Lectures 1 \& 2 :

Sequences and Series

Prof. Kurt Helmes

Institute of Operations Research
Humboldt-University of Berlin
$6^{\text {th }}$ Summer-School Havanna - ISSEM 2008

$$
\text { Sep. } 22^{t h}-\text { Oct. } 2^{t h}
$$

Table of content

Part 1: Sequences

Part 2: Series

1 Sequences

Part 1.1

Definition of Sequences

Definition: Sequences

A sequence is a function, which is only "fed" with natural numbers:

$$
n \mapsto a(n)=: a_{n} \quad n \in \mathbb{N}_{0}=\{0,1,2,3, \ldots\}
$$

(a possibility: n is an element of an infinite subset of \mathbb{N})

Remark:

In many economic and

business type applications the variable \mathbf{n} is understood to refer to a time point/index.

Ways to describe sequences:

- by a table of values:

> table of values
> $\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)$

- by a transformation rule

$$
\Downarrow \downarrow
$$

recursive

Examples of explicit definitions:

$$
a_{n}=a(n)=n^{2}, \quad n=0,1,2,3, \ldots
$$

Examples of explicit definitions:

Growth of an initial capital K_{0}, with compound interest; the annual

 interest rate is $\mathbf{p} \%$.$$
K_{n}=\left(1+\frac{p}{100}\right)^{n} \cdot K_{0}, \quad n=0,1,2,3, \ldots
$$

Examples of explicit definitions:

$$
f . i .: K_{n}=\left(1+\frac{p}{100}\right)^{n} \cdot K_{0}, \quad n=0,1,2,3, \ldots
$$

$K_{0}=100$ $p=7 \%$

$K_{n}=100 \cdot 1,07^{n}$
$n=0,1,2, \ldots, 24$

Examples of a recursive definition:

Examples of a recursive definition:

(see Newton's method, lectures 5\&6):
The sequence of numbers $\left(a_{n}\right)_{n \geq 0}$ which is definded by the formula:

$$
a_{n+1}=\frac{a_{n}}{2}+\frac{1}{a_{n}}
$$

$a_{0} \neq 0$ any fixed number

Examples of tables of values:

The gross national product of Germany 1980-1990:

Year	real GDP (in Trillion DM)
1980	2.026
1981	2.026
1982	2.004
1983	2.045
1984	2.108
1985	2.149
1986	2.199
1987	2.233
1988	2.314
1989	2.411
1990	2.544

[^0]
Examples of tables of values:

The values of the German stock index for 1999; $d_{1}=$ Jan.-DAX1999 is the first value of the finite sequence.

Januar	Februar	März	April	Mai	Juni	Juli	August	September	Oktober	November
5137	5313	4968	4936	5470	5132	5560	5170	5432	5343	5702

Part 1.2

Arithmetic Sequences

Definition: Arithmetic sequences

An arithmetic sequence is a linear (affine) function whose domain is $\mathbb{N}_{0}, \mathbb{N}$ resp.

$$
a_{n}=a_{0}+n d \quad n=0,1,2,3, \ldots,
$$

where:
$a_{0}: y$-intercept
$n:$ variable
$d:$ slope

Example: Arithmetic sequence

Representation: Arithmetic sequences

Explicit form: $\quad a_{n}=a_{0}+n d$

Recursive form:
(a_{0} is given)

$$
\begin{gathered}
a_{n+1}-a_{n}=d \\
\Longleftrightarrow \\
a_{n+1}=a_{n}+d
\end{gathered}
$$

Part 1.3

Geometric Sequences

Definition: Geometric sequences

Geometric sequences are exponential functions whose domain is restricted to $\mathbb{N}_{0}, \mathbb{N}$ resp.

$$
a_{n}=a_{0} q^{n} \quad n=0,1,2,3, \ldots
$$

where:

$$
\begin{aligned}
& a_{0}: y \text {-intercept } \\
& n: \text { variable } \\
& q: \text { "base" / multiplier }
\end{aligned}
$$

Example: Geometric sequence

Representation: Geometric Sequences

Explicit form:

Recursive form:

$$
\frac{a_{n+1}}{a_{n}}=q
$$

$$
\left(a_{0} \neq 0 \text { is given }\right) \mid a_{n+1}-q a_{n}=0
$$

Part 1.4

Properties of Sequences

Concept: Bounded Sequences

A sequence is called bounded if and only if ($\hat{=}$ iff):

$$
\left|a_{n}\right| \leq \text { const., } \quad n=1,2,3, \ldots
$$

Example of a

sequence

$$
a_{n}=(-1)^{n} \frac{1}{n}, \quad n=1,2, \ldots
$$

Example of an

sequence:

$$
a_{n}=n^{2}, \quad n=1,2, \ldots
$$

Monotone increasing / decreasing sequences:

monotone increasing:

$$
a_{n} \leq a_{n+1}
$$

\uparrow

$$
a_{n+1}-a_{n} \geq 0
$$

$n=1,2, \ldots$
monotone decreasing:

$$
a_{n} \geq a_{n+1}
$$

$$
n=1,2, \ldots
$$

Example: Monotone

$$
a_{n}=n^{2}, \quad n=1,2, \ldots
$$

Example: Monotone

$$
a_{n}=\frac{1}{n}, \quad n=1,2, \ldots
$$

Example:

$$
a_{n}=(-1)^{n} \frac{1}{n}, \quad n=1,2, \ldots
$$

Concept: Alternating sequences

A sequence is called alternating iff:

$$
\begin{aligned}
& a_{n} \neq a_{n+1}, \quad n=1,2, \ldots \\
& \text { and: } a_{n} \cdot a_{n+1}<0
\end{aligned}
$$

Example: Alternating sequence

$$
a_{n}=(-1)^{n} \frac{1}{n}, \quad n=1,2, \ldots
$$

Concept: Convergent/divergent sequences

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n} \text { exists } \\
& \Leftrightarrow\left(a_{n}\right)_{n} \text { is convergent }
\end{aligned}
$$

$\lim _{n \rightarrow \infty} a_{n}$ does not exist

$$
\Leftrightarrow\left(a_{n}\right)_{n} \text { is divergent }
$$

Definition: $\lim _{n \rightarrow \infty}\left(a_{n}\right)=A$

For any $\epsilon>0$ there is an integer N_{ϵ} such that for all $n \geq N_{\epsilon}$:

$$
\left|a_{n}-A\right| \leq \epsilon
$$

Figure 1: Illustration of the definition of the limit

Example:

sequence

$a_{n}=(-1)^{n} \frac{1}{n}, \quad n=1,2, \ldots$

Example: A divergent sequence

$$
a_{n}=n^{2}, \quad n=1,2, \ldots
$$

A convergence theorem

Every bounded and monotone increasing sequence does converge

Every bounded and monotone decreasing sequence does converge

Example: bounded and monotone increasing

$$
a_{n}=1-\frac{1}{n}, \quad n=1,2, \ldots
$$

2 Series

Part 2.1

Definition: Series

Definition: A finite series

A finite series is a
 finite sum of numbers.

Definition: Infinite series

An infinite series is the limit of the sequence of partial sums associated with a given sequence $\left(a_{i}\right)_{i \geq 1}$.

$$
\sum_{i=1}^{\infty} a_{i}:=\lim _{n \rightarrow \infty}\left\{\sum_{i=1}^{n} a_{i}\right\}=\lim _{n \rightarrow \infty}\left\{s_{n}\right\}
$$

Sequence of partial sums:

Given: A sequence $\left(a_{i}\right)_{i \geq 1}$:
a_{1}

$$
\rightarrow s_{1}=a_{1}
$$

$a_{1} \quad a_{2}$
$\rightarrow s_{2}=a_{1}+a_{2}$
$\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}$
$\rightarrow s_{3}=a_{1}+a_{2}+a_{3}$
$a_{1} \quad a_{2} \quad a_{3} \cdots a_{n}$

$$
\rightarrow s_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

Sequence of partial sums:

i.e., the sequence $\left(a_{i}\right)_{i \geq 1}$ generates, by the operation of summation, the partial sums $\left(s_{n}\right)_{n \geq 1}$:

$$
s_{n}:=a_{1}+a_{2}+\ldots+a_{n}=\sum_{i=1}^{n} a_{i}
$$

Notation:

$$
\sum_{i=1}^{\infty} a_{i}=\lim _{n \rightarrow \infty}\left\{s_{n}\right\}=\lim _{n \rightarrow \infty}\left\{\sum_{i=1}^{n} a_{i}\right\}
$$

If this limit exists, i.e. is a finite number, we call $\sum_{i=1}^{\infty} a_{i}$ a convergent series which is associated with the sequence $\left(a_{i}\right)_{i \geq 1}$

Notation:

$$
\sum_{i=1}^{\infty} a_{i}=\lim _{n \rightarrow \infty}\left\{s_{n}\right\}=\lim _{n \rightarrow \infty}\left\{\sum_{i=1}^{n} a_{i}\right\}
$$

If this limit does not exist we call the series to be divergent.

Example 1:

The given sequence $\left(a_{i}\right)_{i \geq 1}$:
$a_{n}=\frac{1}{n^{2}}, \quad n=1,2,3, \ldots$

Question 1: Does $\sum_{n=1}^{\infty} a_{n}$ exist ???

$$
1+\frac{1}{4}+\frac{1}{9}+\ldots=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \text { converges }
$$

Question 2: Find the value of $\quad \sum_{n=1}^{\infty} a_{n}$?

Example 1:

Graph of the sequence of partial sums $\left(\sum_{i=1}^{n} \frac{1}{i^{2}}\right)_{n=1 \ldots . .30}$

Example 2:

The given sequence $\left(h_{n}\right)_{n \geq 1}$:

$$
h_{n}=\frac{1}{n}, \quad n=1,2,3, \ldots
$$

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4} \ldots=\sum_{n=1}^{\infty} \frac{1}{n}
$$

harmonic series
\rightarrow diverges

Example 2:

Graph of the sequence of partial sums $\left(\sum_{i=1}^{n} \frac{1}{i}\right)_{n=1 \ldots . .30}$

Part 2.2

Arithmetic Series

Defintion: Arithmetic Series

Given: An arithmetic sequence $\left(a_{i}\right)_{i}$:

$$
\sum_{i=1}^{\infty}=\lim \left(\sum_{i=1}^{\infty}\right)
$$

arithmetic series

\rightarrow Example 1:

Gauß as a "schoolboy" ("little" Gauß)

Carl Friedrich Gauß (1777-1855)

Carl Friedrich Gauß, was born in Brunswick; he was a working class kid.

He is considered by many the greatest mathematican of his time (of all times ???).

His contributions include results in mathematics, astronomy, statistic, physics, etc.

Exercise:

Find the explicit representation of the recursively defined arithmetic sequence $\left(a_{n}\right)_{n}$, where
$a_{n+1}-a_{n}=1, \quad a_{0}=0$.

2
Find the value (a formula) of the n-th component of the corresponding sequence of partial sums.

Exercise:

3
 Decide whether or not
 $\sum_{i=0}^{\infty} a_{i}$ converges.

Solution: Question 1

$$
\left.\begin{array}{cccc}
a_{0}=0 & & & \\
a_{1}-a_{0} & =1 \\
a_{2}-a_{1} & =1 & & \\
\vdots & & & \begin{array}{c}
\\
a_{1}=1 \\
a_{n}-a_{n-1}
\end{array} \\
=1 & & \\
a_{2}=1+a_{1}=2 \\
\vdots
\end{array}\right] \begin{aligned}
& a_{n}=\cdots=n
\end{aligned}
$$

$$
\text { i.e.: } \quad\left(a_{n}\right)_{n \geq 0}=(0,1,2,3,4,5, \ldots)
$$

Solution: Question 2

$$
\begin{gathered}
s_{n}=1+2+3+4+5+\ldots+n \\
+ \\
s_{n}=n+n-1+n-2+\ldots+1
\end{gathered}
$$

Solution: Question 3

The limit of this sequence of partial sums does not exist.
The components/elements of the sequence of partial sums do not stabilize (around a finite value). The sequence $\left(s_{n}\right)_{n}$ is unbounded.

$$
\sum_{i=0}^{\infty} a_{i}=\lim _{n \rightarrow \infty}\left(\sum_{i=0}^{n} a_{i}\right)=\lim _{n \rightarrow \infty}\left\{\frac{1}{2} n(n+1)\right\}=\infty
$$

Applications of

Arithmetic Sequences \& Series:

- Linear depreciation of capital goods
- Simple interest calculations

Annuities

Inventory problems

Example: linear depreciation

cost/value of the capital good at time $n=0$ (brand-new)

value (bookvalue) at the end of year n

constant rate of depreciation

Example: linear depreciation

Bookvalue after the 1st year:

$$
R_{1}=R_{0}-r
$$

Bookvalue after the 2nd year:

$$
\begin{array}{l|l}
R_{2}=R_{1}-r & \Leftrightarrow
\end{array} R_{2}-R_{1}=d=-r
$$

Bookvalue after $n^{\text {th }}$ year:

$$
R_{n}=R_{0}-n r
$$

Example: linear depreciation

Find r so that the bookvalue after 5 years is zero, i.e. satisfy the requirement $R_{5}=0$. Idea: Choose

$$
r=\frac{R_{0}}{5} \hat{=} \quad\left(\frac{\text { purchasing cost }}{\text { useful lifetime }}\right)
$$

Recall: Bookvalue after n years:

$$
R_{n}=R_{0}-n r
$$

Part 2.3

Geometric Series

Defintion: Geometric Series

Given: A geometric series $\left(a_{i}\right)_{i \geq 0}$, i.e. $a_{i}=a_{0} q^{i}, q \in \mathbb{R}$:

geometric series

Example 2

"Big" Gauß

cf. compound interest and annuities

Story: Part 1

Imagine that at the time when Christ was born the roman emperor Augustus had been able to invest

$$
\$ 1.23
$$

in a bank account and had been guaranteed an annual interest rate of 3%; assume interest payments to be compounded every year.

Question: Part 1

What was the balance account at the end of the first year of the new
millenium, i.e. after 2000 years
of compounded interest payments ?

Solution: Balance account

Initial amount: $\quad a_{0}=1.23$
After 1 year:

$$
a_{1}=\left(1+\frac{p}{100}\right) a_{0}=q a_{0}, \quad \text { where } q=1.03
$$

After 2 years: $a_{2}=q a_{1}=a_{0} q^{2}$

After n years: $a_{n}=q a_{n-1}=a_{0} q^{n}$

$$
\text { and } n=2000
$$

Solution: Balance account

After 2000 years:

$$
\approx \$ 5.8123 \cdot 10^{25}
$$

Solution: Balance account

After 2000 years:

$\$ 58,123,869,869,669,184,628,080,369.86$
... approx. \$ 58 septillions

Balance account over the years $n=1, \ldots, 2000$

Balance account over the years $n=333, \ldots, 433$

Balance account when Columbus discovered Cuba

Story: Part 2

Assume that besides the initial deposit
"relatives" of the emperor had since then deposited \$ 1.23 in that very account at the beginning of each new year.

Question: Part 2

What was the balance of the account on December 31, 2000 ?

Solution: Part 2

The total value of all deposits together with their compounded interest is given by ($\mathrm{n}=2000$):
$s_{n}=(($ deposit on 01.01.2000 $)+$ its interest $)$
$+(($ deposit on 01.01.1999 $)+$ its compound interest $)$
$+(($ deposit on 01.01.1998) + its compound interest $)$
\vdots
$+($ (deposit when Christ was born $)+$ its compound interest $)$

Solution:

The balance $s_{n}, n=2000$, after 2000 deposits and (compounded) interest payments:

$$
\begin{aligned}
s_{n} & =q a_{0}+q^{2} a_{0}+\cdots+a_{0} q^{2000} \\
& =q a_{0}\left(1+q+q^{2}+\cdots+q^{1999}\right) \\
& =q a_{0} \sum_{i=0}^{1999} q^{i}
\end{aligned}
$$

Problem:

$$
\sum_{i=0}^{1999} q^{i}=: Q_{k}=? ? ?, \quad k=1999
$$

Solution:

$$
\begin{gathered}
Q_{k}=1+q+q^{2}+q^{3}+\ldots+q^{k} \\
- \\
q Q_{k}=q+q^{2}+q^{3}+\ldots+q^{k}+q^{k+1} \\
\Downarrow
\end{gathered}
$$

$Q_{k}-q Q_{k}=1-q^{k+1} \Longrightarrow(1-q) Q_{k}=1-q^{k+1}$

Solution:

$$
Q_{k}-q Q_{k}=1-q^{k+1} \quad \Rightarrow \quad(1-q) Q_{k}=1-q^{k+1}
$$

\Downarrow

$$
Q_{k}=\frac{1-q^{k+1}}{1-q}=\frac{q^{k+1}-1}{q-1} \quad \text { if } \quad q \neq 1
$$

Solution:

$$
Q_{k}=\frac{1-q^{k+1}}{1-q}=\frac{q^{k+1}-1}{q-1} \quad \text { if } \quad q \neq 1
$$

for the special parameter values

$$
Q_{k}=\sum_{i=0}^{1999} q^{i}=\frac{(1.03)^{2000}-1}{(1.03)-1}=\frac{100}{3}\left((1.03)^{2000}-1\right)
$$

Solution:

The solution of the $2^{\text {nd }}$ part of the problem is given by:

$$
s_{n}=q a_{0} Q_{1999}, \quad n=2000
$$

and:

$$
q a_{0} Q_{1999}=q a_{0} \sum_{i=0}^{1999} q^{i} \approx 1.99559 \cdot 10^{27}
$$

Applications

of

geometric Sequences \& Series:

- geometric depreciation
- compound interest calculations
annuities
production theory
dynamical systems

Example: Geometric depreciation

Decreasing amounts of depreciation for using of a capital good; the amounts are a fixed percentage of the remaining value

Examples: Geometric Depreciation

National accounting rules, f.i. the rate of depreciation satisfies:

- $\mathrm{p} \% \leq \frac{200}{\text { lifetime }} \%$
and
- $\mathrm{p} \% \leq 20 \%$

Example: Geometric Depreciation

Formula:
$R_{0} \hat{=}$ initial value (purchasing price)
$A_{1}=\frac{p}{100} R_{0} \hat{=} 1^{\text {st }}$ amount of depreciation

$$
\Rightarrow \quad R_{1}=R_{0}-A_{1}=R_{0}-\frac{p}{100} R_{0}=\left(1-\frac{p}{100}\right) R_{0}
$$

Example: Geometric Depreciation

Formula:

$$
A_{2}=\frac{p}{100} R_{1} \hat{=} 2^{\text {nd }} \text { amount of depreciation }
$$

$$
\begin{aligned}
R_{2}=R_{1}-A_{2} & =\left(1-\frac{p}{100}\right) R_{0}-\frac{p}{100}\left(1-\frac{p}{100}\right) R_{0} \\
& =\left(1-\frac{p}{100}\right)^{2} R_{0}=q^{2} R_{0},
\end{aligned}
$$

where $q=\left(1-\frac{p}{100}\right)$

Example: Geometric Depreciation

Formula:

$$
A_{n}=\frac{p}{100} R_{n-1} \hat{=} n^{\text {th }} \text { amount of depreciation }
$$

Bookvalue at the end of the $n^{\text {th }}$ year:

$$
R_{n}=q^{n} R_{0}
$$

Example: Geometric Depreciation

Table:

Year	bookvaluatthe beginning oftreyea	amount of depreciation	bookvalue at the end of the year
$\mathbf{1}$	460000	92000	368000
$\mathbf{2}$	368000	73600	294400
$\mathbf{3}$	294400	58880	235520
$\mathbf{4}$	235520	47104	188416
$\mathbf{5}$	188416	37683	150733

Part 2.4

Some Properties of Series

Criteria of convergence:

Condition on q so that geometric series

 does converge.

Criteria of convergence:

A simple idea:
Let $q \neq 1$, then

$$
\begin{gathered}
\sum_{i=0}^{\infty} q^{i}=\lim _{n \rightarrow \infty}\left\{\sum_{i=0}^{n} q^{i}\right\}=\lim _{n \rightarrow \infty}\left\{\frac{1-q^{n+1}}{1-q}\right\} \\
=\frac{1}{1-q}-\lim _{n \rightarrow \infty} q^{n+1}
\end{gathered}
$$

Criteria of convergence:

Hence,

- $\quad \sum_{i=0}^{\infty} q^{i}=\frac{1}{1-q} \quad$ converges if $|q|<1$
- $\quad \sum_{i=0}^{\infty} q^{i}$
diverges if $|q| \geq 1$

Criteria of convergence:

(a special case of the dominating principle)
Assumption:
$\left(a_{i}\right)_{i \geq 0}$ is a sequence such that:

$$
\left|a_{i}\right| \leq q^{i} \text { für } 0<q<1 \text { und } i \geq i_{0}
$$

Example of the criterium:

Let $a_{i}=\frac{i}{2^{i}} ; \quad$ the series $\sum_{i=0}^{\infty} \frac{i}{2^{i}} \quad$ converges

Proof: $\frac{i}{2^{i}} \leq\left(\frac{3}{4}\right)^{i}$, if $i \geq 1$, i.e. $q=\frac{3}{4}$ and $i_{0}=1$

Finally!!! ;)

The End

[^0]: Source: Deutsche Bundesbank

