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We study mechanisms that select members of a set of agents based on nominations by other members and that
are impartial in the sense that agents cannot in�uence their own chance of selection. Prior work has shown
that deterministic mechanisms for selecting any �xed number k of agents are severely limited and cannot
extract a constant fraction of the nominations of the k most highly nominated agents. We prove here that
this impossibility result can be circumvented by allowing the mechanism to sometimes but not always select
fewer than k agents. This added �exibility also improves the performance of randomized mechanisms, for
which we show a separation between mechanisms that make exactly two or up to two choices and give upper
and lower bounds for mechanisms allowed more than two choices.
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1 INTRODUCTION
We consider the setting of impartial selection �rst studied by Alon et al. [1] and by Holzman and
Moulin [8]. The goal in this setting is to select members of a set of agents based on nominations
cast by other members of the set, under the assumption that agents will reveal their true opinion
about other agents as long as they cannot in�uence their own chance of selection. The assumption
of impartiality seems justi�ed, and is routinely made, in many situations where a strong correlation
exists between expertise and self-interest, like the selection of representatives from within a group
and the use of peer review in the allocation of funding and scienti�c or academic credit.

Formally, the impartial selection problem can be modeled by a directed graph with n vertices, one
for each agent, in which edges correspond to nominations. A selection mechanism then chooses,
possibly using randomization, a set of vertices for any given graph, and it is impartial if the chances
of a particular vertex to be chosen do not depend on its outgoing edges. As impartiality may prevent
us from simply selecting the vertices with maximum indegree, corresponding to the most highly
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Table 1. Bounds on α for α-optimal impartial selection of at most or exactly k agents. Deterministic exact
mechanisms, not shown in the table, cannot be α-optimal for any α > 0.

nominated agents, it is natural to instead approximate this objective. For an integer k , a selection
mechanism is called a k-selection mechanism if it selects at most k vertices of any input graph. We
call a k-selection mechanism exact if it always selects exactly k agents. A k-selection mechanism is
called α -optimal, for α ≤ 1, if for any input graph the sum of indegrees of the selected vertices is at
least α times the sum of the k largest indegrees.

In prior work, a striking separation was shown between mechanisms that do not use randomness
and those that do. On the one hand, no deterministic exact α-optimal mechanism exists for selecting
any �xed number of agents and any α > 0 [1]. On the other, a mechanism that aligns the agents
along a random permutation from left to right and selects a single agent with a maximum number
of nominations from its left achieves a bound of α = 1/2 [7]. This bound is in fact best possible
subject to impartiality [1].

Our Contribution. We show here that a relaxation of exactness is another remedy to the strong
impossibility result concerning exact deterministic k-selection mechanisms in that it enables the
design of α-optimal mechanisms for constant α . Speci�cally, for k = 2, running the permutation
mechanism on a �xed instead of a random permutation but selecting an agent for each direction of
that permutation is 1/2-optimal. The factor of 1/2 is again best possible. Flexibility in the exact
number of selected agents is bene�cial also in the realm of randomized impartial mechanisms:
given a set of three agents, for example, a 3/4-optimal mechanism exists selecting two agents or
fewer, whereas the best mechanism selecting exactly two agents is only 2/3-optimal. For 2-selection
from an arbitrary number of agents, we give a randomized exact 7/12-optimal mechanism and a
randomized 2/3-optimal mechanism that is not exact. Finally we provide upper and lower bounds
on the performance of mechanisms allowed to make more than two choices. A summary of our
current state of knowledge is shown in Table 1.

RelatedWork. The theory of impartial decision making was �rst considered by de Clippel et al. [6],
for the case of a divisible resource to be shared among a set of agents. The di�erence between
divisible and indivisible resources disappears for randomized mechanisms, but the mechanisms
of de Clippel et al. allow for fractional nominations and do not have any obvious consequences
for our setting. Impartial selection is a rather fundamental problem in social choice theory, with
applications ranging from the selection of committees to academic peer review. The problem we
consider here was �rst studied by Holzman and Moulin [8] and Alon et al. [1], the articles of
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Holzman and Moulin and of Fischer and Klimm [7] provide a good introduction to its history
and early literature. When agents are interested purely in their own selection the problem can be
viewed as an example of mechanism design without money, an agenda put forward by Procaccia
and Tennenholtz [13]. In peer review the need for impartiality is only one of a number of issues
along with information elicitation and incentivization of e�ort, and a natural approach would be to
combine our mechanisms with mechanisms seeking to achieve the other goals [e.g., 17, 18]. Other
authors have taken a more holistic view of peer review and peer selection and have aimed for more
practical and more heuristic mechanisms [2, 9]. Tamura and Ohseto [16] were the �rst to consider
impartial mechanisms selecting more than one agent and showed that these can circumvent some of
the impossibility results of Holzman and Moulin. An axiomatic characterization of the mechanisms
was later given by Tamura [15]. Mackenzie [10] gave a characterization of symmetric randomized
selection mechanisms for the special case where each agent nominates exactly one other agent.
Inspiration for our title, and indeed for relaxing the requirement to always select the same number
of agents, comes from the power of multiple choices in load balancing, where even two choices can
lead to dramatically lower average load [e.g., 12]. The related concept of resource augmentation,
�rst used by Sleator and Tarjan [14], is a common technique in the analysis of online algorithms
and has also been applied to a problem in mechanism design [5]. Mackenzie [11] recently studied
the relationship between impartiality, exactness, and randomization for various mechanisms used
over the centuries in electing the pope.

Open Problems. With the exception of mechanisms that are asymptotically optimal, when many
agents are selected [1] or when agents receive many nominations [4], only very little was previously
known about the impartial selection of more than one agent. Our understanding of 2-selection is
now much better, with some room for improvement in the case of randomized mechanisms. About
k-selection for k > 2, in particular about deterministic mechanisms for this task, we still know
relatively little. This lack of understanding is witnessed by the fact that the optimal deterministic
mechanism selecting up to two agents, one for each direction of a permutation, does not generalize
in any obvious way to the selection of more than two agents. We may also hope for stronger
techniques to bound the power of randomized mechanism that are universally impartial in the
sense that they can be obtained as a convex combination of deterministic impartial mechanisms,
and to design mechanisms that are impartial but not universally impartial. We will see in Section 4
that optimal mechanisms in the latter category may exhibit rather unintuitive nonmonotonicity
properties, which in turn complicates their analysis. Meanwhile, the existence of a near-optimal
mechanism in the limit of many selected agents suggests that the upper rather than the lower bounds
may be correct. Table 1 illustrates that the relaxation of exactness can bene�t both deterministic
and randomized mechanisms, and that randomization can be bene�cial independently of exactness.
It is not clear, however, whether either of these statements is true for all values of n and k .

2 PRELIMINARIES
For n ∈ N, let

Gn =
{
(N ,E) : N = {1, . . . ,n},E ⊆ {(i, j ) ∈ N × N : i , j}

}

be the set of directed graphs with n vertices and no loops. Let G =
⋃

n∈N Gn . For G = (N ,E) ∈ G
and S,X ⊆ N let

δ−S (X ,G ) = |{(j, i ) ∈ E : G = (N ,E), j ∈ S, i ∈ X }|

denote the sum of indegrees of vertices in X from vertices in S . We use δ− (X ,G ) as a shorthand for
δ−N (X ,G ) and denote by ∆k (G ) = maxX ⊆N , |X |=k δ

− (X ,G ). When X = {i} for a single vertex i , we
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write δ−S (i,G ) instead of δ−S ({i},G ). Most of the time, the graph G will be clear from context. We
then write δ−S (X ) instead of δ−S (X ,G ), δ− (X ) instead of δ− (X ,G ), and ∆k instead of ∆k (G ).

For n,k ∈ N , letXn = {X : X ⊆ {1, . . . ,n}} be the set of subsets of the �rst n natural numbers and
letXn,k = {X ∈ Xn : |X | = k } be the subset of these sets with cardinality k . A k-selection mechanism
for G is then given by a family of functions f : Gn → [0, 1]

⋃k
l=0 Xn,l that maps each graph to a

probability distribution on subsets of at most k of its vertices. In a slight abuse of notation, we use
f to refer to both the mechanism and individual functions from the family.

We call mechanism f deterministic if f (G ) ∈ {0, 1}
⋃k
l=0 Xn,l , i.e., if f (G ) puts all probability mass

on a single set for all G ∈ G; and exact if ( f (G ))X = 0 for every n ∈ N, G ∈ Gn , and X ∈ Xn with
|X | < k , i.e., if the mechanism never selects a set X of vertices with strictly less than k vertices.

Mechanism f is impartial on G′ ⊆ G if on this set of graphs the probability of selecting
vertex i does not depend on its outgoing edges, i.e., if for every pair of graphs G = (N ,E)
and G ′ = (N ,E ′) in G′ and every i ∈ N ,

∑
X ∈Xn,i ∈X ( f (G ))X =

∑
X ∈Xn,i ∈X ( f (G

′))X whenever
E \ ({i} × N ) = E ′ \ ({i} × N ). Note that while impartiality requires the outgoing edges of a vertex i
to have no in�uence at all on whether i is selected or not, they may in�uence both the number and
the identities of other vertices selected. All mechanisms we consider are impartial on G, and we
simply refer to such mechanisms as impartial mechanisms.

Finally, a k-selection mechanism f is α-optimal on G′ ⊆ G, for α ≤ 1, if for every graph in
G′ the expected sum of indegrees of the vertices selected by f di�ers from the maximum sum of
indegrees for any k-subset of the vertices by a factor of at most α , i.e., if

inf
G ∈G′

∆k (G )>0

EX∼f (G )[δ− (X ,G )]
∆k (G )

≥ α .

We call a mechanism α-optimal if it is α-optimal on G.
For randomized mechanisms, and as far as impartiality and α-optimality are concerned, we can

restrict attention to mechanisms that are symmetric, i.e., invariant with respect to renaming of
the vertices [e.g., 7]. It may further be convenient to view a k-selection mechanism as assigning
probabilities to vertices rather than sets of vertices, with the former summing to at most k or
exactly k for each graph. By the Birkho�-von Neumann theorem [3], the two views are equivalent
in the following way.

Lemma 2.1. Let n ∈ N, p ∈ [0, 1]n , andm =
∑n

i=1 pi . Then there exists a random variable Y with
values in [0, 1]Xn, bmc∪Xn, dme such that for all i ∈ {1, . . . ,n},

∑
X ∈Xn,i ∈X P[Y = X ] = pi .

Proof. First consider the case where m is an integer, and let M = {1, . . . ,m} and M̄ = {m +
1, . . . ,n}. Since

∑n
i=1 pi =m, there existsQ ∈ [0, 1]n×m such that for all i ∈ {1, . . . ,n},

∑
j ∈M∪M̄ qi j =

1 and
∑

j ∈M qi j = pi , and for all j ∈ M ∪ M̄ ,
∑n

i=1 qi j = 1. Thus Q is doubly stochastic, and by the
Birkho�-von Neumann theorem can be written as a convex combination of permutation matrices.
For each individual permutation matrix R there then exists a set X ∈ Xn,m such that ri j = 1 for
some j ∈ M if and only if i ∈ X , which shows the claim.

Whenm is an arbitrary number, we can write p as a convex combination of two vectors p ′ and
p ′′ such that

∑n
i=1 p

′
i = bmc and

∑n
i=1 p

′′
i = dme. The claim then follows by applying the above

reasoning independently to p ′ and p ′′. �

3 DETERMINISTIC MECHANISMS
Focusing on the exact case, Alon et al. showed that deterministic k-selection mechanisms cannot
be α-optimal for any k ∈ {1, . . . ,n − 1} and any α > 0. This result is a rather simple observation
for k = 1, but quite surprising when k > 1. For (n − 1)-selection in particular, any deterministic
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ALGORITHM 1: The bidirectional permutation mechanism, using extraction mechanism Ξπ

Input: Graph G = (N ,E)
Output: Set {i1, i2} ⊆ N of at most two vertices
Let π = (1, . . . ,n);
i1 := Ξπ (G ) ; . select vertex based on forward edges

i2 := Ξπ̄ (G ); . select vertex based on backward edges

return {i1, i2};

mechanism that is both exact and impartial must sometimes exclude precisely the unique vertex
with positive indegree. While it is not di�cult to convince ourselves that a relaxation of exactness
is not helpful in the case of 1-selection, we will exhibit momentarily a deterministic impartial
mechanism that for any graph selects either one or two vertices whose overall indegree is at least
the largest indegree of any vertex in the graph.

There are two ways to interpret this result. Since the largest indegree is at least half of the sum
of the two largest indegrees, relaxing exactness allows us to circumvent the strong lower bound of
Alon et al. when k = 2. Alternatively, for k = 1, the tradeo� between impartiality and quality of the
outcome disappears if one is allowed to sometimes but not always select an additional vertex. This
kind of resource augmentation result, comparing an optimal algorithm to one from a restricted
class that is given additional resources, is commonly used in the analysis of online algorithms and
has recently also been applied to truthful mechanisms for facility assignment [5].

To explain our mechanism in detail we need some additional notation. Let N = {1, . . . ,n}. For a
graph G = (N ,E) and a permutation π = (π1, . . . ,πn ) of N , denote by

Eπ =
{
(u,v ) ∈ E : πi = u, πj = v for some i, j with 1 ≤ i < j ≤ n

}

the set of forward edges of G with respect to π . Denote by π̄ the permutation obtained by reading π
backwards, such that π̄i = πn+1−i for i = 1, . . . ,n. Finally, for a permutation π and j ∈ {1, . . . ,n},
let π<j = {π1,π2, . . . , j} \ {j} denote the set of vertices in the pre�x of π up to but not including j.

The �rst mechanism we consider, which we call the bidirectional permutation mechanism,
considers the vertices one by one according to a �xed permutation π and in each step compares
the current vertex πj to a single candidate vertex πl with l < j. In determining the indegree of
the candidate vertex πl it takes into account the outgoing edges of vertices π1, . . . ,πl−1. For the
indegree of the current vertex πj it takes into account the outgoing edges of vertices π1, . . . ,πj−1,
with the exception of πl . If the latter is greater than or equal to the former, πj becomes the new
candidate, and the candidate after the �nal step is the �rst vertex selected by the mechanism. The
same procedure is then applied with permutation π̄ to �nd a second vertex. A formal description
of the bidirectional permutation mechanism is given as Algorithm 1. It is formulated in terms of
Algorithm 2, which we call the extraction mechanism and which is identical to a mechanism of
Fischer and Klimm except for its use of a given permutation rather than a random one.

It is worth noting that the bidirectional permutation mechanism may select only one vertex,
namely if the same vertex is chosen for both directions of the permutation. This happens for
example in the graph of Figure 1(a).

To see that the bidirectional permutation mechanism is impartial, we �rst note that this is true
for a single run of the extraction mechanism. Indeed, the outcome of the latter is in�uenced by the
outgoing edges of any given vertex only when that vertex can no longer be selected.

Lemma 3.1. The extraction mechanism is impartial.
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1:6 Antje Bjelde, Felix Fischer, and Max Klimm

ALGORITHM 2: The extraction mechanism Ξπ
Input: Graph G = (N ,E), permutation (π1, . . . ,πn ) of N
Output: Vertex i ∈ N
Set i := π1, d := 0 ; . candidate vertex and its indegree from its left

for j = 2, . . . ,n do
if δ−π<πj \{i }

(πj ) ≥ d then . compare current vertex and candidate

Set i := πj , d := δ−π<πj
(πj ) ; . current vertex becomes new candidate

end
end
return i;

π1 π2 π3

(a)

π1 π2 π3

(b)

Fig. 1. Graphs for which the bidirectional permutation mechanism returns only one vertex (a) and is only
1/2-optimal (b).

Impartiality of the bidirectional permutation mechanism then follows because the union of the
results of k impartial 1-selection mechanisms yields an impartial k-selection mechanism.

Lemma 3.2. Let f1, . . . , fk be impartial 1-selection mechanisms. Then the mechanism that selects the
vertices selected by at least one of the mechanisms f1, . . . , fk is an impartial k-selection mechanism.

Proof. By impartiality of fl , for l = 1, . . . ,k , the outgoing edges of a vertex do not in�uence
whether this vertex is selected by fl . This holds for any l and any vertex, so it also holds for the
mechanism that selects the vertices selected by at least one of the mechanisms. �

We now proceed to show that the bidirectional permutation mechanism is 1/2-optimal, starting
from the observation that the vertex selected by Ξπ has a maximum number of incoming forward
edges with respect to π .

Lemma 3.3. If i = Ξπ (G ), then δ−π<i
(i,G ) = maxj=1, ...,n {δ

−
π< j

(j,G )}.

Proof. Let d∗ = maxj=1, ...,n {δ
−
π< j

(j )}, and let i∗ be an arbitrary vertex with δ−π<i∗
(i∗) = d∗.

When i∗ is considered by the mechanism, so are at least d∗ − 1 of its incoming forward edges, one
of which may originate from the current candidate i , i.e., δ−π<i∗ \{i }

(i∗) ∈ {d∗ − 1,d∗}.
If δ−π<i∗ \{i }

(i∗) = d∗ or both δ−π<i∗ \{i }
(i∗) = d∗ − 1 and δ−π<i

(i ) ≤ d∗ − 1, then i∗ becomes the new
candidate. Since d will be set to d∗, any other vertex that possibly becomes a candidate after i∗ has
d∗ incoming forward edges as well, establishing the claim for this case.

If, on the other hand, both δ−π<i∗ \{i }
(i∗) = d∗ − 1 and δ−π<i

(i ) = d∗, then i remains the candidate.
As d = d∗ any further candidate has d∗ incoming forward edges as in the �rst case. �

Theorem 3.4. The bidirectional permutation mechanism is impartial and 1/2-optimal.

Proof. Impartiality follows directly from Lemma 3.1 and Lemma 3.2.
Now consider a graph G = (N ,E), a vertex i∗ with δ− (i∗) = ∆1, and let i1 = Ξπ (G ) and

i2 = Ξπ̄ (G ). By Lemma 3.3, δ−π<i1
(i1) ≥ δ

−
π<i∗

(i∗) and δ−π̄<i2
(i2) ≥ δ

−
π̄<i∗

(i∗), regardless of whether
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ALGORITHM 3: The 2-partition mechanism with permutation
Input: Graph G = (N ,E) with n ≥ 2
Output: Vertices i1, i2 ∈ N .
Assign each i ∈ N to A1 or A2 independently and uniformly at random;
Choose a permutation (π1, . . . ,πn ) of N uniformly at random;
for j = 1, 2 do

i j := Ξπ ,Aj (G ) ; . select one vertex from each of the two sets

end
. if one set is empty, select 2nd vertex from other set

if A2 = ∅ then choose i2 uniformly at random from A1 \ {i1};
if A1 = ∅ then choose i1 uniformly at random from A2 \ {i2};
return {i1, i2};

ALGORITHM 4: The extraction mechanism Ξπ ,A restricted to a set A ⊆ N

Input: Graph G = (N ,E), permutation (π1, . . . ,πn ) of N , set A ⊆ N
Output: Vertex i ∈ N
Set i := π1, d := 0 ; . candidate vertex and indegree from its left

for j = 2, . . . ,n do
S := (N \A) ∪ (π<πj \ {i}) ; . vertices that cannot be selected

if πj ∈ A and δ−S (πj ) ≥ d then . compare current vertex and candidate
Set i := πj , d := δ−S∪{i } (πj ) ; . current vertex becomes new candidate

end
end
return i;

i1 , i2 or i1 = i2. Thus
δ− ({i1, i2}) ≥ δ

−
π<i1

(i1) + δ
−
π̄<i2

(i2)

≥ δ−π<i∗
(i∗) + δ−π̄<i∗

(i∗) = δ− (i∗) = ∆1 ≥
1
2
∆2,

as claimed. �

To see that the analysis is tight, consider the graph in Figure 1(b). For this graph, the mechanism
selects vertices π2 and π1 with an overall indegree of 1, while the maximum overall indegree of
a set of two vertices is 2. We will see later, in Theorem 6.1, that the bound of 1/2 is in fact best
possible.

4 RANDOMIZED MECHANISMS
In light of the results of the previous section, it is natural to ask whether a relaxation of exactness
enables better bounds also for randomized mechanisms. We answer this question in the a�rmative
and give the �rst nontrivial bounds for both exact and inexact 2-selection mechanisms, as well as
an example that shows a strict separation between the two classes.

We begin by considering an exact mechanism, which we call the 2-partition mechanism with
permutation. The mechanism randomly partitions the set of vertices into two sets A1 and A2 such
that P[i ∈ A1] = P[i ∈ A2] = 1/2 for all i ∈ N , A1 ∪A2 = N , and A1 ∩A2 = ∅. It then selects one
vertex from each of the sets by applying the extraction mechanism with a random permutation,
while also taking into account incoming edges from the respective other set. Algorithm 3 is a formal
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1:8 Antje Bjelde, Felix Fischer, and Max Klimm

description of the mechanism. It uses a restricted version of the extraction mechanism, given as
Algorithm 4 and denoted Ξπ ,A for a set A ⊆ N . The properties of the latter can be summarized in
terms of the following two results.

Lemma 4.1. The restricted extraction mechanism is impartial.

Proof. When A is empty, the mechanism selects the same vertex for any graph and therefore is
impartial. Otherwise the �rst vertex inA to appear in π becomes a candidate and only vertices fromA
are considered thereafter, so the mechanisms selects a vertex from A. Moreover, the mechanism
only takes into account outgoing edges of vertices that can no longer be selected, either because
they are not in A or because they have already been considered and are not currently the candidate.
This directly implies impartiality. �

Lemma 4.2. If i = Ξπ ,A (G ), then δ−
(N \A)∪π<i

(i,G ) ≥ maxj ∈A{δ−(N \A)∪π< j
(j,G )}.

Proof. The statement is trivial in case A = ∅. Otherwise, let i∗ ∈ arg maxj ∈A{δ−(N \A)∪π< j
(j )}.

Analogously to the proof of Lemma 3.3, we consider the iteration in which the mechanism decides
whether i∗ should become the new candidate. Let i be the candidate at the beginning of that
iteration.

If δ−
(N \A)∪π<i∗ \{i }

(i∗) = d∗ or both δ−
(N \A)∪π<i∗ \{i }

(i∗) = d∗ − 1 and δ−
(N \A)∪π<i

(i ) ≤ d∗ − 1, then
i∗ becomes the new candidate and d is set to δ−

(N \A)∪π<i∗
(i∗) = d∗. If, on the other hand, both

δ−
(N \A)∪π<i∗ \{i }

(i∗) = d∗ − 1 and δ−
(N \A)∪π<i

(i ) = d∗, then i stays the candidate and d remains equal
to d∗. In both cases we have d = d∗, which implies that any future candidate j has at least d incoming
edges from (N \A) ∪ π<j . �

We now obtain our result for the 2-partition mechanism with permutation.

Theorem 4.3. The 2-partition mechanism with permutation is impartial and 7/12-optimal.

Proof. Impartiality follows directly from Lemma 3.2 and Lemma 4.1.
Now consider a graph G = (N ,E), two distinct vertices i∗1, i

∗
2 ∈ N with δ− (i∗1 ) + δ− (i∗2 ) = ∆2,

and let i1 and i2 be the two vertices selected by the mechanism from sets A1 and A2, respectively.
We distinguish two cases, depending on whether i∗1 and i∗2 are in the same set or di�erent sets of
the partition (A1,A2).

First assume that i∗1 and i∗2 are in di�erent sets, and without loss of generality that i∗1 ∈ A1 and
i∗2 ∈ A2. In the permutation π used by the mechanism and chosen uniformly at random, an arbitrary
vertex i ∈ N \ {i∗1, i

∗
2 } appears before or after each of i∗1 or i∗2 with equal probability, so

P
[
i ∈ A1 ∩ π<i∗1

]
= P

[
i ∈ A1 ∩ π̄<i∗1

]
= P

[
i ∈ A2 ∩ π<i∗2

]
= P

[
i ∈ A2 ∩ π̄<i∗2

]
=

1
4
.

When i∗1 is considered by the mechanism, so are any incoming edges from vertices in A2 and any
incoming edges from vertices in A1 that appear in π before i∗1 . Thus, by Lemma 4.2,

E
[
δ− (i1)

]
≥ E

[
δ−A2∪π<i∗1

(i∗1 )
]
=

∑
i ∈N
P

[
i ∈ A2 ∪ (A1 ∩ π<i∗1 )

]
· χ[(i, i∗1 ) ∈ E],

where χ denotes the indicator function on Boolean expressions, i.e., χ [ϕ] = 1 if expression ϕ holds
and χ[ϕ] = 0 otherwise. By taking i∗2 out of the sum and using that i∗1 and i∗2 are in di�erent sets of
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the partition and thus P[i∗2 ∈ A2] = 1, we obtain

E
[
δ− (i1)

]
≥

∑
i ∈N \{i∗2 }

(
P[i ∈ A2 ∪ (A1 ∩ π<i∗1 )] · χ[(i, i∗1 ) ∈ E]

)
+ P[i∗2 ∈ A2 ∪ (A1 ∩ π<i∗1 )] · χ[(i∗2, i

∗
1 ) ∈ E]

=
∑

i ∈N \{i∗2 }

(
(1 − P[i ∈ (A1 ∩ π̄<i∗1 )]) · χ[(i, i∗1 ) ∈ E]

)
+ χ[(i∗2, i

∗
1 ) ∈ E]

=
∑

i ∈N \{i∗2 }

(
1 −

1
4

)
χ[(i, i∗1 ) ∈ E] + χ[(i∗2, i

∗
1 ) ∈ E]

≥
3
4

∑
i ∈N

χ[(i, i∗1 ) ∈ E]

=
3
4
δ− (i∗1 ).

As the same line of reasoning applies to i∗2 , we have E
[
δ− (i2)

]
≥ 3

4δ
− (i∗2 ) and conclude for this case

that

E


δ− (i1, i2)

∆2


≥

3
4δ
− (i∗1 ) +

3
4δ
− (i∗2 )

δ− (i∗1 ) + δ
− (i∗2 )

≥
3
4
.

Now assume that i∗1 and i∗2 are in the same set of the partition, and without loss of generality
that i∗1, i

∗
2 ∈ A1 and δ− (i∗1 ) ≥ δ− (i∗2 ). In the permutation π used by the mechanism and chosen

uniformly at random, an arbitrary vertex i ∈ N \ {i∗1, i
∗
2 } appears before, between, or after i∗1 and i∗2

with probability 1/3 each, so

P
[
i ∈ A2

]
=

1
2

and

P
[
i ∈ A1 ∩ π<i∗1 ∩ π<i∗2

]
= P

[
i ∈ A1 ∩ ((π<i∗1 ∩ π̄<i∗2 ) ∪ (π̄<i∗1 ∩ π<i∗2 ))

]

= P
[
i ∈ A1 ∩ π̄<i∗1 ∩ π̄<i∗2

]
=

1
6
.

If i∗1 ∈ π̄<i∗2 , a possible edge from i∗2 to i∗1 would be considered by the mechanism, and by Lemma 4.2,

E
[
δ− (i1)

]
≥ E

[
δ−A2∪π<i∗1

(i∗1 )
]

≥
∑

i ∈N \{i∗2 }

(
P[i ∈ A2 ∪ (A1 ∩ π<i∗1 )] · χ[(i, i∗1 ) ∈ E]

)
+ P[i∗2 ∈ A2 ∪ (A1 ∩ π<i∗1 )] · χ[(i∗2, i

∗
1 ) ∈ E]

=
∑

i ∈N

(
(1 − P[i ∈ (A1 ∩ π̄<i∗1 )]) · χ[(i, i∗1 ) ∈ E]

)
+ P[i∗2 ∈ (A1 ∩ π<i∗1 )] · χ[(i∗2, i

∗
1 ) ∈ E].

Since we assumed that i∗1 ∈ π̄<i∗2 , we have P
[
i ∈ (A1 ∩ π̄<i∗1 )

]
= P

[
i ∈ (A1 ∩ π̄<i∗1 ∩ π̄<i∗2 )

]
= 1/6 and

obtain

E
[
δ− (i1)

]
≥

5
6

∑
i ∈N

χ[(i, i∗1 ) ∈ E] =
5
6
δ− (i∗1 ).

Analogously, if i∗2 ∈ π̄<i∗1 ,

E
[
δ− (i1))

]
≥ E

[
δ−A2∪π<i∗2

(i∗2 )
]
=

5
6
δ− (i∗2 ).
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ALGORITHM 5: The randomized bidirectional permutation mechanism
Input: Graph G = (N ,E)
Output: Set {i1, i2} ⊆ N of at most two vertices
Choose a permutation (π1, . . . ,πn ) of N uniformly at random;
Invoke Algorithm 1, the bidirectional permutation mechanism, for G and π

As each of the two events takes places with probability 1/2, we conclude for this case that

E


δ− (i1 ∪ i2)

∆2


≥

1
2

(
5
6δ
− (i∗1 ) +

5
6δ
− (i∗2 )

)
δ− (i∗1 ) + δ

− (i∗2 )
=

5
12
.

Averaging over both cases we �nally obtain

α ≥
1
2

( 3
4
+

5
12

)
=

7
12
,

as claimed. �

The 2-partition mechanism with permutation improves on the best deterministic mechanism
for 2-selection, and it is natural to ask whether it can be improved upon further by a randomized
2-selection mechanism that is not exact. The answer to this question is not obvious: while the
ability to select fewer vertices may make impartiality easier to achieve, actually selecting fewer
vertices runs counter to the objective of selecting vertices with a large sum of indegrees. Indeed, in
the case of 1-selection, no separation exists between exact and inexact mechanisms. For 2-selection,
an obvious approach turns out to be e�ective: taking the best deterministic mechanism, which uses
both directions of a �xed permutation, and invoking it for a random permutation. The resulting
mechanism, which we call the randomized bidirectional permutation mechanism, is shown as
Algorithm 5.

Theorem 4.4. The randomized bidirectional permutation mechanism is impartial and 2/3-optimal.

Proof. The proof of Theorem 3.4 shows impartiality for any permutation that does not depend
on the input to the mechanism, including one that is chosen uniformly at random.

Now consider a graph G = (N ,E), two distinct vertices i∗1, i
∗
2 ∈ N with δ− (i∗1 ) + δ

− (i∗2 ) = ∆2, and
let i1 = Ξπ (G ) and i2 = Ξπ̄ (G ) for the permutation π used by the mechanism. Assume without loss
of generality that i∗1 appears before i∗2 in π , i.e., that i∗1 ∈ π<i∗2 . As π was chosen uniformly at random,
an arbitrary vertex i ∈ N \ {i∗1, i

∗
2 } appears before, between, or after i∗1 and i∗2 with probability 1/3

each. By applying Lemma 3.3 to both i1 and i2,

E


δ− ({i1, i2})

∆2


≥ E



δ−π<i1
(i1) + δ

−
π̄<i2

(i2)

∆2



≥ E



max
{
δ−π<i∗1

(i∗1 ),δ
−
π<i∗2

(i∗2 )
}
+max

{
δ−π̄<i∗1

(i∗1 ),δ
−
π̄<i∗2

(i∗2 )
}

∆2



.

(1)
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Recall that possibly i1 = i2, and note that the bound is correct in this case as well. To bound the
right-hand side of (1), we use the assumption that i∗1 ∈ π<i∗2 and observe that

E
[
max

{
δ−π<i∗1

(i∗1 ),δ
−
π<i∗2

(i∗2 )
}]
≥ E

[
δ−π<i∗2

(i∗2 )
]

=
∑
i ∈N

P
[
i ∈ π<i∗2

]
· χ

[
(i, i∗2 ) ∈ E

]

=
∑
i ∈N

(1 − P
[
i ∈ π̄<i∗2

]
) · χ

[
(i, i∗2 ) ∈ E

]

=
2
3

∑
i ∈N

χ
[
(i, i∗2 ) ∈ E

]

=
2
3
δ− (i∗2 ).

Note that this bound only gets better when (i∗1, i
∗
2 ) ∈ E, as by assumption P[i∗1 ∈ π<i∗2 ] = 1. An

analogous argument for the other direction yields

E
[
max

{
δ−π̄<i∗1

(i∗1 ),δ
−
π̄<i∗2

(i∗2 )
}]
≥

2
3
δ− (i∗1 ),

and by plugging both bounds into (1) we obtain

E


δ− (i1) + δ
− (i2)

∆2


≥

2
3δ
− (i∗1 ) +

2
3δ
− (i∗2 )

δ− ({i∗1, i
∗
2 })

≥
2
3
,

as claimed. �

It is not hard to see that our analysis of the 2-partition mechanism with permutation and the
bidirectional permutation mechanism is tight.

Theorem 4.5. The 2-partition mechanism with permutation is at most 7/12-optimal. The random-
ized bidirectional permutation mechanism is at most 2/3-optimal.

Proof. Consider a graph with a large number of vertices and only two edges (i, i∗1 ) and (i, i∗2 ),
and observe that the maximum overall indegree of any set of two vertices is 2.

The 2-partition mechanism with permutation independently and uniformly at random assigns
each of i∗1 , i∗2 , and i to one of two sets, such that in particular i∗1 and i∗2 are in the same set with
probability 1/2 and in di�erent sets with probability 1/2. If i∗1 and i∗2 are in the same set, the
mechanism selects at most one of them. If i is in the respective other set, i.e., with probability 1/2, this
happens with probability 1. If i is in the same set, it happens only with probability 2/3, namely when i
appears before either i∗1 and i∗2 in a permutation π chosen uniformly at random. If i∗1 and i∗2 are in
di�erent sets, one of them is selected with probability 1, the other only when i appears before it in π ,
which happens with probability 1/2. In summary we thus expect α ≤

(
1
2 (

1
2 +

1
2 ·

2
3 )+

1
2 (1+

1
2 )

)
/2 = 7

12 .
The randomized bidirectional permutation mechanism selects one of i∗1 and i∗2 with probability 1,

the other only when i appears between i∗1 and i∗2 in a permutation π chosen uniformly at random,
which happens with probability 1/3. Thus we conclude that α ≤

(
1
3 · 2 +

2
3 · 1

)
/2 = 2

3 . �

As special cases of Theorem 6.2 and Theorem 6.3 in Section 6, we will respectively obtain upper
bounds of 3/4 and 2/3 for 2-selection mechanisms without and with exactness. These bounds
suggest that neither the randomized bidirectional permutation mechanism nor the 2-partition
mechanism with permutation is the best mechanism within its class. Figure 2 shows a 3/4-optimal
impartial mechanism selecting at most two of three vertices, which certi�es that the randomized
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Fig. 2. A 3/4-optimal impartial mechanism for n = 3 and k = 2 given explicitly by the selection probabilities
for all 16 voting graphs. The bound of 3/4 is best possible by Theorem 6.2.

bidirectional permutation mechanism is indeed not the best and that relaxing exactness is strictly
bene�cial.

The mechanism of Figure 2 can be obtained as the solution of an optimization problem to
maximize the expected overall indegree of the vertices selected subject to impartiality, and its lack
of universal impartiality illustrates one of the main obstacles that prevent us from obtaining tighter
bounds and generalize our results to the selection of more than two vertices. Here, a mechanism is
called universally impartial if it is a convex combination of deterministic impartial mechanisms.
Mechanisms that are impartial but not universally impartial are notoriously di�cult to analyze and
sometimes exhibit rather peculiar behavior. The last two rows of the rightmost column of Figure 2
for example show a decrease in the probability of selecting two of the vertices as their indegrees go
up, and this is both necessary for 3/4-optimality and di�cult to justify.

5 SELECTING MORE THAN TWO AGENTS
The central component of our best inexact mechanisms, its use of one or both of the directions of a
random permutation, does not generalize in any obvious way to the selection of additional vertices.
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ALGORITHM 6: The k-partition mechanism with permutation
Input: Graph G = (N ,E) with n ≥ 2
Output: Vertices i1, . . . , ik ∈ N
Assign each i ∈ N independently and uniformly at random to one of k sets A1, . . . ,Ak ;
Choose a permutation (π1, . . . ,πn ) of N uniformly at random;
for j = 1, . . . ,k do

i j := Ξπ ,Aj (G ) ; . select one vertex from each set using extraction mechanism

end
for j = 1, . . . ,k do

if Aj = ∅ then
Choose i j uniformly at random from N \ {i1, . . . , ik };

end
end
return {i1, . . . , ik };

Our understanding of deterministic mechanisms for the selection of more than two vertices is
particularly limited, but we can obtain a bound of 1/k by observing that the selection of only two
instead of k vertices reduces the guarantee by a factor of at most 2/k and applying this observation
to the bidirectional permutation mechanism.

A better bound for the randomized case, even with exactness, is achieved by a natural gener-
alization of the 2-partition mechanism with permutation that uses a partition into k sets. The
general mechanism is described formally as Algorithm 6. Its impartiality is easy to see, and we
use an argument similar to that in the proof of Lemma 4.2 to obtain a performance guarantee that
approaches 1 − 1/e as k grows.

Theorem 5.1. The k-partition mechanism with permutation is impartial and α-optimal for α =
k

k+1

(
1 − ( k−1

k )k+1
)
.

Proof. Impartiality follows directly from Lemma 3.2 and Lemma 4.1.
Now consider a graphG = (N ,E) and a set I ∗ of vertices with |I ∗ | = k and

∑
i ∈I ∗ δ

− (i ) = ∆k , and
denote the vertex selected by the mechanism from Aj by i j , for j = 1, . . . ,k . For a �xed set Aj with
Aj ∩ I

∗ , ∅, let i∗ ∈ Aj ∩ I
∗ such that i ∈ π<i∗ for all i ∈ Aj ∩ I

∗ \ {i∗}. Then,

δ− (i j ) ≥ δ
−
N \Aj

(i∗) + δ−Aj∩π<i∗
(i∗)

= δ−N \(Aj∪I ∗ ) (i
∗) + δ−(Aj∩π<i∗ )\I ∗

(i∗) + δ−I ∗ (i
∗),

where the inequality holds by a similar argument as in the proof of Lemma 4.2 and the equality
because we have chosen i∗ to be the vertex in Aj ∩ I

∗ that appears last in π .
In the permutation π used by the mechanism and chosen uniformly at random, a given vertex

appears after i∗ with probability |Aj ∩ I
∗ |/( |Aj ∩ I

∗ | + 1), so

E
[
δ−(Aj∩π<i∗ )\I ∗

(i∗)
���� |Aj ∩ I

∗ | = l
]

=
∑

i ∈N \I ∗
P

[
i ∈ Aj

��� |Aj ∩ I
∗ | = l

]
· P

[
i ∈ π<i∗

��� |Aj ∩ I
∗ | = l

]
· χ

[
(i, i∗) ∈ E

]

=
1
k
·

l

l + 1

(
E

[
δ− (i∗) − δ−I ∗ (i

∗)
])
,

ACM Transactions on Economics and Computation, Vol. 0, No. 0, Article 1. Publication date: April 2017.
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where we have used that for i ∈ N \ I ∗, P
[
i ∈ Aj

��� |Aj ∩ I
∗ | = l

]
= P

[
i ∈ Aj

]
= 1/k . Similarly,

E
[
δ−N \(Aj∪I ∗ ) (i

∗)
���� |Aj ∩ I

∗ | = l
]
=

∑
i ∈N \I ∗

P
[
i ∈ N \Aj

��� |Aj ∩ I
∗ | = l

]
· χ

[
(i, i∗) ∈ E

]

=
k − 1
k

(
E

[
δ− (i∗) − δ−I ∗ (i

∗)
])
.

Thus

E
[
δ− (i j )

���� |Aj ∩ I
∗ | = l

]
≥

(
k − 1
k
+

l

k (l + 1)

)
· E

[
δ− (i∗) − δ−I ∗ (i

∗)
]
+ E

[
δ−I ∗ (i

∗)
]

≥

(
k − 1
k
+

l

k (l + 1)

)
∆k

k
,

and by linearity of expectation,

E


∑k
j=1 δ

− (i j )

∆k


=

1
∆k

k∑
j=1
E

[
δ− (i j )

]

=
1
∆k

k∑
j=1

k∑
l=1
E

[
δ− (i j )

��� |I
∗ ∩Aj | = l

]
· P

[
|I ∗ ∩Aj | = l

]

≥
k

∆k

k∑
l=1

(
k − 1
k
+

l

k (l + 1)

)
∆k

k
·

(
k

l

) (
1
k

) l (
1 −

1
k

)k−l

=
k − 1
k

k∑
l=1

(
k

l

) (
1
k

) l (
1 −

1
k

)k−l
+

k∑
l=0

l

k (l + 1)

(
k

l

) (
1
k

) l (
1 −

1
k

)k−l

=
k − 1
k

*
,
1 −

(
1 −

1
k

)k
+
-
+

k∑
l=0

l

k (l + 1)

(
k

l

) (
1
k

) l (
1 −

1
k

)k−l
. (2)

We can now calculate

k∑
l=0

l

k (l + 1)

(
k

l

) (
1
k

) l (
1 −

1
k

)k−l
=

k∑
l=0

1
k

(
1 −

1
l + 1

) (
k

l

) (
1
k

) l (
1 −

1
k

)k−l

=
1
k
−

1
k

k∑
l=0

1
l + 1

·
k!

l !(k − l )!

(
1
k

) l (
1 −

1
k

)k−l

=
1
k
−

1
k

k∑
l=0

1
k + 1

(
k + 1
l + 1

)
k

(
1
k

) l+1 (
1 −

1
k

) (k+1)−(l+1)

=
1
k
−

1
k + 1

k+1∑
l=1

(
k + 1
l

) (
1
k

) l (
1 −

1
k

)k+1−l

=
1
k
−

1
k + 1

*
,
1 −

(
1 −

1
k

)k+1
+
-
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and simplify (2) to conclude that

E


∑k
j=1 δ

− (i j )

∆k


≥

(
1 −

1
k

)
*
,
1 −

(
1 −

1
k

)k
+
-
+

1
k
−

1
k + 1

*
,
1 −

(
1 −

1
k

)k+1
+
-

=
k

k + 1
*
,
1 −

(
k − 1
k

)k+1
+
-
,

as claimed. �

It is again not hard to see that this analysis is tight.

Theorem 5.2. If the k-partition mechanism with permutation is α-optimal, then α ≤ k
k+1

(
1 −

( k−1
k )k+1

)
.

Proof. Consider a graph with a large number of vertices and only k edges (i, i∗1 ), . . . , (i, i
∗
k ). Let

I ∗ = {i∗1, . . . , i
∗
k }.

When partitioning the vertices into the sets A1,. . . ,Ak , it is without loss of generality to assume
that i ∈ A1. For each j ∈ {2, . . . ,k }, a vertex with indegree 1 is selected from Aj if and only if
I ∗ ∩Aj , ∅. This happens with probability 1 − ( k−1

k )k , so by linearity of expectation the expected
sum of indegrees of the vertices selected from A2 ∪ · · · ∪Ak is

(k − 1)*
,
1 −

(
1 −

1
k

)k
+
-
.

From A1, a vertex with indegree 1 is selected if A1 ∩ π̄<i ∩ I ∗ , ∅, and this condition is in fact
necessary with probability going to 1 as the number of vertices with indegree 0 goes to in�nity.
For any l ∈ {0, . . . ,k } we have P[|A1 ∩ I ∗ | = l] =

(
k
l

)
(1/k )l (1 − 1/k )k−l and P

[
A1 ∩ I ∗ ∩ π̄<i ,

∅
��� |A1 ∩ I

∗ | = l
]
= l/(l + 1). The probability of selecting a vertex with indegree 1 from A1 ∩ I

∗ thus
goes to

k∑
l=0

l

l + 1

(
k

l

) (
1
k

) l (
1 −

1
k

)k−l
as the number of vertices goes to in�nity.

The maximum overall indegree of any set of k vertices in the graph is k , so

α ≤
k − 1
k

*
,
1 −

(
1 −

1
k

)k
+
-
+

k∑
l=0

l

k (l + 1)

(
k

l

) (
1
k

) l (
1 −

1
k

)k−l
.

This expression is equal to the lower bound in (2), and we conclude that the analysis in the proof
of Theorem 5.1 is tight. �

6 UPPER BOUNDS
We conclude by giving upper bounds on the performance of impartial k-selection mechanisms
for any value of k , and for both deterministic mechanisms and randomized mechanisms with and
without exactness.

The �rst set of bounds applies to deterministic mechanisms and shows that the bidirectional
permutation mechanism is the best deterministic mechanism for k = 2.

Theorem 6.1. Consider a deterministic k-selection mechanism that is α-optimal on Gn , where
k < n. Then α ≤ (k − 1)/k .
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Proof. Consider a graph G = (V ,E) with n vertices where k + 1 vertices are arranged in a
directed cycle and the remaining vertices do not have any outgoing edges, i.e., V = {1, . . . ,n} and
E = {(i, i + 1) : i = 1, . . . ,k } ∪ {(k + 1, 1)}. Denote by F the set of vertices selected from G by an
arbitrary deterministic k-selection mechanism, and observe that there exists i ∈ {1, . . . ,k + 1} \ F .
Let G ′ = (V ,E \ ({i} ×V )), and observe that by impartiality, the mechanism does not select i from
G ′. The mechanism thus selects at most k − 1 out of the k vertices with positive indegree in G ′ and
cannot be more than (k − 1)/k-optimal. �

The next result result applies to randomized mechanisms without the requirement of exactness
and shows that the mechanism of Figure 2 for the case when k = 2 and n = 3 is best possible.
Theorem 6.2. Consider a k-selection mechanism that is impartial and α-optimal on Gn , where

k < n. Then

α ≤




1
2 if k = 1
3
4 if k = 2

2k
2k+1 if 3 ≤ k = n − 1
k+1
k+2 otherwise.

Proof. It is without loss of generality to assume that the k-selection mechanism is symmetric,
i.e., that it assigns equal probabilities to indistinguishable vertices.

First assume that k ≤ n − 2, and consider the two graphs on n vertices where k + 2 of the vertices
have edges as in Figure 3 and the remaining vertices do not have any incoming or outgoing edges.
It is easily veri�ed that any symmetric impartial mechanism must assign probabilities as shown in
Figure 3. In the graph on the left, the mechanism chooses a set of vertices with expected overall
indegree (k + 1)p1, while the maximum overall indegree for a set of k vertices is k , so

α ≤
(k + 1)p1

k
.

In the graph on the right, the mechanism chooses a set of vertices with expected overall indegree
2p1 + 2kp2, while the maximum overall indegree for a set of k vertices is 2k . Thus

α ≤
2p1 + 2kp2

2k
=
p1

k
+ p2 ≤

p1

k
+

(
1 −

2p1

k

)
= 1 −

p1

k
.

where the second inequality holds because 2p1 + kp2 ≤ k by the graph on the right. In summary,

α ≤ min
{
(k + 1)p1

k
, 1 −

p1

k

}
≤

k + 1
k + 2

,

where the second inequality holds because the minimum takes its maximum value when the two
terms are equal.

Now assume that k = n − 1 and consider the two graphs on n vertices and edges as in Figure 3.
Any symmetric impartial mechanism must again assign probabilities as shown. In the graph on
the left, the mechanism chooses a set of vertices with expected overall indegree kp1, while the
maximum overall indegree for a set of k vertices is k , so

α ≤ p1.

In the graph on the right, the mechanism chooses a set of vertices with expected overall indegree
2p1 + 2(k − 1)p2, while the maximum overall indegree for a set of k vertices is 2(k − 1) + 1. Thus

α ≤
2p1 + 2(k − 1)p2

2(k − 1) + 1
≤

2p1 + 2(k − 1) ( k
k−1 −

2p1
k−1 )

2k − 1
=

2k − 2p1

2k − 1
,
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p1

p1

p1

p1 . . .

p1 p1

p2

p2

p2 . . .

Fig. 3. Impartial probability assignment for two graphs with n vertices

p1

p1

p1 p1

p2

p2 p2

p2

Fig. 4. Impartial probability assignment for three graphs with n = 3

where the second inequality holds because 2p1 + (k − 1)p2 ≤ k by the graph on the right. In
summary,

α ≤ min
{
p1,

2k − 2p1

2k − 1

}
≤

2k
2k + 1

,

where the second inequality holds because the minimum takes its maximum value when the two
terms are equal.

In the special case where k = 2, an additional graph can be used to obtain a stronger bound. For
this, consider situations where 3 vertices have outgoing edges as in Figure 4 and the remaining
n − 3 vertices do not have any outgoing edges. Note that the �rst two graphs are the same as
those in Figure 3 when k = 2. It is again easily veri�ed that any impartial mechanism must assign
probabilities as shown. Thus

α ≤ min
{ 2p1

2
,

6p2

4

}
≤

{
p1, 3 − 3p1

}
≤

3
4
,

where the �rst inequality holds by the �rst and third graph, the second inequality because 2p1+p2 ≤

2 by the second graph, and the third inequality because the minimum takes its maximum value
when the two terms are equal.

The bound for k = 1 is easily obtained by considering the special case of the graphs in Figure 3
where two vertices have outgoing edges as shown and the others do not have any outgoing edges.
Then

α ≤ p1 ≤ 1/2,
where the inequalities hold respectively by the �rst and second graph. �

Our �nal result concerns randomized mechanisms that are exact. It certi�es that the 2-partition
mechanism with permutation is best possible within this class when k = 2 and n = 3, and together
with the mechanism of Figure 2 shows a strict separation between randomized mechanisms with
and without exactness. It does not preclude improvements over the 2-partition mechanism with
permutation when n > 3. A comparison with Theorem 6.2 further suggests that the in�uence of
the exactness constraint may be limited to cases where almost all vertices are selected.
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p1 p1

p1

. .
.

p1 p2

p2

. .
.

Fig. 5. Impartial probability assignment for two graphs with n vertices
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. . .
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. . .

p4

p3

p2

p5p5
. . .

p6

p3

p3

. . .

p6

p6

p6

p7p7
. . .

Fig. 6. Impartial probability assignment for five graphs with n vertices

Theorem 6.3. Consider a k-selection mechanism that is exact, impartial, and α-optimal on Gn ,
where k < n. Then

α ≤




1
2 if k = 1
k

k+1 if 2 ≤ k = n − 1
5
7 if 2 = k = n − 2

7k3+5k2−6k+12
7k3+13k2−2k if 3 ≤ k = n − 2

k+1
k+2 otherwise.

Proof. First assume that 2 ≤ k = n − 1, and consider the two graphs with n = k + 1 vertices
shown in Figure 5. By impartiality, the probability of selecting the vertex at the top left must be
equal for both graphs. Any symmetric mechanism assigns equal probabilities to all vertices in the
left graph and equal probabilities to all vertices with indegree 1 in the right graph. Denoting the
former probability by p1 and the latter by p2, exactness implies that (k + 1)p1 = p1 + kp2 = k , so
p1 = k/(k + 1), p2 = (k − k/(k + 1))/k = k/(k + 1), and thus α ≤ p2 = k/(k + 1).

Now assume that 3 ≤ k = n − 2, and consider the �ve graphs with �ve vertices shown in
Figure 6. Using similar arguments as above it is easily established that any symmetric impartial
mechanism must assign probabilities as shown. By the �rst and second graph, p1 = k/(k + 2) and
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p1 + kp2 ≥ k − 1, and thus

p2 ≥
k − 1
k
−
p1

k
=
k − 1
k
−

1
k + 2

=
(k − 1) (k + 2) − k

k (k + 2)
. (3)

By the third graph, p2 + p3 + p4 + (k − 1)p5 = k and thus
1
k
p4 +

k − 1
k

p5 = 1 −
1
k
p2 −

1
k
p3 ≤ 1 −

(k − 1) (k + 2) − k
k2 (k + 2)

−
1
k
p3 =

k3 + k2 + 2
k2 (k + 2)

−
1
k
p3, (4)

where the inequality holds by (3). By the fourth and �fth graph, 2p3+p6 ≥ 1 and 3p6+ (k −1)p7 = k ,
and thus

p7 =
k

k − 1
−

3
k − 1

p6 ≤
k

k − 1
−

3
k − 1

(1 − 2p3) =
1

k − 1
(6p3 + k − 3). (5)

Finally, by the third and �fth graph,

α ≤ min
{

1
k
p4 +

k − 1
k

p5,p7

}
≤ min

{
k3 + k2 + 2
k2 (k + 2)

−
1
k
p3,

1
k − 1

(6p3 + k − 3)
}
, (6)

where the second inequality holds by (4) and (5). The minimum takes its maximum value when the
two terms are equal, i.e., when

k3 + k2 + 2
k2 (k + 2)

−
1
k
p3 =

1
k − 1

(6p3 + k − 3),

6
k − 1

p3 +
1
k
p3 =

k3 + k2 + 2
k2 (k + 2)

−
k − 3
k − 1

,

7k − 1
k (k − 1)

p3 =
(k3 + k2 + 2) (k − 1) − k2 (k + 2) (k − 3)

k2 (k + 2) (k − 1)
.

Thus

p3 =
(k3 + k2 + 2) (k − 1) − k2 (k + 2) (k − 3)

k (k + 2) (7k − 1)

=
k4 + k3 + 2k − k3 − k2 − 2 − k4 + k3 + 6k2

k (k + 2) (7k − 1)

=
k3 + 5k2 + 2k − 2
k (k + 2) (7k − 1)

,

and by plugging this into (6),

α ≤
k3 + k2 + 2
k2 (k + 2)

−
k3 + 5k2 + 2k − 2
k2 (k + 2) (7k − 1)

=
7k4 + 7k3 + 14k − k3 − k2 − 2 − k3 − 5k2 − 2k + 2

k2 (k + 2) (7k − 1)

=
7k3 + 5k2 − 6k + 12
k (k + 2) (7k − 1)

.

In the special case where 2 = k = n − 2, only a single vertex is chosen with probability p5 in the
third graph of Figure 6, so by symmetry p2 = p3 and p4 = p5. Thus

p7 = 2 − 3p6 ≤ 2 − 3(1 − 2p3) = 6p3 − 1 = (6 − 6p4) − 1 = 5 − 6p4,

and
α ≤ min

{
p4,p7

}
≤ min

{
p4, 5 − 6p4

}
≤

5
7
,
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where the last inequality holds because the minimum again takes its maximum value when the
two terms are equal.

The bounds for the remaining two cases, of 1/2 if k = 1 and of (k + 1)/(k + 2) otherwise, follow
directly from Theorem 6.2. �
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