6.2. Let € be a set of strictly positive and continuous functions and let G ,,(¢) be the set of
directed network congestion games such that cost functions are in €. Then, the following are equivalent:
(1) G is consistent for G, (€).
(ii) 6 is FIP-consistent for ‘G ,,(6).
(iii) € contains only affine functions or € contains only functions of type c¢(x) = a, e®* +b,, where a,, b, € R
may depend on ¢ while ¢ € R is independent of c.

This characterization is even valid for three-player games.

REMARK 6.1. In games with negative costs the players strive to establish long paths. In this case, our con-
struction does not work since, e.g., player 2 prefers to take the detour vy — v; — vy — ¢, instead of the edge
Ve — 1.

6.2. Undirected networks. We first show that a version of the Extended Monotonicity Lemma holds also
for two-player games on undirected networks. In such a game, we are given an undirected graph and for each
player i, two designated vertices s; and ¢;. Facilities correspond to the edges of the graph and the strategy set of
each player i contains all simple s;, #,-paths. Each edge can be traversed in any direction and its cost depends
on the aggregated flow.
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LEMMA 6.3 (EXTENDED MONOTONICITY LEMMA FOR TWO-PLAYER GAMES ON UNDIRECTED NETWORKS). Let
€ be a set of strictly positive and continuous functions. If € is consistent for two-player undirected network
congestion games, then &%(€) contains only monotonic functions.

ProoF. For a contradiction, let a;, a, € Z and ¢, ¢, € € be such that the function ¢: R, — R defined as
c(x) =a, ¢,(x) + a, c,(x) is not monotonic and w.l.o.g. a, > 0. Moreover, let x,y € R_;, with y > x be such
that either ¢(y — x) < c(y) < c(x) or ¢(y — x) > c(y) > ¢(x) holds. We set d, =y — x, d, = x and distinguish
the following two cases. If a, <0 we consider the network in Figure 5 where the paths P, and P, each contain
|a,| edges with cost function ¢, and the paths P, and P; each contain a, edges with cost function ¢,. With
similar calculations as in the proof of Lemma 6.1 one can verify that the 4-cycle y = ((P, U P,, P, U Py),
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(a)Casea; <0 (b) Casea; >0

e
2

FIGURE 5. Undirected network congestion games used in the proof of the Extended Monotonicity Lemma for Two-Player Undirected
Networks (Lemma 6.3).

(PyUP,, P,UP;), (P;UP,,,UP,), (P,UP,, P,UP,), (P,UP,, P,UP;)) is an improvement cycle if traversed in
the right sense. If on the other hand a, > 0, we consider the undirected network shown in Figure 5 and obtain
the same contradiction as in Lemma 6.1. O

Likewise, we obtain the following characterization for two-player games on undirected networks.

THEOREM 6.3. Let € be a nonempty set of strictly positive and continuous functions and let G2, (‘€) be the
set of two-player undirected network games such that cost functions are in €. Then, the following conditions
are equivalent.

(i) € is consistent for G* (€).

(i) € is FIP-consistent for G2, (€).

(iii) € contains only monotonic functions and for all nonconstant c,, c, € 6, there are constants a,b € R
with ¢, (x) = acy(x) + b for all x e R,

Turning to games with three players we are not able to characterize the set of consistent cost functions.
However, we can still characterize consistency for games with at least four players.

LEMMA 6.4 (EXTENDED MONOTONICITY LEMMA FOR UNDIRECTED NETWORKS). Let € be a set of strictly
positive and continuous functions. If G is consistent for undirected network congestion games with at least four
players, then ¥3,(€) contains only monotonic functions.

Proor. For a contradiction, suppose that there are a,,a, € Z, 6 € R_;, and a monotonic function ¢, € €
such that the function ¢: R.; — R defined as c(x) = a,¢,(x) + a,c,(x + 8) is not monotonic; again w.l.o.g., ¢,
is monotonic, a, >0 and a, <O0.

Consider the network in Figure 6 where the paths P, and P, each contain |a,| edges and the paths P, and
P; each contain a, edges. The players i = 1, 2 correspond to the source sink pairs (s;, ¢;), i = 1, 2. Additionally,
there are players associated with the source sink pairs (s;, t;), i = 3,4, and demand d; = d, = 6. Moreover, we
setd; =y—ux, d,=x for x, y € R_, with y > x such that either c(y —x) < c(y) < c(x) or c(y —x) > c(y) > c(x)
holds (by Lemma 3.2 such values exist).

We endow every edge in the paths Q,, ..., Qg with cost function ¢, and make them sufficiently long such
that players 3 and 4 always prefer to choose a strategy not containing any of these paths. Because the paths P,
and P; have costs less than a, c,(y + 20), and every edge in Q,, i =1,...,8 used by players 3 or 4 has cost

O @G
05 05 .
Py P
Py Py
O OS=0)
Oy Os

FIGURE 6. Undirected network congestion games used in the proof of the Extended Monotonicity Lemma for Undirected Networks
(Lemma 6.4).
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at least ¢,(0), it suffices for all i=1,...,8 to let Q, contain a,[(c,(y+28))/c,(6)] + 1 edges each. Then,
for player 3, all strategies except P, are strictly dominated by P, and for player 4 all strategies except P; are
strictly dominated by P;. Given that players 3 and 4 will not use any of the Q;-paths in equilibrium, we may
assume that players 1 and 2 will not share any of the Q, paths in equilibrium; w.l.o.g. player 1 always uses the
paths Q,, ..., Q, instead of Qs, ..., Qg while player 2 always uses paths Qs, ..., Qg instead of Q,, ..., Q,.
With the same calculations as before one can show that there is an improvement cycle y of the form y =
(P, P, Py, P3), (Py, P, Py, Py), (Py, P, Py, Py), (P, P, Py, Py), (P, P, P,, P3)), where P, =P, UQ,UQ,UP,
P,=P,UQ;UQ,UP,, bL=0Q;UP,UP;UQ,, and P, = Q,U P, U Q, U Qq4. Because every strategy profile that
uses only nondominated strategies is contained in 7y, the thus constructed network congestion game does not
admit a PNE. 0O
Using the above lemma, we obtain the following result.

THEOREM 6.4. Let € be a set of strictly positive and continuous functions and let G, (€) be the set of
undirected network congestion games with at least four players and cost functions in €. Then, the following are
equivalent:

(1) € is consistent for G, (6).

(ii) € is FIP-consistent for G,,(6).

(iii) € contains only affine functions or € contains only functions of type c(x) = a e®* +b,, where a., b, € R
may depend on ¢ while ¢ € R is independent of c.

For single-commodity network games (directed or undirected) we are not able to characterize consistency of
cost functions. However, by introducing a super-source and a super-sink to the network constructions used, it
follows that the improvement cycles are preserved; thus, all characterizations for FIP-consistency obtained in
this section continue to hold.

7. Weighted singleton congestion games. In this section, we consider the case of singleton weighted con-
gestion games. In this class of games, for every player i, every strategy s; € S; contains a single facility only.
As mentioned in Corollary 3.1, the construction of the Monotonicity Lemma (Lemma 3.3) is even valid for
singleton games, establishing that every set of continuous cost functions € that is consistent for singleton games
may only contain monotonic functions. It is well known that singleton congestion games with weighted players
and either only nondecreasing or only nonincreasing cost functions admit a PNE; see Even-Dar et al. [14],
Fotakis et al. [15], and Rozenfeld and Tennenholtz [36]. Since the positive result for nondecreasing costs is
established via a potential function, these games also possess the FIP. With similar arguments it is not difficult
to establish the FIP also for the case of nonincreasing costs.! To the best of our knowledge it was not known
before whether singleton weighted congestion games with both nondecreasing and nonincreasing cost functions
admit a PNE or even the FIP. Regarding the existence of PNE, for two-player games, we give a positive answer
to this question.

THEOREM 7.1. Let € be a set of continuous functions and let f@fgl(%) be the set of two-player games such

that cost functions are in € and strategy spaces are sets of singletons. Then, 6 is consistent for ‘ﬁfgl(%) if and
only if € contains only monotonic functions.

ProoF. The “only if” part follows from Corollary 3.1. For the “if” part let Ml = (N, F, S, (c;)scr) be a
congestion model with [N| =2. W.l.o.g. we assume d, < d,. We partition the set of facilities into sets F_ and F,
where F, contains all facilities with nondecreasing cost functions (including all facilities with constant functions)
and F_ all other facilities. W.l.o.g. we can assume that both players have access to all facilities in F_, since we
can replace the cost function of every facility that is contained in the strategy space of only one player by a
constant function. We initialize the players both playing g, where g = argmin; . c,(d, + d,). We distinguish
two cases.

First case: Player 1 has an improving move from ({g},{g}). In this case, we let player 1 move to one
of her best replies {f,} € S,. Using the special choice of g, we have f; € F,. If player 2 does not have an
improving move from ({f,}, {g}), we are done. So, let {f,} be a best reply of player 2 to ({f;}, {g})- If f; # f>,
we claim that ({f,}, {f,}) is a PNE. To see this, note that if f, € F,, then player 2 switching from {g} to
{f,} does not make any of the facilities more attractive to player 1. If on the other hand, f, € F_, we get

m (L1 A = m({g) {gh) > m({fi}, {2,}) = m ({1}, {g}) by the choice of g; thus player 1 does not want
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! Consider the function ¢ that assigns to each strategy profile the nondecreasingly sorted vector of the scaled players’ private costs (7;/d;);cy-
Then, ¢ decreases lexicographically along any improvement path, establishing that every such path is finite.
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TaBLE 1. (a) Cost functions of the five facilities g, f,., f», f3, and f; in the game of Example 7.1; (b) Cost
functions of the three facilities f, g, and % in the game of Example 7.2.

(a) Cost functions in the game of Example 7.1

Cost c(x)

Facility x=1 x=2 x=3

g 10 5 3

fi 2 2 9

f, 8 8 8

£ 1 7 7

fa 6 6 6

(b) Cost functions in the game of Example 7.2
Cost ¢(x)

Facility x=1 x=2 x=3 x=4 x=5 x=6
f 0 0 2 3 3 3
g 5 1 1 1 0 0
h 2 2 2 2 4 4

to move to f, and we have reached an equilibrium. The only interesting case that remains is {f,} = {f,}. Again,
if player 1 does not have an improving move, there is nothing left to show, so let {,} # {f,} be a best reply
of player 1 to ({f;}, {f,}). Note that i, ¢ F_ because otherwise we get m,({f,}, {h,})/d, <7 ({h,}, {fi})/d, <
- ({fi}. {/iD/d, = m{fi}, {fi})/d,, where the first inequality follows since d, > d,. This is a contradiction
to the fact that {f;} was a best reply of player 2. As m,({h,}, {f1}) < m{fi}, {fi}), player 2 does not want to
deviate from ({h,}, {f,}). Also, player 1 will not deviate from ({A,}, {f>}) as {h,} was a best reply.

Second case: Player 1 has no improving move from ({g}, {g}). If, also, player 2 does not have an improving
move from ({g}, {g}), we are done. Otherwise, let {f,} € S, be a best reply of player 2. Note that {f,} & S,
because otherwise {f,} would have been an improving move from ({g}, {g}) of player 1. If player 1 has no
improving move from ({g}, {/,}), we are done. Otherwise let {f;} be a best reply of player 1 to ({g}, {f>}).
Using that f; # f; and that m,({f}}. {f;}) < m({g}. {g}), we have that ({f,},{/}) is a PNE. [

Two-player singleton weighted congestion games with monotonic costs need not possess the FIP as shown in
the following example.

ExampLE 7.1.  Consider the congestion model / = (N, F, S, (¢;) ;cp) With two players N = {1, 2} who have
access to all five facilities F = {g, fi, f», f5, f4}. The cost functions of the facilities are shown in Table 1(a).
Note that the cost function of facility g is strictly decreasing while all other cost functions are nondecreasing.
The players’ demands are given by d, =1 and d, = 2. It is not hard to verify that the cycle y defined as y =
(({g}- {eh). (e} {AD. UALAAD. AAL LD, AL LD, (fLAD. A1 1AD, (A4 {gD). (&) {gh)
is an improvement cycle.

We proceed to show that for singleton games with three players monotonicity of cost functions alone is not
enough for the existence of a PNE. This is illustrated in the following example.

ExampLE 7.2. Consider the congestion model Ml = (N, F, S, (¢;) ;cp) With N ={1,2,3} and F = {f, g, h}.
The used cost functions are given in Table 1(b). We claim that the weighted congestion game G (M) = (N, S, )
with S, = {{g}, {h}}. S, ={{f}. {g}}. Ss={{f}, {h}} and d, =1, d, =2, d; =4 does not admit a PNE. To see

e
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w({g}, {f}, {(fH =G, 6,12) —7({g}, {g}. {fDH=(1,2,12) a({g}, {f}, (h}) = (5,0, 8) <—m({g}, {g}. {h}) =(1,2,8)
a({h}, {f}, {fD) =2, 6, 12) —w({h}, {g}, () =(2,2,12) w({h}, {f}, (h}) = (4,0, 16) <—({h}, {g}, {h}) = (4,2, 16)

— T

FIGURE 7. Best reply graph of the singleton weighted congestion game G (/) constructed in Example 7.2.
Notes. The vertical arcs correspond to best replies of player 1, the straight horizontal arcs to best replies of player 2 and the wide horizontal
arcs to best replies of player 3. Since the graph does not have a sink, the game G (/) does not possess a PNE.
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this, note that the best-reply graph y shown in Figure 7 does not have a sink. Using that all strategy profiles are
contained in 7y the claimed result follows.

However, we are able to give a positive result for symmetric games in which the players have access to all
facilities.

THEOREM 7.2.  Let ‘€ be a set of continuous functions and let G, ., (‘€) be the set of games such that cost
functions are in € and strategy spaces are sets of singletons and equal for every player. Then, 6 is consistent
for G 5, (‘€) if and only if ‘€ contains only monotonic functions.

Note that the only if part also follows from Corollary 3.1. To prove the if part, we give an algorithm that
efficiently computes a PNE in such games. In the following, we denote by F, and F_ the set of facilities with
nondecreasing and nonincreasing costs, respectively. To obtain a partition of F, we introduce the convention that
facilities with constant cost functions are contained in F, only. The algorithm that we propose (Algorithm 1)
initializes all players on the facility g € F_ that minimizes c,(3;cy ;). Clearly then, no player has an incentive
to switch to another facility # € F_. The key observation is that, as long as there is at least one player i € N that
wants to switch to a facility f € F, the player with smallest demand also does so. So we iteratively take the
player with smallest weight on g and let her move to F,. Then, we compute a sequence of best replies of the
players on F,_ in order to assure that none of them has an incentive to deviate to another facility in F_. Also, the
players on F_ are placed on the facility minimizing ¢;(3 ;cy.;cr d;)- Since we can prove that a player on F,
never wants to move back to a facility in F_, this process stops after a polynomial number of best-reply steps.

Algorithm 1 (Computation of a PNE in symmetric singleton weighted congestion games)
Input: Symmetric singleton weighted congestion game G.
Output: PNE s of G.

1 N_:=N, N_:=g;

2 Compute g:=argmin, . ¢,(3;cy d;) and set s;:= (g} forall i e N_;

3 if k =argmin,_, d; can improve switching to f € F,, then

4 sp:=f, N_:=N\{k}, N, :=N, U{k};

5 Compute a partial PNE (#;),cy, of N, on F, by best replies and set (s;);cy, := (£))ien, 3
6 Goto line 2;

7 else

8 ‘ return s;

9 end

LEmMA 7.1.  Algorithm 1 computes a PNE.

Proor. Let us first remark that the computation of the partial PNE of players N, on F, in line 5 finishes
after a finite sequence of best replies since the cost functions of the facilities in F, are nondecreasing; see
Ackermann et al. [1], and Ieong et al. [23]. As at most n times such PNE is computed, the algorithm terminates
after a finite number of best-reply steps. Let z denote the outcome of the algorithm. Clearly, no player j € N, can
improve switching to another facility f € F since we always recompute a partial PNE in line 5. Also, no player
J € N_ can improve unilaterally deviating to another facility f € F_ since ¢,(d;) > ¢;(X;cn_d;) = ¢,(Xien_d,).
In addition, we know that player k = argmin,_, d; does not improve switching from facility g to another facility
f € F_. In consequence, the same holds for every other player j € N_ since the costs for her on a facility
f € F_ are not smaller. Finally, it is left to show that in z no player j € N, has an interest in switching to some
facility f e F_.

To prove this, let i, t=1,...,T, T €N, denote the player that switches from g, € F_ to f, € F, in the
tth iteration of the algorithm and let Z' and 7' denote the corresponding strategy profiles before and after the
re-computation of the partial PNE on F,_ in line 5, respectively. We claim that
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. t t _
?Elgl (£, (2') +d;) > fepfgeflér»ocf(gf(z )) forallt=1,...,T, 9)

where ¢,(z') and £,(z') denote the load on facility g (respectively, f) in strategy profile z'. For t =
1, the statement holds true, since player i, improves switching from F_ to F,. Now, suppose (9) holds
true for + — 1. In the rth iteration, player i, changes her strategy from g, € F_ to some facility f, € F,.
In consequence, min . ¢,(£,(z") +d;) = c, (¢, (z') +d;) > ¢, (£,(Z")). As the facilities in F_ have non-
increasing cost functions, we obtain min,., c,(£,(z') 4+ d;) = min,., c,(£,(z""") + d; ). By the induction
hypothesis, this implies min ., c,(£,(z") +d;) > ¢;(£;(Z")) for all f € F\{f,} with £,(z") > 0. Thus, we
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have established min,., ¢, (€,(z") +d;) > MaXjep, ¢, (z)>0 c;(£;(Z")). Since the maximum cost on F, can-
not increase in the sequence of best-reply steps (c.f. Harks et al. [21]), we obtain min,. c,(£,(z") +d;) >
MaX ser g (1)-0 Cf (£f(2")) as claimed.

Because the algorithm always moves the player with the current smallest weight from F_ to F, (line 3) it
holds that d; = max,.y,_d; which gives min . ¢,(€,(z) +d;) > mingp c,(€,(z)+d;,) > max,.p_c;(£,(2)) for
all i € N,. Thus, no player i € N, has an incentive to switch to a facility ge F_. [0

While the above result implies that the set € of continuous and monotonic cost functions is consistent for
symmetric singleton games, Example 7.1 implies that ‘€ is not FIP-consistent.

8. Conclusions. We obtained a characterization of the equilibrium existence problem in weighted congestion
games with respect to the facilities’ cost functions. The following issues have not been resolved. Our charac-
terizations for network games require that cost functions are strictly positive. Moreover, for single-commodity
games we were only able to characterize the FIP, not consistency. The single-commodity case, however, behaves
completely differently as every congestion game with positive and nonincreasing costs admits a PNE in which
all players use the socially optimal path (see also Anshelevich et al. [5] for a similar result in the context of net-
work design games). Finally, it would be interesting to characterize consistency of cost functions for undirected
networks with three players.
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CORRECTION

In this article, “On the Existence of Pure Nash Equilibria in Weighted Congestion Games” by Tobias Harks
and Max Klimm (first published in Articles in Advance May 17, 2012, Mathematics of Operations Research,
DOI:10.1287/moor.1120.0543), the following changes were made:

(1) On page 2, Section 1.1, the following sentence was deleted: “Moreover, as a by-product of our analysis,
we obtain a polynomial time algorithm computing a PNE for two-player singleton games and symmetric singleton
games provided that cost functions are monotonic.”

(2) On page 16, Lemma 7.1, the words “in polynomial time” was deleted from the title of the lemma and in the
proof, the term “polynomial” was replaced by “finite.” It is corrected to read as follows:

“LEmMMA 7.1. Algorithm 1 computes a PNE.
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ProoF. Let us first remark that the computation of the partial PNE of players N, on F, in line 5 finishes after
a finite sequence of best replies since the cost functions of the facilities in F, are nondecreasing; see Ackermann
et al. [1], and Ieong et al. [23]. As at most n times such PNE is computed, the algorithm terminates after a finite
number of best-reply steps... .”
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