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PACKING A KNAPSACK OF UNKNOWN CAPACITY∗

YANN DISSER† , MAX KLIMM‡ , NICOLE MEGOW§ , AND SEBASTIAN STILLER¶

Abstract. We study the problem of packing a knapsack without knowing its capacity. Whenever
we attempt to pack an item that does not fit, the item is discarded; if the item fits, we have to include
it in the packing. We show that there is always a policy that packs a value within factor 2 of the
optimum packing, irrespective of the actual capacity. If all items have unit density, we achieve a
factor equal to the golden ratio ϕ ≈ 1.618. Both factors are shown to be best possible. In fact,
we obtain the above factors using packing policies that are universal in the sense that they fix a
particular order of the items in the beginning and try to pack the items in this order, without
changing the order later on. We give efficient algorithms computing these policies. On the other
hand, we show that, for any α > 1, the problem of deciding whether a given universal policy
achieves a factor of α is coNP-complete. If α is part of the input, the same problem is shown to be
coNP-complete for items with unit densities. Finally, we show that it is coNP-hard to decide, for
given α, whether a set of items admits a universal policy with factor α, even if all items have unit
densities.
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1. Introduction. In the standard knapsack problem we are given a set of items,
each associated with a size and a value, and a capacity of the knapsack. The goal
is to find a subset of the items with maximum value whose size does not exceed the
capacity. In this paper, we study a variant of the knapsack problem where the capacity
of the knapsack is not given. Whenever we try to pack an item, we observe whether
it fits the knapsack. If it does, the item is packed into the knapsack and cannot be
removed later. If it does not fit, we discard it and continue packing with the remaining
items. We call the problem the knapsack problem with unknown capacity. The central
question of this paper is how much we lose by not knowing the capacity, in the worst
case.

A solution to the knapsack problem with unknown capacity is a policy that gov-
erns the order in which we attempt to pack the items, depending only on the obser-
vation which of the previously attempted items did fit into the knapsack and which
did not. In other words, a policy is a binary decision tree with the item that is tried
first at its root. The two children of the root are the items that are tried next, which
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of the two depends on whether the first item fits the knapsack, and so on. We aim
for a solution that is good for every possible capacity, compared to the best solution
of the standard knapsack problem for this capacity. Formally, a policy has robustness
factor α if, for any capacity, packing according to the policy results in a value that is
at least a 1/α-fraction of the optimum value for this capacity.

Direct applications of the knapsack problem with unknown capacity include set-
tings where the capacity remains uncertain until it is (nearly) exhausted. For example,
this may be the case when mining natural resources and serving orders for different
quantities before the resource is depleted, or when cutting steel plates of given sizes
from steel coils of varying lengths. The capacity-oblivious variant of the knapsack
problem also naturally arises whenever items are prioritized by a different entity or
at a different time than the actual packing of the knapsack. This is, for instance, the
case in settings where cargo is loaded onto a vessel with varying remaining capacity,
in case we cannot expect the loading personnel to reoptimize on the fly and, instead,
have to provide a policy before knowing the capacity. Recently, parts of our results
were applied to a different model related to the optimization of energy consumption
in mobile telecommunication [12].

1.1. Our results. We show that the knapsack problem with unknown capacity
always admits a robustness factor of 2. In fact, this robustness factor can be achieved
with a policy that packs the items according to a fixed order, irrespective of the
observations made while packing. Such a policy is called universal. We provide an
algorithm that computes a 2-robust, universal policy in time Θ(n log n) for a given set
of n items. We complement this result by showing that no robustness factor better
than 2 can be achieved in general, even by policies that are not universal. In other
words, the cost of not knowing the capacity is exactly 2.

We give a different efficient algorithm for the case that all items have unit density,
i.e., size and value of each item coincide. This algorithm produces a universal policy
with a robustness factor of at most the golden ratio ϕ ≈ 1.618. Again, we show that
no better robustness factor can be achieved in general, even by policies that are not
universal.

While good universal policies can be found efficiently, it is intractable to compute
the robustness factor of a given universal policy and it is intractable to compute the
best robustness factor an instance admits. Specifically, we show that, for any fixed
α ∈ (1,∞), it is coNP-complete to decide whether a given universal policy is α-robust.
For unit densities we establish a slightly weaker hardness result by showing that it is
coNP-complete to decide whether a given universal policy achieves a given robustness
factor α. Finally, we show that, for given α, it is coNP-hard to decide whether an
instance of the knapsack problem with unknown capacity admits a universal policy
with robustness factor α, even when all items have unit density.

1.2. Related work. The knapsack problem has been studied for various models
of imperfect information. In the majority of the studied models, the lack of full
information concerns the items and their arrival but not the knapsack capacity.

Marchetti-Spaccamela and Vercellis [31] introduced the online knapsack problem
in which the knapsack capacity is known and items arrive online one by one. When an
item is presented, it must be accepted or rejected before the next item arrives. In this
seminal paper it is shown that the problem in its full generality does not admit online
algorithms with a guaranteed profit within a constant of the offline optimum solution.
Various problem variants have been studied since then and nontrivial bounds have
been derived. Examples include online knapsack with resource augmentation (Iwama
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and Zhang [24]), the removable online knapsack problem (Iwama and Taketomi [23],
Han et al. [20, 19, 18]), the online partially fractional knapsack problem [36], items
arriving in a random order (Babaioff et al. [1]), the stochastic online knapsack prob-
lem (Marchetti-Spaccamela and Vercellis [31], Kleywegt and Papastavrou [27, 28], van
Slyke and Young [40]), and online knapsack with advice (Böckenhauer et al. [5]).

In the stochastic knapsack problem, the set of items is known but sizes and values
of the items are random variables. It is known that a policy maximizing the expected
value is PSPACE-hard to compute; see Dean, Goemans, and Vondrák [10]. The authors
assume that the packing stops when the first item does not fit the knapsack and give a
universal policy that approximates the value obtained by an optimal, not necessarily
universal, policy by a factor of 2. Bhalgat, Goel, and Khanna [4] complement this
result by giving a universal polynomial time approximation scheme (PTAS) for the
case that the knapsack capacity may be violated by a factor of 1 + ε.

In robust knapsack problems, a set of possible scenarios for the sizes and values
of the items is given. Yu [43], Bertsimas and Sim [3], Goetzmann, Stiller, and Telha
[17], and Monaci and Pferschy [35] study the problem of maximizing the worst-case
value of a knapsack under various models. Büsing, Koster, and Kutschka [7] and
Bouman, van den Akker, and Hoogeveen [6] study the problem from a computational
point of view. Both allow for an adjustment of the solution after the realization of the
scenario. Similar to our model, Bouman, van den Akker, and Hoogeveen [6] consider
uncertainty in the capacity.

The notion of a robustness factor that we adopt in this work is due to Hassin and
Rubinstein [22] and is defined as the worst-case ratio of solution and optimum, over
all realizations. Kakimura, Makino, and Seimi [26] analyze the complexity of deciding
whether an α-robust solution exists for a knapsack instance with an unknown bound
on the number of items that can be packed. Recently, Kobayashi and Takazawa [29]
studied randomized strategies for this setting.

Megow and Mestre [33] study a variant of the knapsack problem with unknown
capacity closely related to ours. In contrast to our model, they assume that the
packing stops once the first item does not fit the remaining capacity. In this model,
no algorithm can guarantee achieving a constant robustness factor, and, thus, the
authors resort to instance-sensitive performance guarantees. They provide a PTAS
that constructs a universal policy with robustness factor arbitrarily close to the best-
possible robustness factor for every particular instance. Diodati, Navarra, and Pinotti
[12] propose to add to this model the mild assumption that no item size exceeds the
unknown knapsack capacity. Interestingly, they achieve results very similar to ours in
the model that allows one to discard nonfitting items. While our lower bounds (given
in our extended abstract [13]) apply to their model, Diodati, Navarra, and Pinotti
[12] also give a best-possible 2-robust algorithm.

The incremental knapsack problem is another related problem that has been stud-
ied by Hartline and Sharp [21]. The key difference from our model is that the different
possible knapsack capacities are known in advance and that their number is constant.
The authors give a fully polynomial time approximation scheme (FPTAS) for ap-
proximating the optimal robustness factor for the special case of proportional values.
Thielen, Tiedemann, and Westphal [41] investigate an online variant of the incremen-
tal knapsack problem in which in each time period new items arrive online and the
knapsack capacity increases incrementally. They present deterministic and random-
ized upper and lower bounds on the competitive ratio as a function of the time horizon.

The concept of universal solutions is used in various other contexts (explicitly
or implicitly), such as hashing (Carter and Wegman [8]), caching (Frigo et al. [15],
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Bender, Cole, and DeMaine [2]), routing (Valiant and Brebner [42], Räcke [38]), travel-
ing salesman problem (TSP) (Papadimitriou [37], Deineko, Rudolph, and Woeginger
[11], Jia et al. [25]), Steiner tree and set cover (Jia et al. [25]), matching (Hassin
and Rubinstein [22], Matuschke, Skutella, and Soto [32]), and scheduling (Epstein
et al. [14], Megow and Mestre [33]). In all of these works, the general idea is that
specific parameters of a problem instance are unknown, e.g., the cache size or the set
of vertices to visit in a TSP tour, and the goal is to find a universal solution that
performs well for all realizations of the hidden parameters.

Universal policies for the knapsack problem with unknown capacity play a role in
the design of public key cryptosystems. One of the first such systems—the Merkle-
Hellman knapsack cryptosystem [34]—is based on particular instances that allow for
a 1-robust universal policy for this knapsack variant. The basic version of this cryp-
tosystem can be attacked efficiently, e.g., by the famous attack of Shamir [39]. This
attack uses the fact that the underlying knapsack instance has exponentially increas-
ing item sizes. A better understanding of universal policies may help to develop
knapsack-based cryptosystems that avoid the weaknesses of Merkle and Hellman’s.

2. Preliminaries. An instance of the knapsack problem with unknown capacity
is given by a set of n items I, where each item i ∈ I has a nonnegative value v(i) ∈ Q≥0
and a strictly positive size l(i) ∈ Q>0. For a subset S ⊆ I of items, we write
v(S) =

∑
i∈S v(i) and l(S) =

∑
i∈S l(i) to denote its total value and total size,

respectively, of the items in S. A solution for instance I is a policy P that governs
the order in which the items are considered for packing into the knapsack. The policy
must be independent of the capacity of the knapsack, but the choice of which item
to try next may depend on the observations of which items did and which items did
not fit the knapsack so far. Formally, a solution policy is a binary decision tree that
contains every item exactly once along each path from the root to a leaf. The packing
P(C) ⊆ I of P for a fixed capacity C is obtained as follows: We start with an empty
knapsack X = ∅ and check whether the item r at the root of P fits the knapsack,
i.e., whether l(r) + l(X) ≤ C. If the item fits, we add r to X and continue packing
recursively with the left subtree of r. Otherwise, we discard r and continue packing
recursively with the right subtree of r. Once we reach a leaf, we set P(C) = X.

A universal policy Π, for instance, I, is a policy that does not depend on observa-
tions made while packing, i.e., the decision tree for a universal policy has a fixed per-
mutation of the items along every path from the root to a leaf. We identify a universal
policy with this fixed permutation and write Π = (Π1,Π2, . . . ,Πn). Analogously to
general policies, the packing Π(C) ⊆ I of a universal policy Π for capacity C ≤ l(I) is
obtained by considering the items in the order given by the permutation Π and adding
every item if it does not exceed the remaining capacity. We measure the quality of
a policy for the knapsack problem with unknown capacity by comparing its packing
with the optimal packing for each capacity. More precisely, a policy P for instance I
is called α-robust for capacity C, α ≥ 1, if it holds that v(Opt(I, C)) ≤ α · v(P(C)),
where Opt(I, C) denotes an optimal packing for capacity C. We say P is α-robust
if it is α-robust for all capacities. In this case, we call α the robustness factor of
policy P.

3. Solving the knapsack problem with unknown capacity. In this sec-
tion, we describe an efficient algorithm that constructs a universal policy for a given
instance of the knapsack problem with unknown capacity. The solution produced by
our algorithm is guaranteed to pack at least half the value of the optimal solution for
any capacity C. We show that this is the best-possible robustness factor.
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Algorithm 1. MGreedy(I, C).

Input: set of items I, capacity C
Output: subset S ⊆ I such that l(S) ≤ C and v(S) ≥ v(Opt(I, C))/2

1: D ← 〈items in {i ∈ I | l(i) ≤ C} sorted nonincreasingly by density d〉
2: k ← max{j | l({D1, . . . , Dj}) ≤ C}
3: P ← (D1, . . . , Dk), s← Dk+1

4: if v(P ) ≥ v(s) then
5: return P
6: else
7: return {s}
8: end if

The analysis of our algorithm relies on the classical modified greedy algorithm
(cf. [30]). We compare the packing of our policy, for each capacity, to the packing
obtained by the modified greedy algorithm instead of the actual optimum. As the
modified greedy is a 2-approximation, to show that our policy is 2-robust it is sufficient
to show that its packing is never worse than the one obtained by the modified greedy
algorithm. We briefly review the modified greedy algorithm.

Let d(i) = v(i)/l(i) denote the density of item i. The modified greedy algorithm
(MGreedy) for a set of items I and known knapsack capacity C first discards all
items that are larger than C from I. The remaining items are sorted in nonincreasing
order of their densities, breaking ties arbitrarily. The algorithm then either takes the
longest prefix P of the resulting sequence that still fits into capacity C or the first
item s that does not fit anymore, depending on which of the two has a greater value;
see Algorithm 1 for a formal description.

We evaluate the quality of our universal policy by comparing it for every capacity
with the solution of MGreedy. This analysis suffices because of the following well-
known property of the modified greedy algorithm.

Theorem 3.1 (cf. [30]). For every instance (I, C) of the standard knapsack prob-
lem with known capacity, v(Opt(I, C)) ≤ 2 · v(MGreedy(I, C)).

For our analysis, it is helpful to fix the tie-breaking rule under which MGreedy
initially sorts the items. To this end, we assume that there is a bijection t : I →
{1, 2, . . . , n} that maps every item i ∈ I to a tie-breaking index t(i) and that the
modified greedy algorithm initially sorts the items decreasingly with respect to the
tuple d̃(·) = (d(·), t(·)), i.e., the items are sorted nonincreasingly by density, and
whenever two items have the same density, they are sorted by decreasing tie-breaking
index. In the following, for two items i, j, we write d̃(i) � d̃(j) if and only if d(i) >
d(j), or d(i) = d(j) and t(i) > t(j), and say that i has higher density than j.

We are now ready to describe our algorithm Universal (Algorithm 2) that pro-
duces a universal policy inspired by the behavior of MGreedy but with the crucial
difference that the capacity is unknown. Our algorithm starts with an empty permu-
tation and then inserts items at specific places in the permutation. When inserting
items into the permutation, we use the following wording. Let Π = (Π1, . . . ,Πk) be
a permutation of k items and let i be an item not contained in Π. When we say that
we insert item i directly in front of item Πj this means that after the insertion, the
permutation is Π′ = (Π1, . . . ,Πj−1, i,Πj , . . . ,Πk). In contrast, after inserting item i
in front of all items, the permutation is Π′ = (i,Π1, . . . ,Πk). For a permutation
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Algorithm 2. Universal(I).

Input: set of items I
Output: sequence of items Π

1: L← 〈items in I sorted by nondecreasing size〉
2: Π(0) ← ∅
3: for r ← 1, . . . , n do
4: if Lr is a swap item then
5: Π(r) ← (Lr,Π

(r−1))
6: else
7: j ← 1

8: while j ≤ |Π(r−1)| and d̃(Π
(r−1)
j ) � d̃(Lr) do

9: j ← j + 1
10: end while
11: Π(r) ← (Π

(r−1)
1 , . . . ,Π

(r−1)
j−1 , Lr,Π

(r−1)
j , . . .)

12: end if
13: end for
14: return Π(n)

Π = (Π1, . . . ,Πk), we also say that item Πj, j ∈ {1, . . . , k − 1} is directly in front of
item Πj+1 and that item Πj+1 is directly behind item Πj. We also say that the items
Π1, . . . ,Πj−1 are in front of item Πj and the items Πj+1, . . . ,Πk are behind item Πj.

To get some intuition for our universal algorithm, recall that for a given capacity,
MGreedy has to make the choice between taking the maximum prefix in the density
order or a single item of greater value. For a different capacity, the prefix will only
be shorter/longer but the single item might be a completely different one. Now, the
key to our universal algorithm is that we identify all items which might be a crucial
single item for some capacity. We call an item i a swap item if it is worth more than
all denser items that are not larger than i. Formally, we define it as follows.

Definition 3.2 (swap item). Item i is a swap item if and only if

v(i) > v({j ∈ I | l(j) ≤ l(i) and d̃(j) > d̃i}).

Note that whenever MGreedy for a given capacity and a given tie-breaking rule
chooses a single item instead of the prefix of densest items, then this item is a swap
item as defined above.

Our algorithm, Universal, works as follows. First, we identify all swap items.
Then we start with an empty permutation and consider all items for insertion in order
of nondecreasing sizes. We place a swap item in front of all items that are already in
the permutation, and we place any other item directly in front of the first item in the
permutation that has a lower density; see Algorithm 2.

While it is important for our analysis that ties between items of equal density are
broken according to the fixed tie-breaking rule given by d̃, it does not matter how ties
are handled between items of equal size.

We prove the following result.

Theorem 3.3. The algorithm Universal constructs a universal policy of robust-
ness factor 2.

Before we prove this theorem, we analyze the structure of the permutation pro-
duced by Universal in terms of density, size, and value. First, we prove that the
item directly behind a nonswap item Πk has lower density than Πk.
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Lemma 3.4. For a sequence Π returned by Universal, we have d̃(Πk) � d̃(Πk+1)
for every nonswap item Πk, 1 ≤ k < n.

Proof. For j ∈ {k, k + 1}, let r(j) ∈ {1, . . . , n} be the index of the iteration in
which Universal inserts Πj into Π. We distinguish two cases.

If r(k) < r(k + 1), then the item Πk+1 cannot be a swap item, since it would
appear in front of the item Πk if it was. As each nonswap item is inserted into Π such
that all items in front of it are larger with respect to d̃, the claim follows.

If r(k) > r(k+ 1), since it is not a swap item, Πk is put in front of Πk+1 because
it has a higher density.

We prove that no item in front of a swap item Πk has smaller size than Πk.

Lemma 3.5. For a permutation Π returned by Universal, we have l(Πj) ≥ l(Πk)
for every swap item Πk, 1 < k ≤ n, and every other item Πj , 1 ≤ j < k.

Proof. Since Πk is a swap item, it stands in front of all items inserted earlier into
Π. Hence, all items that appear in front of Πk in Π have been inserted in a later
iteration of Universal. Since Universal processes items in order of nondecreasing
sizes, we have l(Πj) ≥ l(Πk).

We prove that no item in front of a swap item Πk has smaller value than Πk.

Lemma 3.6. For a permutation Π returned by Universal, we have v(Πj) ≥
v(Πk) for every swap item Πk, 1 < k ≤ n, and every other item Πj , 1 ≤ j < k.

Proof. We distinguish three cases.
First case: Πj is a swap item and d̃(Πj) � d̃(Πk). By Lemma 3.5, we have

l(Πj) ≥ l(Πk), and the claim trivially holds.

Second case: Πj is a swap item and d̃(Πj) ≺ d̃(Πk). Since Πj is a swap item,

(1) v(Πj) > v({i ∈ I | l(i) ≤ l(Πj) and d̃(i) � d̃(Πj)}).

Since, by Lemma 3.5, l(Πj) ≥ l(Πk), item Πk is included in the set on the right-
hand side of (1). We conclude that v(Πj) ≥ v(Πk).

Third case: Πj is not a swap item. Let Πj′ be the first swap item behind Πj

in Π, i.e.,

j′ = min{i ∈ {j + 1, . . . , k} | Πi is a swap item}.

Note that the minimum is well-defined as Πk is a swap item. The analysis of the first
two cases implies that v(Πj′) ≥ v(Πk). By Lemma 3.4 we have d̃(Πj) � d̃(Πj+1) �
· · · � d̃(Πj′), and by Lemma 3.5 we have l(Πj) ≥ l(Πj′). Hence, v(Πj) ≥ v(Πj′) ≥
v(Πk).

Finally, the next lemma gives a legitimation for the violation of the density order
in the output permutation. Essentially, whenever an item is in front of denser items,
we guarantee that it is worth at least as much as all of them combined.

Lemma 3.7. For a permutation Π returned by Universal, we have

v(Πk) ≥ v
({

Πj | j > k and d̃(Πj) � d̃(Πk)
})

for every item Πk, 1 ≤ k < n.
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Proof. We distinguish whether Πk is a swap item.
First case: Πk is a swap item. By definition,

v(Πk) > v
({

Πj | l(Πj) ≤ l(Πk) and d̃(Πj) � d̃(Πk)
})
.

Since items whose size is strictly larger than l(Πk) are inserted into Π at a later
iteration of Universal, they can end up behind Πk only if they are smaller with
respect to d̃. Hence,

{Πj | j > k and d̃(Πj) � d̃(Πk)} ⊆ {Πj | l(Πj) ≤ l(Πk) and d̃(Πj) � d̃(Πk)},

and thus v(Πk) > v({Πj | j > k and d̃(Πj) � d̃(Πk)}), as claimed.
Second case: Πk is not a swap item. Let Πk′ be the first swap item behind it in

Π. If no such item exists, the claim holds by Lemma 3.4, since{
Πj | j > k and d̃(Πj) � d̃(Πk)

}
= ∅.

Otherwise, by Lemma 3.4, we obtain d̃(Πk) � d̃(Πk+1) � · · · � d̃(Πk′) and hence

{Πj | j > k and d̃(Πj) � d̃(Πk)} = {Πj | j > k′ and d̃(Πj) � d̃(Πk)}
⊆ {Πj | j > k′ and d̃(Πj) � d̃(Πk′)}.

Consequently, and by the argument above for swap items,

v(Πk′) > v({Πj | j > k′ and d̃(Πj) � d̃(Πk′)})
≥ v({Πj | j > k and d̃(Πj) > d̃(Πk)})).

Finally, by Lemma 3.6, we have v(Πk) ≥ v(Πk′) ≥ v({Πj | j > k and d̃(Πj) �
d̃(Πk)}).

We now prove Theorem 3.3.

Proof of Theorem 3.3. We show that for every item set I, the permutation Π re-
turned by Universal satisfies v(Opt(I, C)) ≤ 2v(Π(C)) for every capacity C ≤ l(I).
By Theorem 3.1, it suffices to show v(Π(C)) ≥ v(MGreedy(I, C)) for all capacities.
We distinguish between capacities for which MGreedy outputs the maximal prefix of
the densest items that fits the capacity, and capacities for which MGreedy outputs
the first item after this prefix. We proceed to distinguish these two cases.

First case: MGreedy outputs the maximal prefix of the densest items that still
fits the capacity. Let G+ = MGreedy(I, C) \ Π(C) be the set of items packed by
MGreedy for capacity C that are not packed by the permutation Π. Similarly, let
U+ = Π(C) \MGreedy(I, C). If G+ = ∅, then v(Π(C)) ≥ v(MGreedy(I, C)) and
we are done. Suppose now that G+ 6= ∅. Then, also U+ 6= ∅, since Π(C) is inclusion
maximal. For all items i ∈ U+, we have l(i) ≤ C and i /∈ MGreedy(I, C). As
MGreedy(I, C) is a maximal prefix of the densest items for capacity C, we have
d̃(i) ≺ d̃(i′) for all i ∈ U+ and i′ ∈ G+. By definition of Π(C) and since U+ 6= ∅, we
also have k = min{j | Πj ∈ U+} < min{k′ | Πk′ ∈ G+}, i.e., the first item Πk ∈ U+

in Π is encountered before every item from G+. It follows that

G+ ⊆
{

Πj | j > k and d̃(Πj) � d̃(Πk)
)}
.
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By Lemma 3.7, v(Πk) ≥ v(G+), and hence we obtain

v(Π(C)) = v
(
Π(C) ∩MGreedy(I, C)

)
+ v(U+)

≥ v
(
Π(C) ∩MGreedy(I, C)

)
+ v(Πk)

≥ v
(
Π(C) ∩MGreedy(I, C)

)
+ v(G+) = v(MGreedy(I, C)).

Second case: MGreedy outputs the first item after the maximal prefix of the
densest items. Let {Πk} = MGreedy(I, C) be item returned by the modified greedy
algorithm. Then, Π(C) contains at least one item Πj with j ≤ k. If j = k,
then trivially v(Π(C)) ≥ v(MGreedy(I, C)). Otherwise, by Lemma 3.6, we have
v(Π(C)) ≥ v(Πj) ≥ v(Πk) = v(MGreedy(I, C)).

While it is obvious that Universal runs in polynomial time, we show that it can
be modified to run in time Θ(n log n).

Theorem 3.8. The algorithm Universal (Algorithm 2) can be implemented to
run in time Θ(n log n).

Proof. In a first phase the algorithm identifies all swap items; in a second phase it
constructs the output permutation Π. We show that each phase can be implemented
to run in time Θ(n log n).

For the first phase, recall that an item is a swap item if and only if it is worth
more than all smaller items of higher density combined. To determine all swap items,
we first sort the items decreasing by density. Then we insert the items in this order
into a balanced search tree which itself is ordered by size. As additional information,
in each tree node j we store the total value of items in both subtrees below j. While
traversing the search tree to insert an item j this additional information allows us
to calculate the sum of values of all smaller and denser (i.e., already inserted) items.
Thus, by inserting an item into the tree we can determine whether it is a swap item.
Sorting, inserting, and updating the additional information takes Θ(n log n) time.

We construct the output permutation Π by iterating over the items in order of
increasing size, as in Algorithm 2. We maintain a list Λ of balanced search trees, each
ordered by density. Except for the last tree in Λ, every tree contains exactly one swap
item, which is the item of the smallest density in the tree. The density of a tree is
the density of this swap item (or 0 if the tree has no swap item). Each tree stores the
items in Π in front of the corresponding swap item (if it exists) and behind the swap
item of the preceding tree in Λ (if it exists). We start with a list containing a single
tree with no corresponding swap item, which eventually holds all nonswap items that
end up behind the last swap item in Π. Whenever we encounter a new swap item, we
add a new tree consisting of only this swap item to the front of Λ. For each nonswap
item, we have to find the correct tree to insert it into. Once we know the tree, we
can determine the position at which to insert the item into the tree, and thus in Π,
in time Θ(log n) simply by searching the tree.

To complete the proof, we need an efficient way to find the correct tree in Λ for
a nonswap item. For this purpose, we maintain a sublist Λ′ of Λ that contains only
those trees that are needed for the remainder of the algorithm. Whenever a new swap
item s adds a tree to the front of Λ, we also add the tree to the front of Λ′. Observe
that from this point on no items are inserted into trees of a higher density than s.
Hence, before inserting the tree of s to Λ′, we may remove trees of higher density
from the front of Λ′. This guarantees that Λ′ remains sorted by density. We can thus
implement Λ′ as a balanced search tree ordered by density. This way, we can find the
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correct tree for each nonswap item in time Θ(log n). Since every tree is removed at
most once from Λ′, the amortized cost for maintaining the sublist is constant for each
swap item.

Since Universal requires n iterations, the total running time is Θ(n log n).

The running time of our algorithm is best possible in the sense that we can use it
for sorting a set of n elements at a running time that is best possible for comparison-
based algorithms; see, e.g., [9].

Theorem 3.9. Every algorithm that computes a universal policy with constant
robustness factor α ≥ 2 can be used as a sorting algorithm with the same running
time.

Proof. Fix α ≥ 2 arbitrarily. For a given set of n unique nonnegative integers
a1, a2, . . . , an to be sorted, we construct (in linear time) an instance of the knapsack
problem with unknown capacity. For each integer ai, i ∈ {1, . . . , n}, we have an item
of size and value l(i) = v(i) = α2ai . Notice that the exponential increase in the
encoding length does not affect the running time of a universal policy as we make the
standard assumption of the arithmetic running time model that arithmetic operations
can be performed in constant time. In this model, the running time depends only on n.

It suffices to show that an α-robust universal policy for this instance must place
elements in decreasing order of sizes. To that end, we consider capacities l(i), i ∈
{1, . . . , n} and show that for each of these capacities, the corresponding item i must
be in the knapsack since no other subset has sufficiently large total value. For any
i ∈ {1, . . . , n}, let S(i) = {i′ | l(i′) < l(i)} denote the set of all items smaller than
item i, and let i∗ be the item with maximum size in S(i). Then, 2ai∗ + 1 ≤ 2ai − 1
and thus ∑

i′∈Si

v(i′) =
∑
i′∈Si

α2ai′ ≤
2ai∗∑
j=0

αj =
α2ai∗+1 − 1

α− 1
< α2ai−1 =

v(i)

α
.

Any α-robust algorithm thus needs to ensure that item i is indeed in the knapsack for
capacity l(i), and, hence, item i must be in front every item in S(i) in its universal
solution. Since this must hold for every item i, the universal solution must be sorted
decreasingly. In other words, we can directly deduce the solution for the sorting
problem from an α-robust universal solution.

We now give a general lower bound on the robustness factor of any policy for
the knapsack problem with unknown capacity. This shows that Universal is best
possible in terms of robustness factor and running time in the sense of Theorem 3.9.

Theorem 3.10. For every δ > 0, there are instances of the knapsack problem
with unknown capacity where no policy achieves a robustness factor of 2− δ.

Proof. We give a family of instances, one for each size n ≥ 3. We ensure that for
every item i of the instance of size n, there is a capacity C, such that packing item i
first can only lead to a solution that is worse than Opt(I, C) by a factor of at least
(2− 4/n). This completes the proof, as the factor approaches 2 for increasing values
of n. The instance of size n is given by I = {1, 2, . . . , n} with l(i) = Fn + Fi − 1, and
v(i) = 1+ i

n , where Fi denotes the ith Fibonacci number (F1 = 1, F2 = 1, F3 = 2, . . .).
We need to show that no matter which item is tried first (i.e., no matter which item

is the root of the policy), there is a capacity for which this choice ruins the solution.
Observe that both values and sizes of the items are strictly increasing. Assume that
item i ≥ 3 is packed first. Since the smallest item has size l(1) = Fn, for capacity
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Algorithm 3. UniversalUD(I).

Input: set of items I
Output: sequence of items Π

1: L← 〈items in I sorted such that L1 ≺ · · · ≺ Ln〉
2: Π(0) ← ∅
3: for r ← 1, . . . , n do
4: j ← 1

5: while j ≤ |Π(r−1)| and v(Lr) < ϕv(Π
(r−1)
j ) do

6: j ← j + 1
7: end while
8: Π(r) ← (Π

(r−1)
1 , . . . ,Π

(r−1)
j−1 , Lr,Π

(r−1)
j , . . .)

9: end for
10: return Π(n)

Ci = 2Fn + Fi − 2 < 2Fn + Fi − 1 = l(1) + l(i), no additional item fits the knapsack.
However, the unique optimum solution in this case is Opt(I, Ci) = {i − 1, i − 2}.
These two items fit the knapsack, as l(i − 1) + l(i − 2) = 2Fn + Fi−1 + Fi−2 − 2 =
2Fn + Fi − 2 = Ci. By definition,

v(i− 1) + v(i− 2)

v(i)
=

2n+ 2i− 3

n+ i
= 2− 3

n+ i
≥ 2− 3

n
.

Thus, policies that first pack item i ≥ 3 cannot attain a robustness factor better than
2− 3/n.

Now, assume that one of the two smallest items is packed first. For capacity
C1,2 = l(n) = 2Fn − 1 < 2Fn = l(1) + l(2), no additional item fits the knapsack.
The unique optimum solution, however, is to pack item n. It remains to compute the
ratios

v(n)

v(1)
>
v(n)

v(2)
=

2n

n+ 2
= 2− 4

n+ 2
> 2− 4

n
.

Hence, policies that first pack item 1 or item 2 do not achieve a robustness factor
better than 2− 4/n.

4. Unit densities. In this section we restrict ourselves to instances of the obliv-
ious knapsack problem, where all items have unit density, i.e., v(i) = l(i) for all
items i ∈ I. For two items i, j ∈ I we say that i is smaller than j and write i ≺ j if
v(i) < v(j), or v(i) = v(j) and t(i) < t(j), where t is the tie-breaking index introduced
in section 3. We give an algorithm UniversalUD (cf. Algorithm 3) that produces
a universal policy tailored to achieve the best-possible robustness factor equal to the
golden ratio ϕ ≈ 1.618. The algorithm considers the items from the smallest to the
largest and inserts each item into the output sequence as far to the end as possi-
ble, such that the item is not preceded by other items that are more than a factor ϕ
smaller. Intuitively, the algorithm tries as much as possible to keep the resulting order
sorted increasingly by size; only when an item dominates another item by a factor of
at least ϕ does the algorithm ensure that it precedes this item in the final sequence.
Note that even though ϕ is irrational, for rationals a, b the condition a < ϕb can be
tested efficiently by testing the equivalent condition a/b < 1 + b/a.

Theorem 4.1. The algorithm UniversalUD constructs a universal policy of ro-
bustness factor ϕ when all items have unit density.
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Proof. Given an instance I of the knapsack problem with unknown capacity with
unit densities and any capacity C ≤ v(I), we compare the packing Π(C) that results
from the solution Π = UniversalUD(I) with an optimal packing Opt(I, C). We
define the set M of items in Π(C) for which at least one smaller item is not in Π(C),
i.e., more precisely, let M = {i ∈ Π(C) | ∃j ∈ I\Π(C) : j ≺ i}.

We first consider the case that M 6= ∅ and set i = min≺M to be the smallest
item in M with respect to ≺. Consider the iteration r of UniversalUD in which i is
inserted into Π, i.e., i = Lr. By definition of M , there is an item j ≺ i with j /∈ Π(C).
Let j be the first such item in Π. Since j ≺ i, we have j ∈ Π(r). From i ∈ Π(C) and
j /∈ Π(C), it follows that i precedes j in Π (and thus in Π(r)). Let i′ be the item directly
preceding j in Π(r). If i′ = i, i was compared with j when it was inserted into Π(r),
with the result that v(i) ≥ ϕv(j) and thus v(Π(C)) ≥ ϕv(j). If i′ 6= i, by definition of
j, we still have i′ ∈ Π(C). Also, either i′ � j and thus v(i′) ≥ v(j), or j was compared
with i′ when it was inserted into Π in an earlier iteration of UniversalUD, with the
result that v(i′) > 1

ϕv(j). Again, v(Π(C)) ≥ v(i) + v(i′) > v(j) + 1
ϕv(j) = ϕv(j).

In both cases it follows from j /∈ Π(C) that v(Opt(I, C)) ≤ C < v(Π(C)) + v(j),
and using v(j) ≤ 1

ϕv(Π(C)) we get

v(Opt(I, C))

v(Π(C))
<
v(Π(C)) + v(j)

v(Π(C))
< 1 +

1

ϕ
= ϕ.

Now, assume that M = ∅. This means that Π(C) consists of a prefix of L (the
smallest items). Let i1 � · · · � ik be the items in Π(C) \ Opt(I, C), and let j1 �
· · · � jl be the items in Opt(I, C) \Π(C). As Π(C) consists of a prefix of L, we have
|Π(C)| ≥ |Opt(I, C)| and thus k ≥ l. If k = 0, the claim trivially holds. Otherwise,
since M is empty, we have jl � i1. It suffices to show v(jh) ≤ ϕv(ih) for all h ≤ l.
To this end, we consider any fixed h ≤ l. From v({i1, . . . , ih−1}) ≤ v({j1, . . . , jh−1})
it follows that

v(jh) ≤ v(Opt(I, C))− v({j1, . . . , jh−1}) ≤ C − v({i1, . . . , ih−1}).

This implies that jh cannot precede all items of {ih, . . . , ik} in Π, as jh /∈ Π(C).
Hence, there is an item i′′ ∈ {ih, . . . , ik} that precedes jh in Π. Since jh � i′′, in the
iteration when UniversalUD inserted jh into Π, i′′ was already present. From the
fact that i′′ ended up preceding jh it follows that jk was compared with i′′ and thus
v(jh) < ϕv(i′′) ≤ ϕv(ih). We obtain

v(Opt(I, C))

v(Π(C))
≤ v(Opt(I, C) \Π(C))

v(Π(C) \Opt(I, C))
=

∑l
h=1 v(jh)∑k
h=1 v(ih)

≤
∑l
h=1 ϕv(ih)∑l
h=1 v(ih)

= ϕ.

A naive implementation of UniversalUD runs in time Θ(n2). We improve this
running time to Θ(n log n). Observe that this is still best possible in the sense of
Theorem 3.9, since the proof only used unit densities.

Theorem 4.2. The algorithm UniversalUD can be implemented to run in time
Θ(n log n).

Proof. To improve the running time from the naive Θ(n2), we maintain a balanced
search tree T that stores a subset of the items in Π sorted decreasingly by their sizes.
Whenever an item gets inserted to the front of Π, and only then, we also insert it
into T . This way, the items in T remain sorted by their positions in Π throughout the
execution of the algorithm. We need an efficient way of finding, in each iteration r
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of UniversalUD (Algorithm 3), the first item i in Π(r) for which v(Lr) ≥ ϕv(i), or
detecting that no such item exists. We claim that if such an item exists, it is stored
in T and can thus be found in time Θ(log n).

It suffices to show that for every item i ∈ T and its predecessor j in T we have
that none of the items that precede i in Π are smaller than j. To see this, we argue
that none of the items between j and i in Π are smaller than j. We can then repeat
the argument for j and its predecessor j′, etc. For the sake of contradiction, let i′

be the first item between j and i with v(i′) < v(j). None of the items between j
and i′ are smaller than j, hence both j and i′ are inserted into Π earlier than all of
them. Let r be the iteration in which j is inserted into Π. Since i′ is inserted earlier
into Π, and since j is inserted to the front of Π(r), i′ is at the front of Π(r−1). This is
a contradiction to i′ not being in T .

We now establish that UniversalUD is best possible, even if we permit non-
universal policies.

Theorem 4.3. There are instances of the knapsack problem with unknown capac-
ity where no policy achieves a robustness factor of ϕ − δ, for any δ > 0, even when
all items have unit density.

Proof. Consider an instance of the knapsack problem with unknown capacity with
five items of unit density and values equal to v1 = 1 + ε, v2 = 1 + ε, v3 = 2/ϕ, v4 =
1 + 1/ϕ2, v5 = ϕ, for sufficiently small ε > 0, i.e., ε < δ/(ϕ − δ). We show that
no algorithm achieves a robustness factor of ϕ − δ for this instance. To this end we
consider an arbitrary algorithm A and distinguish different cases depending on which
item the algorithm tries to pack first.

(a) If A tries item 1 or item 2 first, it cannot fit any additional item for a capacity
equal to v5 = ϕ, as even v1 + v2 > ϕ. For this capacity A is worse by a factor
of ϕ/(1 + ε) > ϕ− δ than the optimum solution, which packs item 5.

(b) If A tries item 3 first, it cannot fit any additional item for a capacity equal
to v1 + v2 = 2 + 2ε, as even v3 + v1 > 2 + 2ε. For this capacity A is worse by
a factor of (1 + ε)ϕ > ϕ− δ than the optimum solution which packs items 1
and 2.

(c) If A tries item 4 first, it cannot fit any additional item for a capacity equal
to v2 + v3 = 1 + 2/ϕ+ ε, as even v4 + v1 = 2 + 1/ϕ2 + ε > 1 + 2/ϕ+ ε. For

this capacity A is worse by a factor of 1+2/ϕ+ε
1+1/ϕ2 > ϕ+1/ϕ

1+1/ϕ2 = ϕ > ϕ − δ than

the optimum solution which packs items 2 and 3.
(d) If A tries item 5 first, it cannot fit any additional item for a capacity equal

to v3 + v4 = ϕ + 1, as even v5 + v1 = ϕ + 1 + ε > ϕ + 1. For this capacity
A is worse by a factor of ϕ+1

ϕ = ϕ > ϕ− δ than the optimum solution which
packs items 3 and 4.

5. Hardness. Although we can always find a 2-robust universal policy in poly-
nomial time, we show in this section that, for any fixed α ∈ (1,∞), it is intractable to
decide whether a given universal policy is α-robust. This hardness result also holds
for instances with unit densities when α is part of the input. As the final—and ar-
guably the most interesting—result of this section, we establish coNP-hardness of the
problem to decide for a given instance and given α > 1, whether the instance admits
a universal policy with robustness factor α. All proofs rely on the hardness of the
following version of SubsetSum.
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Lemma 5.1. Let W = {w1, w2, . . . , wn} be a set of positive integer weights and
T ≤

∑n
k=1 wk be a target sum. The problem of deciding whether there is a subset

U ⊆W with
∑
w∈U w = T is NP-complete, even when

1. T = 2k for some integer k ≥ 3,
2. all weights are in the interval [2, T/2),
3. for every weight w ∈W it holds that |2k − w| ≥ 2 for all k ∈ N.

Proof. Without properties 1 to 3, the SubsetSum problem is well known to be
NP-complete (e.g., Garey and Johnson [16]). Given an instance (W,T ) of this classical
problem, we construct an equivalent instance with Properties 1 to 3. We first multiply
all weights in W as well as the target sum T with 6 to obtain an equivalent instance
(W ′, T ′). In the new instance, all weights are even but not a power of 2, hence
they have distance at least 2 to the closest power of 2. We set T ′′ = 2σ, with
σ =

⌈
log2(T ′ +

∑
w′∈W ′ w

′)
⌉

+ 2 and define two new weights

u =

⌊
T ′′ − T ′

2

⌋
, w =

⌈
T ′′ − T ′

2

⌉
.

We set W ′′ = W ′∪{u,w} to obtain the final instance (W ′′, T ′′). Properties 1 and 2 are
satisfied by construction. Also, any solution to the instance (W ′′, T ′′) has to include
both u and w, since T ′′ > 4 ·

∑
w′∈W ′ w

′. Hence, the instance remains equivalent to
the original instance (W,T ). Since T ′′ − T ′ > 3T ′′/4, and since T ′′ is a power of two,
the new items u and w are far enough from the closest power of 2 (which either is
T ′′/2 or T ′′/4).

We first show that it is intractable to determine the robustness factor of a given
universal policy.

Theorem 5.2. For any fixed and polynomially representable α > 1 it is coNP-
complete to decide whether a given universal policy for the knapsack problem with
unknown capacity is α-robust.

Proof. Regarding the membership in coNP, note that if a universal policy Π is
not α-robust, then there is a capacity C such that v(Π(C)) < v(Opt(I, C))/α. Thus,
C together with Opt(I, C) is a certificate for Π not being an α-robust solution.

For the proof of coNP-hardness, we reduce from the variant of SubsetSum speci-
fied in Lemma 5.1. An instance of this problem is given by a set W = {w1, w2, . . . , wn}
of positive integer weights in the range [2, T/2) and a target sum T = 2k for some
integer k ≥ 3. Let α > 1 be polynomially representable. We may assume without loss
of generality that α > T

T−1 as we can ensure this property by multiplying T and all
items in W by a sufficiently large power of 2.

We construct an instance I and a sequence Π such that Π is an α-robust universal
policy for I if and only if the instance of SubsetSum given by W and T has no
solution. To this end, we introduce for each weight w ∈ W an item with value and
size equal to w. In this way, the optimal knapsack solution for capacity T is at least
T if the instance of SubsetSum has a solution. Furthermore, we introduce a set of
additional items that make sure that the robustness factor for all capacities except T
is at most α while maintaining the property that the optimal knapsack solution for
capacity T is strictly less than T if the instance of SubsetSum has no solution.

We now explain the construction of I and Π is detail. Let ε = α(T−1)−T
α(T−1)−1 , i.e.,

α = T−ε
(T−1)(1−ε) . Note that ε ∈ (0, 1) by our assumptions on T and α. For each

weight w ∈ W , we introduce an item iw with l(iw) = v(iw) = w. The set of these
items is called regular and is denoted by Ireg. Furthermore, we introduce a set of
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auxiliary items. Let m = log2 T − 1. Then, for each k ∈ {0, 1, . . . ,m}, we introduce
an auxiliary item jk with size l(jk) = 2k and value v(jk) = 2k (1−ε). Denoting the set
of auxiliary items by Iaux, we have l(Iaux) =

∑m
k=0 2k = T − 1. Finally, we introduce

a dummy item d with l(d) = T + 1 and

v(d) =
1− ε
ε

(v(Iaux) + v(Ireg)) =
1− ε
ε

(
(T − 1)(1− ε) +

∑
w∈W

w

)
.

The universal policy Π is defined as Π = (d, jm, jm−1, . . . , j0, iwn
, iwn−1

, . . . , iw1
). The

hardness proof relies on the claim that Π is a 1
1−ε -robust universal policy for all

capacities except T , i.e.,

(2) v(Opt(I, C)) ≤ 1

1− ε
v(Π(C)) for all C 6= T.

As all item sizes are integer, it suffices to consider integer capacities. To prove
(2), let us first consider capacities C ≤ T − 1. Since the density of each item with
size not larger than T − 1 is bounded from above by 1, it is sufficient to show that
v(Π(C)) = C(1−ε). To this end, we show that every capacity C ∈ {1, . . . , 2m+1−1 =
T − 1} is packed without a gap by the exponentially decreasing sequence of items
jm, jm−1, . . . , j0. We prove this statement by induction over m. For m = 0, the
statement is true, since there is only a single item with length 1, which packs the
capacity C = 1 optimally. Now assume that the statement is true for all m′ < m
and consider the sequence jm, jm−1, . . . , j0. We distinguish two cases. For capacities
C ∈ {2m, . . . , 2m+1 − 1}, item jm is packed and, using the induction hypothesis, the
residual capacity C̃ = C−2m ≤ 2m+1−1−2m ≤ 2m−1 can be packed without a gap
by the remaining sequence jm−1, jm−2, . . . , j0. For capacities C < 2m, item jm is not
packed, and, again using the induction hypothesis, we derive that C can be packed
by jm−1, . . . , j0. This completes the proof of our claim for C ≤ T − 1.

Let us now consider our claim for capacities C ≥ T + 1. In this case, d ∈ Π(C)
and we can trivially bound the robustness factor of Π by observing that

v(Opt(I, C))

v(Π(C))
≤ v(I)

v(d)
= 1 +

(T − 1)(1− ε) +
∑
w∈W w

v(d)
= 1 +

ε

1− ε
=

1

1− ε
.

We proceed to show that Π is an α-robust universal policy if and only if the
instance of SubsetSum given by W and T has no solution. Let us first assume that
the instance of SubsetSum has no solution. We prove that Π is α-robust. For all
capacities except T this is clear from claim (2). For capacity T , we argue as follows:
As there is no packing of T with items of density 1, we bound v(Opt(I, T )) from
above by (T − 1) + (1− ε), whereas Π packs all auxiliary items. We get

v(Opt(I, T ))

v(Π(T ))
≤ (T − 1) + (1− ε)

(T − 1)(1− ε)
= α.

Now, assume that the instance of SubsetSum has a solution. Then, v(Opt(T )) =
T and thus

v(Opt(I, T ))

v(Π(T ))
=

T

(T − 1)(1− ε)
> α,

and we conclude that Π is not α-robust.



1492 Y. DISSER, M. KLIMM, N. MEGOW, AND S. STILLER

We give a result similar to Theorem 5.2 for unit densities. Note that this time we
require α to be part of the input.

Theorem 5.3. It is coNP-complete to decide whether, for given α > 1, a given
universal policy for the oblivious knapsack problem is α-robust, even when all items
have unit density.

Proof. Membership in coNP follows from Theorem 5.2. To prove hardness, we
again reduce from SubsetSum (Lemma 5.1) using a similar construction as in the
proof of Theorem 5.2. Let the set W = {w1, . . . , wn} of weights and the target sum
T ≥ 8 of an instance of SubsetSum be given, with w1 ≤ w2 ≤ · · · ≤ wn. We proceed
to explain the construction of a universal policy Π for which the decision whether Π
is α-robust is coNP-hard, for some α > 1.

For each weight w ∈W , we introduce an item iw with value v(iw) = w. The set of
these items is called regular and is denoted by Ireg. Let m = log2 T −1 and ε = 1/T 2.
For each k ∈ {0, . . . ,m}, we introduce an auxiliary item jk with value v(jk) = 2k(1−ε).
Denoting the set of auxiliary items by Iaux, we have v(Iaux) = (1 − ε)

∑m
k=0 2k =

(1−ε)(T−1). We further introduce a set of dummy items Idum = {d0, . . . , dm′}, where
m′ = dlog2 wne. We set v(dk) = T ·2k for each k ∈ {1, . . . ,m′}, and v(d0) = T+ε. The

values of the dummy items sum up to v(Idum) = (T+ε)+T
∑m′

k=1 2k = T (2m
′+1−1)+ε.

In total, the sum of the values of all dummy and auxiliary items is

S = v(Iaux) + v(Idum) = (1− ε)(T − 1) + T (2m
′+1 − 1) + ε.(3)

Finally, we define the sequence Π as

Π = (dm′ , dm′−1, . . . , d0, jm, jm−1, . . . , j0, iwn , iwn−1 , . . . , iw1),

i.e., Π first tries to pack the dummy items in decreasing order, then the auxiliary
items in decreasing order, and finally the regular items in nonincreasing order. Let
α = T−ε

(1−ε)(T−1) . We proceed to prove the statement of the theorem by showing that

Π is an α-robust universal policy if and only if the instance (W,T ) of SubsetSum
has no solution. To this end, we first prove that Π is always an α-robust universal
policy for all capacities except the critical capacities in the interval

[
T − εT, T + ε

)
.

Then, we argue that Π is α-robust for the critical capacities if and only if the instance
(W,T ) of SubsetSum has no solution.

We start by proving that v(Π(C)) is within an α-fraction of v(Opt(C)) for all
capacities C ∈ [0, T − εT ). Since the regular items are of integer values and the values
of the auxiliary items each are an (1 − ε)-fraction of an integer, only capacities C
for which the ratio C/dCe is not smaller than 1 − ε can be packed without a gap.
Otherwise, the value of an optimal solution is bounded from above by bCc. For
capacities C ∈ [0, T − εT ), we obtain

(4) v(Opt(I, C)) ≤

{
C if C/dCe ≥ 1− ε,
bCc otherwise.

The value packed by Π is given by

(5) v(Π(C)) =

{
(1− ε)dCe if C/dCe ≥ 1− ε,
(1− ε)bCc otherwise.
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From (4) and (5) it follows that

v(Opt(I, C)) ≤ 1

1− ε
v(Π(C)) < αv(Π(C))(6)

for all C ∈ [0, T − εT ).
Next, we prove that Π is within an α-fraction of an optimal solution for all

capacities C ∈ [T + ε, S]. We distinguish two cases for each such capacity C.
First case: Iaux ⊂ Π(C), i.e., all auxiliary items are packed by Π. Since, in Π,

the dummy item d0 with value T +ε precedes all auxiliary items, and since C ≥ T +ε,
this case can occur only for capacities

(7) C ≥ v(d0) + v(Iaux) = T + ε+ (1− ε)(T − 1) = 2(T + ε)− (1 + εT ).

On the other hand, the gap C − v(Π(C)) is at most the gap left after trying all
dummy items and packing all auxiliary items, i.e., C − v(Π(C)) < v(d0)− v(Iaux) =
T + ε− (1− ε)(T − 1) = 1 + εT . Thus,

v(Opt(I, C))

v(Π(C))
<

C

C − (1 + εT )

(7)

≤ 2(T + ε)− (1 + εT )

2(T + ε)− 2(1 + εT )

=
(T + ε)− (1 + εT )/2

(T + ε)− (1 + εT )

T≥8
<

T − ε
(1− ε)(T − 1)

= α.

Second case: Iaux\Π(C) 6= ∅, i.e., not all auxiliary items are packed. This implies
that the gap C − v(Π(C)) is at most 1− ε. We calculate

v(Opt(I, C))

v(Π(C))
<

C

C − (1− ε)
C≥T+ε

≤ T + ε

T + 2ε− 1

ε=1/T 2

<
T − ε

(1− ε)(T − 1)
= α.

Next, we consider capacities C ∈ (S, v(Iaux ∪ Idum ∪ Ireg)]. For these capacities,
all dummy items and all auxiliary items are packed by Π. Using that the gap C−Π(C)
is at most wn, we obtain

v(Opt(I, C))

v(Π(C))
≤ C

C − wn
C>S
<

S

S − wn
S>T2m

′

<
T2m

′

T2m′ − wn

≤ Twn
Twn − wn

=
T

T − 1
=

T (1− ε)
(1− ε)(T − 1)

<
T − ε

(1− ε)(T − 1)
= α.

To finish the proof, let us finally consider the critical capacities C ∈
[
T−Tε, T+ε

)
.

We proceed to show that v(Π(C)) is within an α-fraction of v(Opt(C)) for all C ∈[
T −Tε, T + ε

)
if and only if (W,T ) does not have a solution. Let us first assume that

(W,T ) does not have a solution. Then, v(Opt(C)) ≤ T − ε and we obtain

v(Opt(I, C))

v(Π(C))
≤ T − ε

(T − 1)(1− ε)
= α

for all C ∈
[
T − Tε, T + ε

)
. If, on the other hand, (W,T ) has a solution, then

v(Opt(T )) = T , implying that

v(Opt(I, T ))

v(Π(T ))
=

T

(T − 1)(1− ε)
> α,

i.e., Π is not an α-robust universal policy.
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Finally, we prove that it is hard to decide whether a given instance admits an
α-robust universal policy when α is part of the input.

Theorem 5.4. It is coNP-hard to decide whether, for given α > 1, an instance
of the knapsack problem with unknown capacity admits an α-robust universal policy,
even when all items have unit density.

Proof. We again reduce from SubsetSum. To this end, let (W,T ) be an instance
of SubsetSum (Lemma 5.1), let I be the set of items constructed from (W,T ) in the
proof of Theorem 5.3, and let α = T−ε

(1−ε)(T−1) . We proceed to show that I admits

an α-robust universal policy if and only if the instance (W,T ) of SubsetSum has no
solution.

For the case that (W,T ) has no solution, an α-robust universal policy is con-
structed in the proof of Theorem 5.3. Thus, it suffices to show that if (W,T ) has a
solution, I does not admit an α-robust universal policy.

First, we claim that any α-robust universal policy Π contains the auxiliary items in
decreasing order. Otherwise, for the sake of contradiction, let j be the first auxiliary
item in Π that is preceded by a smaller auxiliary item i. Consider the capacity
C = v(j). As all dummy items are larger than T > C, only auxiliary and regular
items can be in Π(C). Since i precedes j, we have j /∈ Π(C).

If Π(C) contains only auxiliary items, since the sum of the values of the auxiliary
items smaller than v(j) is v(j)−(1−ε), we can use that j /∈ Π(C) to obtain v(Π(C)) ≤
v(j) − (1 − ε) < bv(j)c. If Π(C) contains a regular item i′, then C−v(i′)

dC−v(i′)e < 1 − ε,
and hence the gap C − v(i′) cannot be packed with a value more than bC − v(i′)c. It
follows that v(Π(C)) ≤ bv(j)c. In either case we have

v(Opt(I, C))

v(Π(C))
≥ v(j)

bv(j)c
v(j)≤(1−ε)T/2

≥ (1− ε)T/2
b(1− ε)T/2c

=
(1− ε)T/2
T/2− 1

ε=1/T 2

>
T − ε

(T − 1)(1− ε)
= α.

This is a contradiction to the assumption that Π is α-robust. We conclude that
the auxiliary items appear in Π in decreasing order.

Second, we claim that if Π(T ) contains a regular item, then Π is not α-robust.
By the argument above, we may assume that the auxiliary items in Π are ordered
decreasingly. Let i be the regular item contained in Π(T ) that appears first in Π.
Consider the capacity C = (v(i) + 1)(1 − ε). The auxiliary items that appear before
i in Π (if any) are ordered decreasingly. All of them must be larger than v(i); other-
wise, the gap left after packing them for capacity T would be too small to fit i. By
Lemma 5.1, we have that neither v(i) nor v(i) + 1 is a power of 2, and thus Π(C)
does not contain any of the auxiliary items preceding i. All regular items that appear
before i in Π are larger than v(i), since they are not in Π(T ). Hence, Π(C) does
not contain any regular items except i. We conclude that Π(C) = {i}. On the other
hand, C is an integer multiple of 1− ε and can be packed without a gap by auxiliary
items only. We obtain

v(Opt(C))

v(Π(C))
=

C

v(i)
=

(v(i) + 1)(1− ε)
v(i)

v(i)≤T/2
≥ (T/2 + 1)(1− ε)

T/2

ε=1/T 2

> α.
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We conclude that if an α-robust universal policy Π exists, then Π(T ) does not
contain regular items. It follows that Π(T ) = Iaux and, thus, v(Π(T )) = (T−1)(1−ε).
Using that the SubsetSum instance (W,T ) has a solution, we obtain

v(Opt(I, T ))

v(Π(T ))
≥ T

(T − 1)(1− ε)
> α,

which implies that no α-robust universal policy exists.

6. Final remarks. In this work, we presented universal sequencing algorithms
for the knapsack problem with unknown capacity in which nonfitting items can be dis-
carded. Our deterministic algorithms construct solutions which achieve best-possible
robustness factors. Surprisingly, best-possible robustness factors can already be ob-
tained by universal policies, i.e., policies that attempt to fix the items in a universal,
nonadaptive order. We showed how such orders can be computed in O(n log n).

It remains an interesting open question of how much the robustness factors could
be improved when allowing randomized strategies. Randomized universal sequences
have been derived recently in the context of scheduling [14], matching [32], cardinality-
constrained knapsack [29], and more general independence systems [32, 29]. Our
algorithms do not seem to directly suggest a natural randomized procedure.

Finally, we point out an interesting interpretation of the capacity-oblivious knap-
sack models with and without discarding items by using feasibility oracles. The
knapsack model without discarding items [21, 33] adds items until the first item does
not fit anymore, whereas in our model the packing would proceed after discarding the
not-fitting item. The latter behavior can be modeled by considering the model with-
out discarding items and giving access to a certain weak feasibility oracle. For a given
item, the feasibility oracle either returns the information that the item does not fit in
the knapsack, or it irrevocably packs the item if it fits. Our results transfer directly
to such a model. Along these lines one may ask for the gain when an algorithm is
granted access to an even stronger oracle that receives as input an item and returns
the information whether this item fits into the knapsack—without enforcing packing
the item. It is straightforward to verify that our lower bounds in Theorems 3.10
and 4.3 are still valid in this case. Thus, our algorithms are optimal even though they
utilize only a weak oracle. The case of even more powerful oracles that answer queries
for item sets is left for future research.
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