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OPTIMAL IMPARTIAL SELECTION∗

FELIX FISCHER† AND MAX KLIMM‡

Abstract. We study a fundamental problem in social choice theory, the selection of a member
of a set of agents based on impartial nominations by agents from that set. Studied previously by
Alon et al. [Proceedings of TARK, 2011, pp. 101–110] and by Holzman and Moulin [Econometrica,
81 (2013), pp. 173–196], this problem arises when representatives are selected from within a group
or when publishing or funding decisions are made based on a process of peer review. Our main
result concerns a randomized mechanism that in expectation selects an agent with at least half
the maximum number of nominations. This is best possible subject to impartiality and resolves a
conjecture of Alon et al. Further results are given for the case where some agent receives many
nominations and the case where each agent casts at least one nomination.
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1. Introduction. Consider a situation where members of a set of agents nom-
inate other agents from the set for a prize and the goal is to award the prize to an
agent who receives a large number of nominations. This situation arises naturally, for
example, when representatives are selected from within a group or when publishing
or funding decisions are made based on a process of peer review. While nominations
are at the discretion of the nominating agents, it is often reasonable to assume that
agents are impartial to the selection of others and will nominate who they think should
receive the prize as long as they cannot influence their own chances of receiving it.
Indeed, the assumption of impartiality was previously made, and justified, in the very
same setting [2, 14].

Formally, the situation can be captured by a directed graph with n vertices, one
for each agent, in which edges correspond to nominations. A selection mechanism
then chooses a vertex for any given graph, and impartiality requires that the chances
of a particular vertex to be chosen do not depend on its outgoing edges. It is easy
to see that an impartial mechanism cannot always select a vertex with maximum
indegree, corresponding to an agent with a maximum number of nominations, even
when n = 2. We therefore aim at maximizing the indegree of the selected vertex
relative to the maximum indegree and call a mechanism α-optimal, for α ≤ 1, if for
every graph the former is at least α times the latter. We focus here on the selection of
a single agent, but note that it is an interesting question whether optimal mechanisms
for selecting any given number of agents can be obtained directly from mechanisms
for selecting a single agent, or whether their design requires additional techniques.
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1.1. State of the art. Alon et al. [2] and Holzman and Moulin [14] showed in-
dependently that deterministic impartial mechanisms are extremely limited and must
sometimes select an agent with zero nominations even when agents are being nomi-
nated, or an agent with one nomination when another agent receives n−1 nominations.

On the other hand, Alon et al. proposed a simple mechanism that randomly par-
titions the agents into two sets S1 and S2 and selects an agent from S2 who among
agents in this set receives a maximum number of nominations by agents in S1. By
linearity of expectation the mechanism is at least 1/4-optimal, and a situation with
a single nomination shows that it cannot do better. A somewhat closer inspection
of situations with one or two nominations shows that no impartial mechanism can
be better than 1/2-optimal. While these bounds are almost trivial, no improvements
have been obtained that hold for general values of n, despite considerable efforts.
Improving the lower bound in fact appears just as difficult for the special case where
each agent submits exactly one nomination, as considered by Holzman and Moulin.
This is somewhat embarrassing, as the mechanism of Alon et al. should intuitively be
better than 1/4-optimal as soon as there is more than just a single nomination.

1.2. Our contribution. The analysis by Alon et al. of the 2-partition mecha-
nism is tight and yields a constant approximation ratio of 1/4, only a factor of two
away from the best possible one. Quite strikingly, however, the analysis does not reveal
much of the structure of the problem. It does not lead to stronger bounds for special
cases, like the setting with one nomination per agent studied by Holzman and Moulin,
and cannot be extended to more complicated mechanisms.

We attempt to close this gap in our understanding of the 2-partition mechanism
in section 3 by providing a lower bound on its performance relative to the maximum
indegree. We show that the performance of the mechanism increases monotonically
with the maximum indegree and converges to 1/2. As a direct consequence we obtain
a lower bound of 3/8 for the case where each agent submits at least one nomina-
tion. Our analysis uses a novel adversarial argument that allows us to abstract from
the underlying graph structure and isolate the critical aspects of difficult problem
instances.

More interestingly, the analysis extends to a natural generalization of the 2-
partition mechanism, which we discuss in section 4. This mechanism partitions the
set of agents into k > 2 sets and iteratively considers the nominations submitted by
agents in more and more of these sets, to fewer and fewer candidates in the remain-
ing sets. Intuitively this increases the probability that each individual nomination
will be counted, which is particularly important in the difficult cases with a small
overall number of nominations. Exactly how information from an earlier stage of the
mechanism can be used without a negative effect on later stages turns out to be some-
what intricate. A generalization of the adversarial analysis shows that the k-partition
mechanism is k−1

2k -optimal, which approaches the upper bound of 1/2 as k tends to
infinity. This implicitly provides an analysis of a limiting mechanism, discussed in
section 5, in which agents are considered one by one according to a random permuta-
tion. The existence of a 1/2-optimal impartial mechanism was in fact conjectured by
Alon et al. [2].

In section 7 we finally give the first nontrivial bounds for settings without absten-
tions, where each agent is required to cast at least one nomination. We show that the
permutation mechanism is at least 67/108-optimal and at most 2/3-optimal in this
case, and that no impartial mechanism can be more than 3/4-optimal.

Following the initial publication of our results, Bousquet, Norin, and Vetta [4]
studied the asymptotic performance of impartial mechanisms as the maximum
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number of nominations for any agent tends to infinity. They showed in particular
that the permutation mechanism is (3/4− ε)-optimal in this case and proposed a new
mechanism that is (1 − ε)-optimal. The proof of the former result uses the notion
of a balanced permutation and is quite technical, but we will see in section 6 that it
can also be obtained from our results by a straightforward application of Chebychev’s
inequality. Neither result provides an exact bound relative to the maximum number
of nominations, and such bounds may be rather difficult to obtain.

1.3. Related work and applications. Impartial decision making was first con-
sidered by de Clippel, Moulin, and Tideman [6], for the case of a divisible resource to
be shared among a set of agents. While the difference between a divisible resource
and the indivisible resource considered in this article disappears for randomized mech-
anisms, de Clippel, Moulin, and Tideman studied mechanisms with a more general
message space that allows for fractional nominations and at the same time aimed for
a different set of requirements to be achieved besides impartiality. Their results thus
do not have any obvious consequences for our setting.

Alon et al. [2] framed the problem considered here as one of designing approx-
imately optimal strategyproof mechanisms without payments, an agenda proposed
by Procaccia and Tennenholtz [16] and earlier by Dekel, Fischer, and Procaccia [7].
Strategyproofness requires that an agent maximizes its utility by truthfully revealing
its preferences and is equivalent to impartiality if the utility of an agent only depends
on its chances of being selected. While this assumption seems somewhat restrictive,
Alon et al. pointed out that their results in fact hold for any setting where agents
give their own selection priority over that of their nominees. The same is true for our
results as well.

Strategyproof selection is an important component of the peer review process for
scientific articles and project proposals. For its Sensors and Sensing Systems program,
the National Science Foundation recently introduced a mechanism in which propos-
als are reviewed by other applicants and acceptance of an applicant’s own proposal
depends in part on the extent to which the reviews submitted by the applicant agree
with other reviews of the same proposals. The specific mechanism used by the Na-
tional Science Foundation was originally proposed by Merrifield and Saari [15] in the
context of allocation of telescope time. Whether the mechanism provides the right
incentives in peer review is debatable, but its lack of impartiality, which in this case
is deliberate, would make it very hard to show any formal incentive properties. By
contrast, our results allow for a separation of preferences regarding an agent’s own
selection and those regarding the selection of others and can be combined in a straight-
forward way with peer prediction techniques (e.g., [17]) to provide strict incentives
for the truthful evaluation of other agents. The exact properties achievable by such
hybrid mechanisms and their use in peer review deserve further investigation.

Impartial selection is also more distantly related to work in distributed computing
on leader election (e.g., [1, 5, 9, 3]) and work on the manipulation of reputation
systems (e.g., [12]). Leader election seeks to guarantee the selection of a nonmalicious
agent in the presence of malicious agents trying to manipulate the selection process.
Work on reputation systems often considers models with more complex preference and
message spaces, where maximization of a one-dimensional objective does not suffice.

The 2-partition mechanism, finally, is reminiscent of random sampling in unlimited-
supply auctions [11, 13, 10] and combinatorial auctions [8]. It will be interesting to
see whether our more complicated mechanisms and analysis techniques can be applied
to these settings in a meaningful way.
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Open problems. While we completely solve the general case and make significant
progress for the special case without abstentions, several interesting directions for
future work remain. The most obvious question of course concerns the gap for settings
without abstentions between the lower bound of 67/108 provided by the permutation
mechanism and the upper bound of 3/4. It is unknown whether the lower bound is
tight, but a specialized upper bound of 2/3 for the permutation mechanism suggests
that the latter may not be optimal. Alon et al. considered the more general problem
of selecting any fixed number of agents and gave an α-optimal impartial mechanism
where α tends to 1 as the number of agents to be selected tends to infinity. The
question of optimal mechanisms for selecting a small number of agents is wide open.
We may finally ask whether optimality and anonymity are incompatible. This question
arises from the observation that the permutation mechanism considers agents one by
one and thus cannot process nominations anonymously. The k-partition mechanism,
on the other hand, allows nominations by agents from the same set to be considered
simultaneously and thus offers a certain level of anonymity, but it is not optimal.

2. Preliminaries. For n ∈ N, let

Gn =
{
(N,E) : N = {1, . . . , n}, E ⊆ (N ×N) \

⋃
i∈N

({i} × {i})
}

be the set of directed graphs with n vertices and no loops. Let G =
⋃

n∈N
Gn. For

G = (N,E) ∈ G, S ⊆ N , and i ∈ N , let δ−S (i, G) = |{(j, i) ∈ E : G = (N,E), j ∈ S}|
denote the indegree of vertex i from vertices in S. We use δ−(i, G) as a shorthand for
δ−N (i, G), denote Δ(G) = maxi∈N δ−(i, G), and write δ−(i) instead of δ−(i, G) and Δ
instead of Δ(G) if G is clear from the context.

A selection mechanism for G is then given by a family of functions f : Gn → [0, 1]n

that maps each graph to a probability distribution on its vertices. In a slight abuse of
notation, we use f to refer to both the mechanism and individual functions from the
family. Mechanism f is impartial on G′ ⊆ G if on this set of graphs the probability
of selecting vertex i does not depend on its outgoing edges, i.e., if for every pair of
graphs G = (N,E) and G′ = (N,E′) in G′ and every i ∈ N , (f(G))i = (f(G′))i
whenever E \({i}×N) = E′ \({i}×N). All mechanisms we consider are impartial on
G, and we simply refer to such mechanisms as impartial mechanisms. Mechanism f
is α-optimal on G′ ⊆ G, for α ≤ 1, if for every graph in G′ the expected indegree of
the vertex selected by f differs from the maximum indegree by a factor of at most α,
i.e., if

inf
G∈G

Δ(G)>0

Ei∼f(G)[δ
−(i, G)]

Δ(G)
≥ α.

We call a mechanism α-optimal if it is α-optimal on G and approximately optimal if
it is α-optimal for some constant α.

As far as impartiality and approximate optimality are concerned, we can restrict
our attention to symmetric mechanisms. Mechanism f is symmetric if it is invariant
with respect to renaming of the vertices, i.e., if for every G = (N,E) ∈ G, every i ∈ N ,
and every permutation π = (π1, . . . , π|N |) of N ,(

f(Gπ)
)
πi

=
(
f(G)

)
i
,

where Gπ = (N,Eπ) with Eπ = {(πi, πj) : (i, j) ∈ E}. For a given mechanism f ,
denote by fs the mechanism obtained by applying a random permutation π to the
vertices of the input graph, invoking f , and permuting the result by the inverse of π,
such that for all n ∈ N, G ∈ Gn, and i ∈ {1, . . . , n},
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Input: Graph G = (N,E)
Output: Vertex i ∈ N

1 Assign each i ∈ N independently and uniformly at random to one of two sets
A1 and A2, such that P[i ∈ A1] = P[i ∈ A2] = 1/2 for all i ∈ N , A1 ∪ A2 = N ,
and A1 ∩ A2 = ∅;

2 if A2 = ∅ then return a vertex chosen uniformly at random from N ;

3 Return a vertex chosen uniformly at random from argmaxi∈A2 δ
−
A1

(i);

Fig. 1. The 2-partition mechanism.

p1 p2 p3

Fig. 2. No impartial mechanism is more than 1/2-optimal.

(
fs(G)

)
i
=

1

n!

∑
π∈Sn

(
f(Gπ)

)
πi
,

where Sn is the set of all permutations π = (π1, . . . , πn) of a set of n elements. The
following result is straightforward.

Lemma 2.1 (Holzman and Moulin [14]). Let f be a selection mechanism that is
impartial and α-optimal on G′ ⊆ G. Then fs is impartial, α-optimal, and symmetric
on G′.

3. The 2-partition mechanism. We begin our investigation with a more de-
tailed analysis of the 2-partition mechanism proposed by Alon et al. [2]. The mecha-
nism first assigns each vertex independently and uniformly at random to one of two
sets A1 and A2. Then it returns a vertex from A2 that has maximum indegree from
vertices in A1, or a vertex chosen uniformly at random from N in case A2 = ∅. A
formal description of the mechanism is given in Figure 1.

The 2-partition mechanism is obviously impartial, as the outgoing edges of vertex
i ∈ N can influence the outcome only if i ∈ A1 and A2 
= ∅, in which case i will
never be selected. It is also easy to see that the mechanism is 1/4-optimal. As
noted by Alon et al., for an arbitrary graph G and a particular vertex i∗ of G with
indegree Δ = Δ(G), we have that P[i∗ ∈ A2] = 1/2 and, by linearity of expectation,
E[δ−A1

(i∗) | i∗ ∈ A2] = E[δ−A1
(i∗)] = δ−N (i∗)/2 = Δ/2. The expected indegree of the

selected vertex is thus at least Δ/2 with probability at least 1/2, i.e., at least Δ/4.
A graph with a single edge shows that this result is in fact tight. Alon et al. noted
further that no impartial mechanism can be more than 1/2-optimal. To this end,
consider the two graphs in Figure 2 and the probabilities p1, p2, and p3 with which
certain vertices in these graphs are selected. Due to symmetry, which we can assume
by Lemma 2.1, p1 = p2 and thus p1 ≤ 1/2. On the other hand, p1 = p3 by impartiality,
so the expected indegree of the vertex selected in the right graph is at most 1/2 and
the claim follows.

The rather straightforward analysis of the 2-partition mechanism does not lead to
a tight result, but it is unsatisfactory in particular because it provides no information
about the performance of the mechanism on more complicated graphs and no cues
for what a better mechanism might look like. We will gain both from the proof of
the following lemma, which establishes a lower bound on the expected indegree of the
selected vertex relative to the maximum indegree Δ(G).
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Lemma 3.1. On any graph G with maximum indegree Δ = Δ(G), the 2-partition

mechanism is α2(Δ)-optimal, where α2(Δ) = 1
Δ2Δ

∑Δ
k=0

(
Δ
k

)
min{Δ

2 , k}.
Proof. Let i∗ ∈ N such that δ−(i∗) = Δ(G), and denote by X the indegree of the

vertex selected by the 2-partition mechanism. Then X is a random variable subject to
the internal randomness of the mechanism, and we will be interested in its expected
value E[X ].

Let A = (A1, A2) be the partition selected in line 1 of the 2-partition mechanism
in Figure 1 and consider an arbitrary set S ⊆ N \ {i∗} of vertices other than i∗.
We begin by bounding E[X |A1 \ {i∗} = S], i.e., the expected value of X given that
A1 = S or A1 = S ∪ {i∗}. To this end, let v(S) and a(S), respectively, denote the
indegree of i∗ from S and the maximum indegree of any other vertex in N \ S from
S, i.e., v(S) = δ−S (i∗) and a(S) = maxi∈N\(S∪{i∗}) δ

−
S (i).

Assume for now that S 
= ∅ and S 
= N \ {i∗}. Then, E[X |A1 = S] = Δ if
v(S) > a(S), E[X |A1 = S] ≥ a(S) if a(S) ≥ v(S), and E[X |A1 = S ∪ {i∗}] ≥ a(S).
To see this, recall that X is the indegree of the selected vertex from vertices in N
and note that the expected value of X only increases if there is an edge from i∗ to a
vertex for which a(S) is attained. Since the events where A1 = S and A1 = S ∪ {i∗}
occur with equal probability,

E[X |A1 \ {i∗} = S] ≥ χ
[
v(S) > a(S)

]
Δ+

(
1− χ

[
v(S) > a(S)

])
a(S)

2
+

a(S)

2

= a(S) +
1

2
χ
[
v(S) > a(S)

](
Δ− a(S)

)
,

where χ denotes the indicator function on binary events, i.e., χ[E] = 1 if event E
takes place and χ[E] = 0 otherwise. Given any fixed value of v(S), the right-hand
side of this expression is a linearly increasing function of a(S) except for a possible
discontinuity at a(S) = v(S). It is thus minimized either at the leftmost point of its
domain, where a(S) = 0, or at the point of discontinuity, where a(S) = v(S). Its
value is χ[v(S) > 0] ·Δ/2 in the former case and v(S) in the latter, so in summary

(3.1) E[X |A1 \ {i∗} = S] ≥ min

{
χ
[
v(S) > 0

] · Δ
2
, v(S)

}
= min

{
Δ

2
, v(S)

}
.

We can now lift the assumption that S 
= ∅ and S 
= N \ {i∗}. If S = ∅, then
v(S) = 0 and (3.1) holds trivially. If S = N \ {i∗}, then v(S) = Δ, and i∗ is in
N \ S and therefore chosen by the 2-partition mechanism with probability 1/2. Thus
E[X |A1 \ {i∗} = S] ≥ Δ/2 = min{Δ/2, v(S)}, and (3.1) is again satisfied.

By construction of the 2-partition mechanism, each vertex belongs to A1 with
probability 1/2, so v(S) = δ−A1

(i∗) is distributed according to the binomial distribution
with Δ trials and success probability 1/2. We thus have that

E[X ] =
∑
S⊆N

P[A1 \ {i∗} = S] · E[X |A1 \ {i∗} = S]

≥
Δ∑

k=0

∑
S⊆N

v(S)=k

P[A1 \ {i∗} = S] ·min

{
Δ

2
, k

}

=
1

2Δ

Δ∑
k=0

(
Δ

k

)
min

{
Δ

2
, k

}
.

This finally implies that α2(Δ) ≥ 1
Δ2Δ

∑Δ
k=0

(
Δ
k

)
min{Δ

2 , k} as claimed.
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Using Lemma 3.1 it is straightforward if somewhat tedious to derive the following
closed-form expression for α2(Δ); a rigorous proof can be found in Appendix A.

Theorem 3.2. On any graph G with maximum indegree Δ = Δ(G), the 2-
partition mechanism is α2(Δ)-optimal, where

α2(Δ) =

⎧⎪⎨
⎪⎩

1
4 if Δ = 1,
1
2 − 1

2Δ+2

(
Δ

Δ/2

)
if Δ ≥ 2 and even,

α2(Δ− 1) if Δ ≥ 3 and odd.

Given its closed form, it is easy to show that α2(Δ) is nondecreasing in Δ.
Corollary 3.3. For every Δ ∈ N, α2(Δ+1) ≥ α2(Δ) and α2(Δ+2) > α2(Δ).
Proof. Since α2(Δ) = α2(Δ − 1) for odd Δ ≥ 3 by Theorem 3.2, it suf-

fices to show that α2(Δ) > α2(Δ − 2) for even Δ ≥ 4. To see this, note that
α2(Δ) = 1

2 − 1
2Δ+2

(
Δ

Δ/2

)
. Using three times that

(
Δ
k

)
=
(
Δ−1
k−1

)
+
(
Δ−1
k

)
, we obtain

α2(Δ) =
1

2
− 1

2Δ+2

((
Δ− 2

Δ/2− 2

)
+ 2

(
Δ− 2

Δ/2− 1

)
+

(
Δ− 2

Δ/2

))
,

and since
(
Δ−2
k

)
is maximized for k = Δ/2− 1,

α2(Δ) >
1

2
− 1

2Δ

(
Δ− 2

Δ/2− 1

)
= α2(Δ− 2).

These results imply that a graph with a single edge is in fact the unique worst
case for the 2-partition mechanism, and they also yield the first nontrivial lower
bound for settings without abstentions. In the absence of abstentions, one of two
conditions is always satisfied: either every vertex has indegree exactly one, in which
case every mechanism including the 2-partition mechanism is optimal, or Δ ≥ 2 and
the 2-partition mechanism is α2(2)-optimal. Since α2(2) = 3/8, we conclude that the
2-partition mechanism is 3/8-optimal on all instances without abstentions. We will
return to this special case, and show a better bound, in section 7.

4. The k-partition mechanism. What is perhaps most interesting about the
above analysis of the 2-partition mechanism is that the same technique can in principle
also be applied to a partition of the vertices into more than two sets. Indeed, in this
section, we propose a generalization of the 2-partition mechanism to a larger number
of sets and then generalize the analysis technique to the new mechanism.

For a fixed k ≥ 2, the new mechanism first assigns each vertex i ∈ N indepen-
dently and uniformly at random to one of k sets A1, . . . , Ak. The mechanism then
proceeds in k iterations, during which it maintains and updates a candidate vertex
that is finally selected after iteration k. In the jth iteration, the candidate is updated
if the maximum indegree among vertices in Aj from vertices in A<j =

⋃j−1
i=1 Ai other

than the candidate is at least that of the candidate at the time it became the candi-
date. In that case, the new candidate is chosen uniformly at random from the set of
vertices in Aj with maximum indegree from vertices in A<j =

⋃j−1
i=1 Ai, now including

the previous candidate. The mechanism is clearly impartial, because it only takes into
account the outgoing edges of vertices that can no longer be selected. That the out-
going edges of the previous candidate are taken into account when selecting the new
candidate is somewhat subtle, but it turns out to be crucial. A formal description of
the mechanism is given in Figure 3.
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Input: Graph G = (N,E)
Output: Vertex i ∈ N

1 Assign each i ∈ N independently and uniformly at random to one of k sets
A1, . . . , Ak, such that P[i ∈ Aj ] = 1/k for all i ∈ N and j ∈ {1, . . . , k},⋃k

j=1 Aj = N , and Aj ∩A� = ∅ for all j, � ∈ {1, . . . , k} with j 
= �;

2 Set {i∗} := ∅, d∗ := 0;
3 for j = 1, . . . , k do
4 if maxi∈Aj δ

−
A<j\{i∗}(i) ≥ d∗ then

5 Choose i∗ ∈ argmaxi∈Aj δ
−
A<j

(i) uniformly at random;

6 set d∗ := δ−A<j
(i∗);

7 end

8 end
9 Return i∗;

Fig. 3. The k-partition mechanism.

Now consider a graph G = (N,E) ∈ G and a vertex i∗ ∈ N with indegree
Δ = Δ(G). Fix k ∈ N, and let X be the indegree of the vertex selected from G by
the k-partition mechanism. Note that X is a random variable subject to the internal
randomness of the mechanism and that we are interested in bounding its expected
value from below. We begin by bounding its conditional expectation given that a
partition of all vertices except i∗ is fixed and i∗ is assigned uniformly at random to
one of the sets of the partition.

We need some notation. For N ′ ⊆ N , let Pk(N
′) denote the set of all partitions

S = (S1, . . . , Sk) of N ′ into k possibly empty sets S1, . . . , Sk. For a partition S =

(S1, . . . , Sk) and j ∈ {1, . . . , k}, let S<j =
⋃j−1

�=1 S�. For S ∈ Pk(N) and i ∈ N , we
slightly abuse notation and write S \ {i} = (S1 \ {i}, . . . , Sk \ {i}) for the partition of
N \{i} obtained by removing i from the set in S it is a member of. The bounds we are
about to derive can be expressed compactly as a minimum over the entries of a vector,
which can in turn be written as the product W k ·v(S) between a certain matrix W k

and a vector v(S) with entry vj(S) equal to the indegree of i∗ from Sj . For this,

define W k as the k× k matrix with entries in row j on and above the diagonal equal
to k−j

k , and entries below the diagonal equal to 1, i.e.,

W k = (wk
ij)i,j=1,...,k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

k−1
k

k−1
k

k−1
k . . . k−1

k

1 k−2
k

k−2
k . . . k−2

k

1 1 k−3
k . . . k−3

k
...

...
. . .

. . .
...

1 1 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We obtain the following result.
Lemma 4.1. Consider a graph G = (N,E) and a vertex i∗ with indegree Δ =

Δ(G). Let X be the indegree of the vertex selected by the k-partition mechanism from
G, let S = (S1, . . . , Sk) ∈ Pk(N \ {i∗}), and v(S) = (vj(S))j=1,...,k with vj(S) =

δ−Sj
(i∗). Then, E[X |A \ {i∗} = S] ≥ min

{
W k · v(S)}.

Proof. Fix a partition S ∈ Pk(N \ {i∗}) and denote by

a(S) = maxj=1,...,k maxi∈Sj δ
−
S<j

(i)(4.1)
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the maximum indegree of any vertex, with the exception of i∗, from vertices in sets
with smaller index than its own. For j ∈ {1, . . . , k}, let v<j(S) =

∑j−1
�=1 v�(S) denote

the indegree of i∗ from vertices in the first j − 1 sets. We claim that the k-partition
mechanism (i) always selects a vertex with indegree at least a(S), and (ii) selects
vertex i∗ if i∗ ∈ Aj and v<j(S) > a(S) for some j ∈ {1, . . . , k}, such that

E[X |A \ {i∗} = S, i∗ ∈ Aj ] ≥ a(S) + χ
[
v<j(S) > a(S)

](
Δ− a(S)

)
.(4.2)

For the first part of the claim, fix a vertex i′ and an index j′ for which the
maximum in (4.1) is attained. In iteration j′ the mechanism then considers at least
a(S) − 1 incoming edges for vertex i′, namely, those from vertices in

⋃j′−1
�=1 A� with

the exception of the current candidate. The mechanism then chooses a new candidate
unless the current candidate itself has indegree at least a(S). In case a new candidate
is chosen, the outgoing edges of the previous candidate are taken into account, so that
at least a(S) incoming edges are considered for vertex i′. By the same reasoning, a
new candidate can be chosen in later iterations only if it has indegree at least a(S),
which eventually leads to the selection of a vertex with at least that indegree.

For the second part of the claim assume that i∗ ∈ Aj and v<j(S) > a(S) for some
j ∈ {1, . . . , k}. It is then easy to see that i∗ is chosen in iteration j of the mechanism
and remains the candidate until the mechanism terminates.

From (4.2) and the fact that P[i∗ ∈ Aj ] = 1/k for j = 1, . . . , k we obtain that

E[X |A \ {i∗} = S] =
1

k

k∑
j=1

E[X |A \ {i∗} = S, i∗ ∈ Aj ]

≥ a(S) +
Δ− a(S)

k

k∑
m=1

χ
[
v<m(S) > a(S)

]
.

Given fixed values v<m(S) for m = 1, . . . , k, the right-hand side of this expres-
sion is a linearly increasing function of a(S) except for possible discontinuities at
v<2(S), . . . , v<m(S). It is thus minimized either at 0, or when a(S) = v<j(S) for
some j ∈ {2, . . . , k}, so

E[X |A \ {i∗} = S] ≥ minj=1,...,k

{
v<j(S) +

Δ− v<j(S)

k

k∑
m=1

χ
[
v<m(S) > v<j(S)

]}

= minj=1,...,k

{
v<j(S) +

Δ− v<j(S)

k

k∑
m=j+1

χ
[
v<m(S) > v<j(S)

]}
.

Now observe that for any � ∈ {1, . . . , k − 1}, the terms for j = � and j = � + 1 are
equal when v<�(S) = v<�+1(S). The minimum will thus be obtained for j = k, or
for some j ∈ {1, . . . , k − 1} with v<j(S) < v<j+1(S). Adopting the convention that
v<k+1(S) = ∞, we may express this compactly as

E[X |A \ {i∗} = S] ≥ minj=1,...,k
v<j(S)<
v<j+1(S)

{
v<j(S) +

Δ− v<j(S)

k

k∑
m=j+1

χ
[
v<m(S) > v<j(S)

]}

= minj=1,...,k
v<j(S)<
v<j+1(S)

{
v<j(S) +

k − j

k
(Δ− v<j(S))

}
.
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Since v<j(S)+
k−j
k (Δ−v<j(S)) never attains its minimum for j ∈ {1, . . . , k−1} with

v<j(S) = v<j+1(S), we may drop the condition that v<j(S) < v<j+1(S) and obtain

E[X |A \ {i∗} = S] ≥ minj=1,...,k

{
v<j(S) +

k − j

k
(Δ− v<j(S))

}
.

Since Δ =
∑k

�=1 v�(S),

E[X |A \ {i∗} = S] ≥ minj=1,...,k

{j−1∑
�=1

v�(S) +

k∑
�=j

k − j

k
v�(S)

}
= min{W k · v(S)}

as claimed.

To obtain a bound on E[X ], we now average the expression in Lemma 4.1 over the
distribution on partitions of N . For Δ, k ∈ N, let Pk(Δ) = {v ∈ N

k :
∑k

j=1 vj = Δ}.
For v ∈ Pk(Δ), let

(
Δ
v

)
= Δ!

v1!···vk! denote the number of partitions of a set with Δ
elements into k sets of sizes v1, . . . , vk. The following is a straightforward corollary of
Lemma 4.1.

Lemma 4.2. On any graph G with maximum indegree Δ = Δ(G), the k-partition
mechanism is αk(Δ)-optimal, where αk(Δ) = 1

ΔkΔ

∑
v∈Pk(Δ)

(
Δ
v

)
min

{
W k · v}.

Proof. Consider a vertex i∗ with indegree Δ. Then

E[X ] =
∑

S∈Pk(N\{i∗}) P[A \ {i∗} = S] · E[X |A \ {i∗} = S],

=
∑

v∈Pk(Δ)

∑
S∈Pk(N\{i∗})

δ−Si
(i∗)=vi, i=1,...,k

P[A \ {i∗} = S] · E[X |A \ {i∗} = S]

≥
∑

v∈Pk(Δ)

1

kΔ

(
Δ

v

)
min{W k · v},

where the inequality holds by Lemma 4.1.

In analyzing the 2-partition mechanism, we derived a closed-form expression for
α2(Δ) that turned out to be monotonically nondecreasing in Δ. While the complexity
of αk prevents us from taking the same route for k > 2, monotonicity turns out to
hold for any value of k.

Lemma 4.3. For any k ≥ 2, αk(Δ) is nondecreasing in Δ.

Proof. Denoting the the jth row of W k by W k
j , we can reformulate the lower

bound of Lemma 4.2 as

αk(Δ) =
1

ΔkΔ

∑
v∈Pk(Δ)

(
Δ

v

)
minj=1,...,k〈W k

j ,v〉.

Instead of summing over all vectors v ∈ Pk(Δ), we may instead sum over all vectors
v ∈ Pk(Δ + 1) and decrease one of the nonzero entries of v by 1. Thus

αk(Δ) =
1

ΔkΔ+1

∑
v∈Pk(Δ+1)

(
Δ+1
v

)
Δ+ 1

k∑
i=1

viminj=1,...,k〈W k
j ,v − ek,i〉,

where ek,i is the ith unit vector in k dimensions, i.e., ek,i� = 1 if � = i and ek,i� = 0,
otherwise. If we exchange the order of the summation over i and the minimization
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over j, the value of the expression can only increase, so

αk(Δ) ≤ 1

ΔkΔ+1

∑
v∈Pk(Δ+1)

(
Δ+1
v

)
Δ+ 1

min
j=1,...,k

k∑
i=1

vi 〈W k
j ,v − ek,i〉

=
1

(Δ + 1)kΔ+1

∑
v∈Pk(Δ+1)

(
Δ+1
v

)
Δ

min
j=1,...,k

k∑
i=1

(
vi〈W k

j ,v〉 − vi 〈W k
j , e

k,i〉
)

=
1

(Δ + 1)kΔ+1

∑
v∈Pk(Δ+1)

(
Δ+1
v

)
Δ

min
j=1,...,k

(
〈W k

j ,v〉
k∑

i=1

vi − 〈W k
j ,v〉

)

=
1

(Δ + 1)kΔ+1

∑
v∈Pk(Δ+1)

(
Δ+ 1

v

)
min

j=1,...,k
〈W k

j ,v〉

= αk(Δ + 1).

Monotonicity of αk allows us to obtain a lower bound on the approximation ratio
of the k-partition mechanism by bounding αk(1) from below.

Theorem 4.4. The k-partition mechanism for k ≥ 2 is k−1
2k -optimal.

Proof. In light of Lemma 4.3, it suffices to show that αk(1) ≥ k−1
2k for every k ≥ 2.

By Lemma 4.2,

αk(1) =
1

k

∑
v∈Pk(1)

min{W k · v}.

Taking the pointwise minimum for each row of W k,

α1(k) ≥ 1

k

∑
v∈Pk(1)

〈
v,

(
k − 1

k
,
k − 2

k
, . . . ,

1

k
, 0

)〉
.

In the sum every unit vector occurs exactly once, and thus

αk(1) ≥ 1

k

k∑
i=1

k − i

k
=

1

k2

k−1∑
i=0

i =
k(k − 1)

2k2
=

k − 1

2k
.

5. The permutation mechanism. We have started from the simple result that
no impartial selection mechanism can be more than 1/2-optimal, and in the previous
section we identified a class of mechanisms parameterized by k ∈ N that attains
this bound in the limit as k tends to infinity. It turns out that the bound can also be
attained exactly, by a limiting mechanism for the above class. This mechanism, which
we call the permutation mechanism, considers the vertices one by one according to a
random permutation π = (π1, . . . , πn) and in each step compares the current vertex
πj to a single candidate vertex π� with � < j. In determining the indegree of the
candidate vertex π� it takes into account the outgoing edges of vertices π1, . . . , π�−1.
For the indegree of the current vertex πj it takes into account the outgoing edges of
vertices π1, . . . , πj−1, except π�. If the latter is greater than or equal to the former,
πj becomes the new candidate vertex, and the candidate vertex after the final step is
the one selected by the mechanism. A formal description of the mechanism is given
in Figure 4.

It is again easy to see that the mechanism is impartial, and we obtain the following
performance guarantee.

Theorem 5.1. The permutation mechanism is 1/2-optimal.
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Input: Graph G = (N,E)
Output: Vertex i ∈ N

1 Choose a permutation
(
π1, . . . , π|N |

)
of N uniformly at random; for

j ∈ {1, . . . , |N |} denote π<j = {π1, . . . , πj−1};
2 Set i∗ := π1, d

∗ := 0;
3 for j = 2, . . . , |N | do
4 if δ−π<j\{i∗}(πj) ≥ d∗ then

5 Set i∗ := πj , d
∗ := δ−π<j

(πj);

6 end

7 end
8 return i∗;

Fig. 4. The permutation mechanism.

Proof. Assume for contradiction that there exists a graph G = (N,E) such that
the permutation mechanism is strictly less than 1/2-optimal on G. Let n = |N | and
Δ = Δ(G), and denote by X and by Xk for k ≥ 2 the indegrees of the vertices,
respectively, selected from G by the permutation and the k-partition mechanism.
Note that X and Xk are random variables subject to the internal randomness of the
respective mechanism. Finally let α = E[X ]/Δ, and note that α < 1/2 by assumption.

For any k, the outcomes of the permutation mechanism and the k-partition mech-
anism agree under the condition that the partition (A1, . . . , Ak) chosen by the latter
satisfies |Ai| ≤ 1 for i = 1, . . . , k, so

E[X ] ≥ P
[|Ai| ≤ 1 for all i ∈ {1 . . . , k}] · E[Xk].

For any k ≥ n,

P
[|Ai| ≤ 1 for all i ∈ {1 . . . , k}] = k · (k − 1) · · · · · (k − n+ 1)

kn
≥ (k − n)n

kn
,

and thus

E[X ] ≥ (k − n)n

kn
E[Xk] ≥ (k − n)n

kn
· k − 1

2k
Δ,

where the second inequality follows from Theorem 4.4. For any fixed n,

lim
k→∞

(
(k − n)n

kn
· k − 1

2k

)
=

1

2
> α,

and we can choose k such that

(k − n)n

kn
· k − 1

2k
> α.

Thus E[X ] > αΔ, a contradiction.
A potential downside of the permutation mechanism is that it considers agents

one by one and therefore cannot process nominations anonymously. This may be of
concern in situations where agents do not want their opinion regarding other agents
to be publicly known. In the k-partition mechanism for some fixed value of k, on
the other hand, the nominations submitted by agents in block Aj of the partition
can be processed simultaneously and thus with partial anonymity. It is an interesting
question whether this trade-off between anonymity and approximate optimality is
intrinsic to the problem or whether there exits a different mechanism that provides
similar performance guarantees as the permutation mechanism but a greater level of
anonymity.
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6. Highly nominated agents. Bousquet, Norin, and Vetta [4] recently stud-
ied the asymptotic performance of impartial mechanisms and obtained the following
result, among others: for any ε > 0, there exists Δε ∈ N such that the permutation
mechanism is (3/4 − ε)-optimal on graphs with maximum indegree at least Δε. For
the sake of completeness, we show how this result can be obtained from Lemma 4.2
by a straightforward application of Chebychev’s inequality. We state the result more
generally for the k-partition mechanism, the analogous result for the permutation
mechanism then follows from the same argument as in section 5.

Theorem 6.1. Let ε > 0, k ∈ N with k ≥ 2, and consider any graph G
with maximum indegree Δ = Δ(G) ≥ 8k2/ε3. Then the k-partition mechanism is
(1− ε)(34 − 1

2k − k mod 2
4k2 )-optimal on G.

Proof. Recall that by Lemma 4.2,

αk(Δ) =
1

ΔkΔ

∑
v∈Pk(Δ)

(
Δ

v

)
min{W k · v}.

Given v ∈ Pk(Δ) chosen uniformly at random, E[vi] = Δ/k for each i ∈ {1, . . . , k}.
We will restrict attention to the case where vi > Δ

k (1 − ε
2 ) for all i ∈ {1, . . . , k}

and exploit that this happens with high probability for any fixed ε > 0 when Δ is
sufficiently large. Let ε > 0 and observe that

αk(Δ) ≥ 1

ΔkΔ

∑
v∈Pk(Δ)

χ

[
vi >

Δ

k

(
1− ε

2

)
for all i ∈ {1, . . . , k}

]

·
(
Δ

v

)
Δ

k

(
1− ε

2

)
min{W k · 1k},

where 1k = (1, . . . , 1) is the all-ones vector in k dimensions.

It is easily verified that min{W k · 1k} = 〈W k
�k/2�,1

k〉 and

〈W k
�k/2�,1

k〉 =
{

3
4k − 1

2 if k is even,
3
4k − 1

2 − 1
4k otherwise.

Thus

αk(Δ) ≥ 1

ΔkΔ

(3
4
k − 1

2
− k mod 2

4k

)Δ
k

(
1− ε

2

)
·
∑

v∈Pk(Δ)
χ

[
vi >

Δ

k

(
1− ε

2

)
for all i ∈ {1, . . . , k}

)](Δ
v

)
(6.1)

=
(
1− ε

2

)(3
4
− 1

2k
− k mod 2

4k2

)
P

[
vi >

Δ

k

(
1− ε

2

)
for all i ∈ {1, . . . , k}

]
,

where the probability is taken over partitions v ∈ Pk(Δ) chosen uniformly at random.

We proceed to bound this probability from below. Each vi is distributed according
to a binomial distribution with mean Δ

k and variance Δ
k (1 − 1

k ), so by Chebychev’s
inequality we have for all z > 0 that

(6.2) P

[∣∣∣vi − Δ

k

∣∣∣ ≥ z

√
Δ

k

(
1− 1

k

) ]
≤ 1

z2
.
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Thus

P

[
vi ≤ Δ

k

(
1− ε

2

)]
≤ P

[∣∣∣vi − Δ

k

∣∣∣ ≥ Δ

k
· ε
2

]

≤ P

[∣∣∣vi − Δ

k

∣∣∣ ≥ Δ

k
· ε
2

√
1− 1

k

]
≤ 4k

Δ · ε2 ,

where the second inequality holds because
√
1− 1/k ≤ 1, and the third inequality

follows from (6.2) by setting z = ε
2

√
Δ/k. By the union bound, and by the assumption

that Δ ≥ 8k2/ε3,

P

[
vi >

Δ

k

(
1− ε

2

)
for all i ∈ {1, . . . , k}

]
≥ 1− 4k2

Δ · ε2 ≥ 1− ε

2
.

Combining this with (6.1), we obtain

αk(Δ) ≥
(
1− ε

2

)2(3
4
− 1

2k
− k mod 2

4k2

)
> (1 − ε)

(3
4
− 1

2k
− k mod 2

4k2

)
,

as claimed.
To see that this bound cannot be improved significantly, consider situations where

one agent, i∗, receives Δ nominations and the remaining agents receive Δ/2 nomina-
tions. As the number of agents tends to infinity, the permutation mechanism selects
i∗ only if i∗ receives at least Δ/2 nominations from agents appearing before it in the
permutation, which happens with probability at most 1/2. Otherwise an agent with
Δ/2 nominations is selected, which leads to an performance guarantee of α ≤ 3/4. A
similar but more involved example was also given by Bousquet, Norin, and Vetta [4].

7. No abstentions. Let us finally consider the interesting special case of graphs
in which all vertices have outdegree at least 1, and to this end denote

G+ =
⋃

n∈N

{
(N,E) ∈ Gn : mini∈N |{(i, j) ∈ E : j ∈ N}}| ≥ 1

}
.

This case models situations where abstentions are not allowed and in particular in-
cludes the setting of Holzman and Moulin [14], where every agent casts exactly one
nomination.

In section 3 we obtained the first nontrivial bound for the special case, by com-
bining the simple observation that any mechanism is optimal on graphs in G+ with
maximum indegree 1 and a new lower bound on the performance of the 2-partition
mechanism for graphs with maximum indegree at least 2. Similar arguments can be
applied to the k-partition and permutation mechanisms as well, and it is in fact not
difficult to show that the permutation mechanism is 2/3-optimal on graphs in G+ with
maximum indegree at most 2. By bounding its performance on graphs with maximum
indegree 3 or more, we then obtain the following result.

Theorem 7.1. The permutation mechanism is 67/108-optimal on G+.
Proof. Consider any graph G = (N,E) ∈ G+ with at least two vertices. Note

that G contains a directed cycle, such that for every permutation (π1, . . . , π|N |) of N
there exist s, t ∈ {1, . . . , |N |} with s < t and (πs, πt) ∈ E. After considering πt, the
permutation mechanism will have chosen a candidate with indegree 1 or higher, and
will thus always select a vertex with indegree at least 1.

If Δ(G) = 1, then every vertex has indegree exactly 1 and any mechanism in-
cluding the permutation mechanism is optimal. If Δ(G) = 2, there exist vertices
i∗, i1, i2 ∈ N with i1 
= i2 and (i1, i

∗), (i2, i∗) ∈ E. For any permutation in which i∗
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appears after both i1 and i2, i.e., with probability 1/3, the permutation mechanism
thus selects a vertex with indegree 2. As it always selects a vertex with indegree
at least 1, the expected indegree of the selected vertex is at least 2/3 > 67/108.
It remains to establish 67/108-optimality when Δ(G) ≥ 3. By the same argu-
ment as in the proof of Theorem 4, and by Lemma 4.3, it suffices to show that
limk→∞ αk(3) ≥ 67/108.

The proof of this latter result is quite technical, and it is deferred to Appendix B.
Here we instead prove the weaker statement that limk→∞ αk(2) ≥ 7/12, which will
illustrate some of the main ideas used in the proof of the stronger result and implies
that the permutation mechanism is 7/12-optimal on G+.

By Lemma 4.2,

αk(2) =
1

2k2

∑
v∈Pk(2)

(
Δ

v

)
min

{
W k · v}

=
1

2k2

∑
x∈{1,...,k}2

min
{
W k · (ek,x1 + ek,x2)

}
=

1

2k2

∑
x∈{1,...,k}2

(
2−maxj=1,...,k

{
j

k

(
χ[x1 ≥ j] + χ[x2 ≥ j]

)})

= 1− 1

k3

∑
x∈{1,...,k}2

max

{
min{x}, max{x}

2

}
= 1− βk

k3
,

where ek,i again denotes the ith unit vector in k dimensions, and

βk =
∑

x∈{1,...,k}2

max
{
min{x},max{x}/2}.

Grouping vectors x ∈ {1, . . . , k}2 by the number of entries that are equal to k,

βk = βk−1 + 2
∑

y∈{1,...,k−1} max

{
y,

k

2

}
+ k

= βk−1 + 2

(
k2

4
+
∑

y∈{k/2+1,...,k−1} y
)
+ o(k2)

= βk−1 +
5

4
k2 + o(k2).

Since β0 = 0,

βk =

k∑
�=1

(
5

4
�2 + o(�2)

)
=

5

12
k3 + o(k3)

so

αk(2) =
7

12
− o(k3)

k3
,

and thus limk→∞ αk(2) = 7/12.
One may wonder whether the bound of 67/108 ≈ 0.62 is tight, for the permutation

mechanism or even in general. We leave this as an open question but conclude by
giving upper bounds of 2/3 and 3/4, respectively, on possible values of α for the
permutation mechanism and any impartial mechanism.

To see that the permutation mechanism cannot be more than 2/3-optimal, con-
sider the graph of Figure 5. The unique vertex with indegree 3 in this graph is selected
by the permutation mechanism if and only if it appears in the last two positions of
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Fig. 5. A graph on which the permutation mechanism is 2/3-optimal.

p1 p1 p1

Fig. 6. Impartial probability assignment for two graphs with n = 3.

the permutation, which happens with probability 1/2. Indeed, when it appears in
one of the first two positions it has indegree at most 1 at the time it is considered
by the mechanism. At the same time, one of the vertices in the last two positions
has indegree 1 when it is considered and consequently gets selected. The expected
indegree of the selected vertex is thus 3 · 1/2 + 1 · 1/2 = 2, compared to a maximum
indegree of 3. Interestingly this bound is attained for a graph with maximum inde-
gree 3, which suggests that a matching lower bound may not be obtainable from a
monotonicity result like that of Lemma 4.3.

The same upper bound of 2/3 holds asymptotically for the more restricted case
considered by Holzman and Moulin [14], where every vertex has outdegree 1. To
see this consider the graph G = (N,E) with N = {1, . . . , n} and E = {(i, i + 1) :
i = 1, . . . , n− 2} ∪ {(n− 1, 1), (n, 1)}, and observe that the permutation mechanism
selects vertex 1, the unique vertex with indegree 2, with significant probability only
for permutations in which vertices n− 1 and n both occur before 1. Since the latter
happens with probability exactly 1/3, the expected indegree of the selected vertex
is not significantly greater than 2 · 1/3 + 1 · 2/3 = 4/3, compared to a maximum
indegree of 2.

Our final result establishes upper bounds on α for any mechanism that is impar-
tial and α-optimal on G+, and for different values of n. These bounds arise as dual
solutions of an optimization problem characterizing the α-optimal impartial mecha-
nisms for the maximum value of α. These dual solutions are optimal, and the upper
bound therefore tight, for n ≤ 7.

Theorem 7.2. Consider an impartial selection mechanism that is α-optimal on
G+
n . Then

α ≤
{
3/4 if n = 3,

(3n− 1)/4n otherwise.

Proof. By Lemma 2.1 we can restrict our attention to symmetric mechanisms.

First assume that n = 3, and consider the two graphs shown in Figure 6. It is
easily verified that any impartial mechanism must assign probabilities as shown, and
it must therefore be the case that p1 ≤ 1

2 . In the graph on the right, the vertex
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p1 p1

p1p1

p2 p2

p1

p2

Fig. 7. Impartial probability assignment for three graphs with n = 4.

p1

p1

p1

p1p1

p4

p5

p1

p2p3

p3

p6

p5

p2

p4

p7

p7

p6

p7

Fig. 8. Impartial probability assignment for six graphs with n = 5.

assigned probability p1 is the unique vertex with the maximum indegree of 2, and
thus

α ≤ 2p1 + (1 − p1)

2
=

p1 + 1

2
≤ 3

4
.

Now assume that n ≥ 4 even, and consider the set of three graphs on n vertices
with edges among vertices 1 to 4 as in Figure 7 and the remaining n − 4 vertices
grouped in pairs such that there is an edge from vertex 2i− i to vertex 2i and an edge
from vertex 2i to vertex 2i−1. It is easily verified that any impartial mechanism must
assign probabilities as in Figure 7, and thus np1 = 1 and p1 + 2p2 ≤ 1. Moreover,
the vertex assigned probability p2 in the rightmost graph is the unique vertex with
indegree 2 in that graph, and thus

α ≤ 2p2 + (1− p2)

2
=

p2 + 1

2
≤

n−1
2n + 1

2
=

3n− 1

4n
.

Now assume that n = 5, and consider the six graphs in Figure 8. It is easily
verified that any impartial mechanism must assign probabilities as shown, so

p1 = 1/5,(7.1)

p1 + p2 + p3 + p4 + p5 = 1,(7.2)

p2 + p3 + p5 + p6 ≤ 1,(7.3)

p4 + 2p7 ≤ 1.(7.4)

By adding (7.1), (7.3), and (7.4) and subtracting (7.2),

p6 + 2p7 ≤ 6

5
and thus min{p6, p7} ≤ 2

5
.
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p1 p1

p1p1

p2

p2p2

p3 p3

p1 p4p4

p2

p3

p4

Fig. 9. Impartial probability assignment for five graphs with n = 7.

The vertices assigned probabilities p6 and p7 in the two rightmost graphs in the bottom
row of Figure 8 are the unique vertices with indegree 2 in those graphs, so

α ≤ 2p6 + (1− p6)

2
=

p6 + 1

2
and α ≤ 2p7 + (1− p7)

2
=

p7 + 1

2
,

and thus

α ≤ min{p6, p7}+ 1

2
≤

2
5 + 1

2
=

7

10
=

3n− 1

4n
.

Finally assume that n ≥ 7 odd, and consider the set of five graphs on n vertices
with edges among vertices 1 to 7 as in Figure 9 and the remaining n − 7 vertices
grouped in pairs such that there is an edge from vertex 2i − i to vertex 2i and an
edge from vertex 2i to vertex 2i−1. It is easily verified that any impartial mechanism
must assign probabilities as in Figure 9, so

(n− 3)p1 + 3p2 = 1,

p1 + 2p3 ≤ 1,

p2 + 2p4 ≤ 1.

The vertices assigned probabilities p3 and p4 in the two rightmost graphs are the
unique vertices with indegree 2 in those graphs, so

α ≤ 2p3 + (1− p3)

2
=

p3 + 1

2
≤

1−p1

2 + 1

2
=

3− p1
4

,

α ≤ 2p4 + (1− p4)

2
=

p4 + 1

2
≤

1−p2

2 + 1

2
=

3− p2
4

,

and thus

α ≤ 3−max{p1, p2}
4

≤ 3− 1
n

4
=

3n− 1

4n
,

where the second inequality holds because max{p1, p2} ≥ 1/n.
Somewhat surprisingly, restricting the set of graphs even further, by requiring that

every vertex has outdegree exactly 1, does not enable a significantly better impartial
mechanism. Using similar arguments as in the proof of Theorem 7.2, it can be shown
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that in this case any impartial and α-optimal mechanism must satisfy α ≤ 5/6 if
n = 3, α ≤ 6n−1

8n if n ≥ 6 and even, and α ≤ 3
4 otherwise. These bounds are tight for

n ≤ 9.

Appendix A. Proof of Theorem 3.2. Using Lemma 3.1 it is straightforward
to show that α2(1) = 1/4.

Now assume that Δ is strictly positive and even. Then, by Lemma 3.1,

α2(Δ) =
1

Δ2Δ

Δ
2 −1∑
k=0

(
Δ

k

)
· k +

1

Δ2Δ

(
Δ

Δ/2

)
· Δ
2

+
1

Δ2Δ

Δ∑
k=Δ

2 +1

(
Δ

k

)
· Δ
2
.

By symmetry of the binomial distribution with success probability 1/2,

1

2
· 1

2Δ

(
Δ

Δ/2

)
+

1

2Δ

Δ
2 −1∑
k=0

(
Δ

k

)
=

1

2
· 1

2Δ

(
Δ

Δ/2

)
+

1

2Δ

Δ∑
k=Δ

2 +1

(
Δ

k

)
=

1

2

and thus

α2(Δ) =
1

Δ2Δ

Δ
2 −1∑
k=0

(
Δ

k

)
· k +

1

2
· 1

Δ2Δ

(
Δ

Δ/2

)
· Δ
2

+
1

4

=
1

2Δ

Δ
2 −1∑
k=1

(Δ− 1)!

(Δ− k)!(k − 1)!
+

1

2Δ+2

(
Δ

Δ/2

)
+

1

4

=
1

2Δ

Δ
2 −1∑
k=1

(
Δ− 1

k − 1

)
+

1

2Δ+2

(
Δ

Δ/2

)
+

1

4

=
1

2
· 1

2Δ−1

Δ
2 −2∑
k=0

(
Δ− 1

k

)
+

1

2Δ+2

(
Δ

Δ/2

)
+

1

4
.

Also by symmetry of the binomial distribution, 1
2Δ−1

∑Δ
2 −1

k=0

(
Δ−1
k

)
= 1

2 , and thus

α2(Δ) =
1

2

(
1

2
− 1

2Δ−1

(
Δ− 1

Δ/2− 1

))
+

1

2Δ+2

(
Δ

Δ/2

)
+

1

4

=
1

2
− 1

2Δ

(
Δ− 1

Δ/2− 1

)
+

1

2Δ+2

(
Δ

Δ/2

)
.

Since Δ− 1 is odd,
(
Δ−1
Δ/2

)
=
(

Δ−1
Δ/2−1

)
and thus

(
Δ

Δ/2

)
=
(
Δ−1
Δ/2

)
+
(

Δ−1
Δ/2−1

)
= 2

(
Δ−1

Δ/2−1

)
.

We conclude that

α2(Δ) =
1

2
− 1

2Δ+1

(
Δ

Δ/2

)
+

1

2Δ+2

(
Δ

Δ/2

)
=

1

2
− 1

2Δ+2

(
Δ

Δ/2

)
,

as claimed.
Finally assume that Δ ≥ 3 and Δ is odd. Then, by Lemma 3.1,

α2(Δ) =
1

Δ2Δ

�Δ
2 �∑

k=0

(
Δ

k

)
· k +

1

Δ2Δ

Δ∑
k=�Δ

2 �

(
Δ

k

)
· Δ
2
.
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By symmetry of the binomial distribution, 1
2Δ

∑Δ
k=�Δ

2 �
(
Δ
k

)
= 1

2 and thus

α2(Δ) =
1

Δ2Δ

Δ−1
2∑

k=0

(
Δ

k

)
· k +

1

4

=
1

2Δ

Δ−1
2∑

k=1

(Δ− 1)!

(Δ− k)!(k − 1)!
+

1

4

=
1

2Δ

Δ−1
2∑

k=1

(
Δ− 1

k − 1

)
+

1

4

=
1

2
· 1

2Δ−1

Δ−1
2 −1∑
k=0

(
Δ− 1

k

)
+

1

4
.

Since Δ− 1 is even, and again using symmetry of the binomial distribution,

1

2Δ−1

Δ−1
2 −1∑
k=0

(
Δ− 1

k

)
+

1

2
· 1

2Δ−1

(
Δ− 1

(Δ− 1)/2

)
=

1

2
.

We conclude that

α2(Δ) =
1

4
+

1

2

(
1

2
− 1

2Δ

(
Δ− 1

(Δ− 1)/2

))
= α2(Δ− 1),

as claimed.

Appendix B. Improved bound in the absence of abstentions. The fol-
lowing technical lemma completes the proof of Theorem 7.1.

Lemma B.1. For αk as in Lemma 4.2, limk→∞ αk(3) ≥ 67/108.

Proof. By Lemma 4.2,

αk(3) =
1

3k3

∑
v∈Pk(3)

(
Δ

v

)
min{W k · v}

=
1

3k3

∑
x∈{1,...,k}3

min
{
W k · (ek,x1 + ek,x2 + ek,x3)

}
=

1

3k3

∑
x∈{1,...,k}3

(
3−maxj=1,...,k

{
j

k

(
χ[x1 ≥ j] + χ[x2 ≥ j] + χ[x3 ≥ j]

)})
.

For x ∈ {1, . . . , k}3, denote by x̄ = (x̄1, x̄2, x̄3) the vector that contains the entries
of x in nondecreasing order. Then

αk(3) = 1− 1

3k4

∑
x∈{1,...,k}3

max
{
3x̄1, 2x̄2, x̄3

}
= 1− βk

3k4
,

where βk =
∑

x∈{1,...,k}3 max{3x̄1, 2x̄2, x̄3}, and we are interested in bounding βk

from above. Grouping vectors x ∈ {1, . . . , k}3 by the number of entries that are
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equal to k,

βk = βk−1 + 3
∑

x∈{1,...,k−1}2
max

{
3x̄1, 2x̄2, k

}
+3
∑

y∈{1,...,k−1} max
{
3y, 2k

}
+ 3k

= βk−1 + 6

k−1∑
y=1

k−1∑
z=y+1

max
{
3y, 2z, k

}
+O(k2)

≤ βk−1 + 6


 k
3 �∑

y=1

k−1∑
z=y+1

max
{
2z, k

}
+ 6

k−1∑
y=�k

3 �

k−1∑
z=y+1

max
{
3y, 2z

}
+O(k2).(B.1)

The last inequality arises because y = k/3 appears in both sums when k is divisible
by 3. We now claim that for all k ∈ N,


 k
3 �∑

y=1

k−1∑
z=y+1

max
{
2z, k

} ≤ 13

36
k3 +O(k2)(B.2)

and

k−1∑
y=� k

3 �

k−1∑
z=y+1

max
{
3y, 2z

} ≤ 43

108
k3 +O(k2).(B.3)

Before verifying that these claims are indeed correct, we show that they imply the
desired result. By substituting (B.2) and (B.3) into (B.1),

βk ≤ βk−1 +
13

6
k3 +

43

18
k3 +O(k2) =

41

9
k3 +O(k2).

Since β0 = 0,

βk ≤
k∑

�=1

(
41

9
�3 +O(k2)

)
=

41

36
k4 +O(k3)

and thus

lim
k→∞

αk(3) ≥ 1− lim
k→∞

βk

3k4
=

67

108
.

It remains to show correctness of (B.2) and (B.3). For (B.2) we obtain


 k
3 �∑

y=1

k−1∑
z=y+1

max
{
2z, k

}
=


 k
3 �∑

z=2

(z − 1)max
{
2z, k

}
+
⌊k
3

⌋ k−1∑
z=
 k

3 �+1

max
{
2z, k

}

≤

 k

3 �∑
z=2

(z − 1)k +
⌊k
3

⌋ 
 k
2 �∑

z=
 k
3 �+1

k + 2
⌊k
3

⌋ k−1∑
z=� k

2 �
z

= k

(
k2

18
+O(k)

)
+

k2

3

(
k

6
+O(1)

)
+

2k

3

(
3k2

8
+O(k)

)

=
13

36
k3 +O(k2),

as claimed.
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For (B.3), observe that

k−1∑
y=� k

3 �

k−1∑
z=y+1

max
{
3y, 2z

} ≤

 2k

3 �∑
y=� k

3 �


 3y
2 �∑

z=y+1

3y +


 2k
3 �∑

y=� k
3 �

k−1∑
z=� 3y

2 �
2z +

k−1∑
y=� 2k

3 �

k−1∑
z=y+1

3y

=


 2k
3 �∑

y=�k
3 �
3y
⌊y
2

⌋
+


 2k
3 �∑

y=� k
3 �

k−1∑
z=� 3y

2 �
2z +

k−1∑
y=� 2k

3 �
3y(k − 1− y).(B.4)

For the second sum,


 2k
3 �∑

y=� k
3 �

k−1∑
z=� 3y

2 �
2z =

k−1∑
z=� k

2 �
2z ·

∣∣∣∣∣
{
y ∈

{⌈
k

3

⌉
, . . . ,

⌊
2k

3

⌋}
:

⌈
3y

2

⌉
≤ z

}∣∣∣∣∣
≤

k−1∑
z=� k

2 �
2z ·

∣∣∣∣∣
{
y ∈

{⌈
k

3

⌉
, . . . ,

⌊
2k

3

⌋}
: y ≤ 2z

3

}∣∣∣∣∣
=

k−1∑
z=� k

2 �
2z ·

∣∣∣∣∣
{
y ∈

{⌈
k

3

⌉
, . . . ,

⌊
2z

3

⌋}}∣∣∣∣∣
≤

k−1∑
z=� k

2 �
2z ·

(
2z

3
− k

3

)
,

and by substituting this into (B.4),

k−1∑
y=� k

3 �

k−1∑
z=x+1

max
{
3y, 2z

} ≤

 2k

3 �∑
y=�k

3 �
3y

⌊
y

2

⌋
+

k−1∑
z=� k

2 �
2z

(
2z

3
− k

3

)
+

k−1∑
y=� 2k

3 �
3y
(
k − 1− y

)

≤

 2k

3 �∑
y=�k

3 �

3y2

2
+

k−1∑
z=� k

2 �

(
4z2

3
− 2kz

3

)
+

k−1∑
y=� 2k

3 �

(
3ky − 3y2

)
.

Using multiple times that
∑�

y=1 y = �2/2 + O(�) and
∑�

y=1 y
2 = �3/3 + O(�2) we

obtain

k−1∑
y=� k

3 �

k−1∑
z=y+1

max
{
3y, 2z

} ≤ 3

2
· 1
3

(
8k3

27
− k3

27

)
+

4

3
· 1
3

(
k3 − k3

8

)
− 2

3
· k
2

(
k2 − k2

4

)

+ 3 · k
2

(
k2 − 4k2

9

)
− 3 · 1

3

(
k3 − 8k3

27

)
+O(k2)

=
43

108
k3 +O(k2),

which shows (B.3).
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Frank Kelly, Hervé Moulin, Ariel Procaccia, and the anonymous referees are gratefully
acknowledged.



OPTIMAL IMPARTIAL SELECTION 1285

REFERENCES

[1] N. Alon and M. Naor, Coin-flipping games immune against linear-sized coalitions, SIAM J.
Comput., 22 (1993), pp. 403–417.

[2] N. Alon, F. Fischer, A. D. Procaccia, and M. Tennenholtz, Sum of us: Strategyproof
selection from the selectors, in Proceedings of the 13th Conference on Theoretical Aspects
of Rationality and Knowledge, 2011, pp. 101–110.

[3] S. Antonakopoulos, Fast leader-election protocols with bounded cheaters’ edge, in Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, 2006, pp. 187–196.

[4] N. Bousquet, S. Norin, and A. Vetta, A near-optimal mechanism for impartial selection, in
Proceedings of the 10th International Conference on Web and Internet Economics, 2014,
pp. 133–146.

[5] J. Cooper and N. Linial, Fast perfect-information leader-election protocols with linear im-
munity, Combinatorica, 15 (1995), pp. 319–332.

[6] G. de Clippel, H. Moulin, and N. Tideman, Impartial division of a dollar, J. Econom.
Theory, 139 (2008), pp. 176–191.

[7] O. Dekel, F. Fischer, and A. D. Procaccia, Incentive compatible regression learning, J.
Comput. System Sci., 76 (2010), pp. 759–777.

[8] S. Dobzinski, N. Nisan, and M. Schapira, Truthful randomized mechanisms for combinatorial
auctions, in Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
2006, pp. 644–652.

[9] U. Feige, Noncryptographic selection protocols, in Proceedings of the 40th Symposium on
Foundations of Computer Science, 1999, pp. 142–152.

[10] U. Feige, A. Flaxman, J. D. Hartline, and R. Kleinberg, On the competitive ratio of the
random sampling auction, in Proceedings of the 1st International Workshop on Internet
and Network Economics, 2005, pp. 878–886.

[11] A. Fiat, A. V. Goldberg, J. D. Hartline, and A. R. Karlin, Competitive generalized
auctions, in Proceedings of the 34th Annual ACM Symposium on Theory of Computing,
2002, pp. 72–81.

[12] E. Friedman, P. Resnick, and R. Sami, Manipulation-resistant reputation systems, in Al-

gorithmic Game Theory, N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani, eds.,
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