Tropical Mechanism Design

Michael Joswig (TUB), Max Klimm (HUB), Sylvain Spitz (HUB)

How to sell m items?

+ Define prices p_{J} for each bundle of items $J \subseteq\{1, \ldots, m\}$
+ Buyer has valuation $x_{j} \in[0,1]$ according to a probability function f_{j} for each item $j \in\{1, \ldots, m\}$
+ Buyer takes bundle which maximizes her utility:

$$
u(\mathbf{x})=\max _{J \subseteq\{1, \ldots, m\}}\left(\sum_{j \in J} x_{j}-p_{J}\right)
$$

The set of all \mathbf{x} for which the buyer takes bundle J is called D_{J}
$\rightarrow u$ is a tropical polynomial and the regions D_{J} are separated by its vanishing locus Geometric representation for $m=2$:

Our Goal: Choose optimal prices to maximize the expected revenue

$$
\operatorname{Rev}(\mathbf{p})=\sum_{J \subseteq\{1, \ldots, m\}} \int_{D_{J}} p_{J} \operatorname{df}(\mathbf{x})=\int_{[0,1]^{m}}(\nabla u(\mathbf{x}) \cdot \mathbf{x}-u(\mathbf{x})) \operatorname{df}(\mathbf{x})
$$

Duality

+ Use the utility u instead of \mathbf{p} as optimization variable and define the optimization program:

$$
\begin{aligned}
& \sup _{u} \int_{[0,1]^{m}}(\nabla u(\mathbf{x}) \cdot \mathbf{x}-u(\mathbf{x})) \mathrm{d} \mathbf{f}(\mathbf{x}) \\
& \text { s.t.: } 0 \leq \frac{\partial u(\mathbf{x})}{\partial x_{j}} \leq 1, \quad u:[0,1]^{m} \rightarrow \mathbb{R} \text { convex }
\end{aligned}
$$

+ Remark: This generalizes the framework to lotteries - we sell tickets for the objects and the buyer gets object j with a probability of $\frac{\partial u(\mathbf{x})}{\partial x_{j}}$ (see [3])
+ The dual optimization problem (by [1])

$$
\begin{aligned}
& \inf _{z_{1}, \ldots, z_{m}} \int_{[0,1]^{m}} \sum_{j=1}^{m} z_{j}(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& \text { s.t.: } \sum_{j=1}^{m} \frac{\partial z_{j}(\mathbf{x})}{\partial x_{j}} \leq(m+1) f(\mathbf{x})+\mathbf{x} \cdot \nabla f(\mathbf{x}) \\
& z_{j}\left(0, \mathbf{x}_{-j}\right)=0, \quad z_{j}\left(1, \mathbf{x}_{-j}\right) \geq 1, \quad z_{j}(\mathbf{x}) \geq 0, \quad j \in\{1, \ldots, m\}
\end{aligned}
$$

where $z_{j}\left(\lambda, \mathbf{x}_{-j}\right)=z_{j}\left(\left(x_{1}, \ldots, x_{j-1}, \lambda, x_{j+1}, \ldots, x_{m}\right)\right)$

SJA-prices

+ Consider the case, where $f_{j} \equiv 1$ for all $j \in\{1, \ldots, m\}$, so \mathbf{x} is drawn uniformly
+ Choose prices depending on the cardinality of the bundle, that is if $\left|J_{1}\right|=\left|J_{2}\right|$, then $p_{J_{1}}=p_{J_{2}}=: p_{\left|J_{1}\right|}$. If p_{1}, \ldots, p_{r-1} are already defined, define p_{r} s.t.:

$$
\begin{equation*}
\operatorname{vol}\left(\bigcup_{J \subseteq\{1, \ldots, r\}}\left\{\mathbf{x} \in[0,1]^{m} \mid \sum_{j \in J} x_{j} \geq p_{|J|}\right\}\right)=\frac{r}{m+1} \tag{1}
\end{equation*}
$$

+ Proven to be optimal for $m \leq 6$ (see [1])
SJA-prices for $m=2$:

Duality for SJA

+ Consider the dual problem for uniform distributions of \mathbf{x} :

$$
\begin{aligned}
\inf _{z_{1}, \ldots, z_{m}} & \int_{[0,1]^{m}} \sum_{j=1}^{m} z_{j}(\mathbf{x}) \mathrm{d} \mathbf{x} \\
\text { s.t.: } & \sum_{j=1}^{m} \frac{\partial z_{j}(\mathbf{x})}{\partial x_{j}} \leq(m+1) \\
& z_{j}\left(0, \mathbf{x}_{-j}\right)=0, \quad z_{j}\left(1, \mathbf{x}_{-j}\right) \geq 1, \quad z_{j}(\mathbf{x}) \geq 0, \quad j \in\{1, \ldots, m\}
\end{aligned}
$$

+ Intuitive description: We search functions z_{1}, \ldots, z_{m} s.t. z_{j} starts with 0 at the "lower" facet
(according to the j-th coordinate) of the $[0,1] m$-dimensional hypercube and ends with at least 1 at the "upper" facet, while the sum of all z_{j} cannot grow too steeply (in their respective direction)
A feasible solution for $m=2$:

Min-Cost-Flow

+ We want to discretize $\frac{\partial z_{i}(\mathbf{x})}{\partial x_{j}}$ on the m-dimensional $(N \times \ldots \times N)$-grid

+ Construction of graph:

Nodes: $V=U \cup B \cup\{s, t\}$, with
$U=\left\{u_{\alpha} \mid \alpha \in\{1, \ldots, N\}^{m}\right\}$ for the cells of the grid
$B=\left\{b_{\alpha_{-j}}^{j} \mid \alpha_{-j} \in\{1, \ldots, N\}^{m-1}, j \in\{1, \ldots, m\}\right\}$ as supplementary nodes on the boundary.

Edges: $E=S \cup F \cup T$, with
$S=\{(s, u) \mid u \in U\}$,
$F=\left\{\left(u_{\alpha}, b_{\alpha_{-j}}^{j}\right) \mid j \in\{1, \ldots, m\}\right\}$,
$T=\{(b, t) \mid b \in B\}$
Capacities: $c(e)=\left\{\begin{array}{ll}m+1, & e \in S \cup F \\ N, & e \in T\end{array} \quad\right.$ Weights: $w(e)= \begin{cases}0, & e \in S \cup T \\ N+1-\alpha_{j}, & e=\left(u_{\alpha}, b_{\alpha_{-j}}^{j}\right)\end{cases}$
\rightarrow Edge-capacities simulate the constraints, weights simulate the objective value

+ Every $(s-t)$-flow of capacity $m N^{m}$ represents a feasible solution for the dual program
+ Get an optimal solution by searching a min-cost-flow for $N \rightarrow \infty$
Graph for $m=2, N=6$:

Advantages:

+ Simpler proof for the optimality of SJA-prices in the 2-item case than existing one + May be adaptable for an arbitrary amount of items (instead of just $m \leq 6$)
+ May help to find a proof for a greater class of distributions and thus fix a flaw in [2]

References

[^0]
[^0]: [7] Y. Giannakopoulos and E. Koutsoupias. .

 21-165, 2018
 [2] Y. Giannakopoulos and E. Koutsoupias.
 Inf Comput 261(Part):432
 261(Part):432-445, 2018.
 [3] J. Rochet.
 Journal of Mathematical mult-time hamition-acobi equations.

