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Part 1.1

Definition of Sequences
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Definition: Sequences

A sequence is a function, which is only “fed”
with natural numbers:

n 7→ a(n) =: an n ∈ N0 = {0, 1, 2, 3, . . . }

(a possibility: n is an element of an infinite subset of N)
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Remark:

In many economic and
business type applications the

variable n is understood to refer
to a time point/index.

Prof. Kurt Helmes Sequences and Series



Ways to describe sequences:

• by a table of values:
table of values
(a1, a2, a3, ..., an)

• by a transformation ruleww� ww�
explicit recursive
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Examples of explicit definitions:

an = a(n) = n2, n = 0, 1, 2, 3, . . .
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Examples of explicit definitions:

Growth of an initial capital K0,
with compound interest; the annual
interest rate is p%.

Kn =
(
1 + p

100

)n · K0, n = 0, 1, 2, 3, . . .
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Examples of explicit definitions:

f .i . : Kn =
(

1 +
p

100

)n
· K0, n = 0, 1, 2, 3, . . .

K0 = 100
p = 7 %y
Kn = 100 · 1, 07n

n = 0, 1, 2, ..., 24

Prof. Kurt Helmes Sequences and Series



Examples of explicit definitions:

f .i . : Kn =
(

1 +
p

100

)n
· K0, n = 0, 1, 2, 3, . . .

K0 = 100
p = 7 %y
Kn = 100 · 1, 07n

n = 0, 1, 2, ..., 24

Prof. Kurt Helmes Sequences and Series



Examples of explicit definitions:

f .i . : Kn =
(

1 +
p

100

)n
· K0, n = 0, 1, 2, 3, . . .

K0 = 100
p = 7 %y
Kn = 100 · 1, 07n

n = 0, 1, 2, ..., 24

Prof. Kurt Helmes Sequences and Series



Examples of a recursive definition:

an+1 = −0.9an + 0.6, a0 = 1, n = 0, 1, 2, 3, . . .
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Examples of a recursive definition:
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Examples of a recursive definition:

(see Newton’s method, lectures 5&6):

The sequence of numbers (an)n≥0 which
is definded by the formula:

an+1 = an

2 + 1
an

a0 6= 0 any fixed number
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Examples of tables of values:

The gross national product of Germany 1980 - 1990:

Year real GDP (in Trillion DM)

1980 2.026

1981 2.026

1982 2.004

1983 2.045

1984 2.108

1985 2.149

1986 2.199

1987 2.233

1988 2.314

1989 2.411

1990 2.544
Source: Deutsche Bundesbank
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Examples of tables of values:

The values of the German stock index for 1999;
d1 = Jan.-DAX1999 is the first value of the finite sequence.

Januar Februar März April Mai Juni Juli August September Oktober November

5137 5313 4968 4936 5470 5132 5560 5170 5432 5343 5702

(di )i≥1
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Part 1.2

Arithmetic Sequences
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Definition: Arithmetic sequences

An arithmetic sequence is a linear (affine) function
whose domain is N0, N resp.

an = a0 + nd n = 0, 1, 2, 3, . . . ,

where:

a0 : y−intercept

n : variable

d : slope
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Example: Arithmetic sequence

an = 1 + 2ny
a0 = 1
d = 2
n = 0, 1, 2, . . .
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Representation: Arithmetic sequences

Explicit form: an = a0 + nd

Recursive form: an+1 − an = d
⇐⇒

(a0 is given) an+1 = an + d
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Part 1.3

Geometric Sequences
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Definition: Geometric sequences

Geometric sequences are exponential functions
whose domain is restricted to N0, N resp.

an = a0qn n = 0, 1, 2, 3, . . .

where:

a0 : y−intercept

n : variable

q : “base ′′/multiplier
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Example: Geometric sequence

an = 2ny
a0 = 1
q = 2
n = 0, 1, 2, . . .
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Representation: Geometric Sequences

Explicit form: an = a0q
n

Recursive form: an+1 = qan

an+1

an
= q ⇐⇒

(a0 6= 0 is given) an+1 − qan = 0
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Representation: Geometric Sequences

Explicit form: an = a0q
n
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an+1

an
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Part 1.4

Properties of Sequences
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Concept: Bounded Sequences

A sequence is called bounded if and only if (=̂ iff):

|an| ≤ const., n = 1, 2, 3, . . .
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Example of a bounded sequence

an = (−1)n 1
n , n = 1, 2, . . .

y
is a

bounded
sequence
|(−1)n 1

n | ≤ 1
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Example of an unbounded sequence:

an = n2, n = 1, 2, . . .

y
is an

unbounded
sequence
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Example of an unbounded sequence:
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Monotone increasing / decreasing sequences:

monotone increasing:
an ≤ an+1x ⇔

an+1 − an ≥ 0
n = 1, 2, . . .

monotone decreasing:
an ≥ an+1y ⇔

an+1 − an ≤ 0
n = 1, 2, . . .

Prof. Kurt Helmes Sequences and Series



Monotone increasing / decreasing sequences:

monotone increasing:
an ≤ an+1x ⇔

an+1 − an ≥ 0
n = 1, 2, . . .

monotone decreasing:
an ≥ an+1y ⇔

an+1 − an ≤ 0
n = 1, 2, . . .

Prof. Kurt Helmes Sequences and Series



Monotone increasing / decreasing sequences:
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Example: Monotone increasing

an = n2, n = 1, 2, . . .

y
is a

monotone
increasing
sequence

(n + 1)2 =
n2 + 2n+1
≥ n2
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Example: Monotone increasing

an = 1
n , n = 1, 2, . . .

y
is a

monotone
decreasing
sequence

1
(n+1) =

n
n+1 ·

1
n + 2n+1

≤ 1
n
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Example: Monotone increasing
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is a

monotone
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sequence

1
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n
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Example:

an = (−1)n 1
n , n = 1, 2, . . .

y
is neither
monotone

decreasing nor
monotone
increasing
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Example:

an = (−1)n 1
n , n = 1, 2, . . .

y
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Concept: Alternating sequences

A sequence is called alternating iff:

an 6= an+1, n = 1, 2, . . .

and: an · an+1 < 0
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Example: Alternating sequence

an = (−1)n 1
n , n = 1, 2, . . .

y
is an

alternating
sequence
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Concept: Convergent/divergent sequences

• limn→∞ an exists

⇔ (an)n is convergent

• limn→∞ an does not exist

⇔ (an)n is divergent
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Definition: lim
n→∞

(an) = A

For any ε > 0 there is an integer Nε

such that for all n ≥ Nε:

|an − A| ≤ ε
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Definition: lim
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Figure 1: Illustration of the definition of the limit
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Example: A convergent sequence

an = (−1)n 1
n , n = 1, 2, . . .

y
limit
exists

lim(an) = 0
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Example: A divergent sequence

an = n2, n = 1, 2, . . .

↓

limit does
not exist
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Example: A divergent sequence

an = n2, n = 1, 2, . . .

↓

limit does
not exist
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Example: A divergent sequence

an = n2, n = 1, 2, . . .

↓

limit does
not exist
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A convergence theorem

Every bounded and monotone
increasing sequence does converge

Every bounded and monotone
decreasing sequence does converge
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A convergence theorem

Every bounded and monotone
increasing sequence does converge

Every bounded and monotone
decreasing sequence does converge
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A convergence theorem

Every bounded and monotone
increasing sequence does converge

Every bounded and monotone
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Example: bounded and monotone increasing

an = 1− 1
n , n = 1, 2, . . .

y
limit
exists

lim
n→∞

(an) = 1
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Example: bounded and monotone increasing
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2 Series
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Part 2.1

Definition: Series
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Definition: A finite series

A finite series is a

finite sum of numbers.
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Definition: Infinite series

An infinite series is the limit of the sequence of
partial sums associated with a given sequence
(ai)i≥1.

∞∑
i=1

ai := lim
n→∞

{
n∑

i=1

ai

}
= lim

n→∞
{sn}
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Sequence of partial sums:

Given: A sequence (ai)i≥1:

a1 → s1 = a1

a1 a2 → s2 = a1 + a2

a1 a2 a3 → s3 = a1 + a2 + a3

...
a1 a2 a3 · · · an → sn = a1 + a2 + a3 + · · · + an
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Sequence of partial sums:

i.e., the sequence (ai)i≥1 generates, by the
operation of summation, the partial sums (sn)n≥1:

sn := a1+a2+...+an =
n∑

i=1

ai
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Sequence of partial sums:

i.e., the sequence (ai)i≥1 generates, by the
operation of summation, the partial sums (sn)n≥1:

sn := a1+a2+...+an =
n∑

i=1

ai
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Notation:

∞∑
i=1

ai = lim
n→∞
{sn} = lim

n→∞

{
n∑

i=1

ai

}

If this limit exists, i.e. is a finite number,

we call
∑∞

i=1 ai a convergent series which is
associated with the sequence (ai)i≥1

.
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Notation:
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n→∞
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Notation:

∞∑
i=1

ai = lim
n→∞
{sn} = lim

n→∞

{
n∑

i=1

ai

}

If this limit does not exist we call the

series to be divergent.
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Example 1:

The given sequence (ai )i≥1:
an = 1

n2 , n = 1, 2, 3, ...

Question 1: Does
∑∞

n=1 an exist ???

1 + 1
4 + 1

9 + ... =
∑∞

n=1
1
n2 converges

Question 2: Find the value of
∑∞

n=1 an ?
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Example 1:

Graph of the sequence of partial sums
∑n

i=1
1
i2


n=1...30
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Example 2:

The given sequence (hn)n≥1:

hn = 1
n , n = 1, 2, 3, ...

1 +
1

2
+

1

3
+

1

4
... =

∞∑
n=1

1

n
harmonic series

→ diverges
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Example 2:

Graph of the sequence of partial sums
∑n

i=1
1
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n=1...30
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Part 2.2

Arithmetic Series
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Defintion: Arithmetic Series

Given: An arithmetic sequence (ai)i :

∞∑
i=1

ai = lim
n→∞

 n∑
i=1

ai



y
arithmetic series
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Defintion: Arithmetic Series

Given: An arithmetic sequence (ai)i :

∞∑
i=1

ai = lim
n→∞

 n∑
i=1

ai


y

arithmetic series
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→ Example 1:

Gauß as a “schoolboy”

(“little” Gauß)

   

cf. the sum of all natural numbers from 1 to 100
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Carl Friedrich Gauß (1777-1855)

   

Carl Friedrich Gauß, was
born in Brunswick; he was a
working class kid.

He is considered by many the
greatest mathematican of his
time (of all times ???).

His contributions include results in mathematics, astronomy,
statistic, physics, etc.

Prof. Kurt Helmes Sequences and Series



Carl Friedrich Gauß (1777-1855)

   

Carl Friedrich Gauß, was
born in Brunswick; he was a
working class kid.

He is considered by many the
greatest mathematican of his
time (of all times ???).

His contributions include results in mathematics, astronomy,
statistic, physics, etc.

Prof. Kurt Helmes Sequences and Series



Exercise:

1
Find the explicit representation of the
recursively defined arithmetic se-
quence (an)n, where
an+1 − an = 1, a0 = 0.

2 Find the value (a formula) of the n-th
component of the corresponding se-
quence of partial sums.
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Exercise:

1
Find the explicit representation of the
recursively defined arithmetic se-
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an+1 − an = 1, a0 = 0.

2 Find the value (a formula) of the n-th
component of the corresponding se-
quence of partial sums.
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Exercise:

3
Decide whether or not∑∞

i=0 ai converges.
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Solution: Question 1

a0 = 0

a1 − a0 = 1 =⇒ a1 = 1

a2 − a1 = 1 =⇒ a2 = 1 + a1 = 2
...

...
an − an−1 = 1 =⇒ an = · · · = n

i.e.: (an)n≥0 = (0, 1, 2, 3, 4, 5, ...)
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Solution: Question 2

sn = 1 + 2 + 3 + 4 + 5 + ...+ n

+

sn = n + n − 1 + n − 2 + ...+ 1

⇓

2sn = (n + 1) + (n + 1) + ...+ (n + 1)︸ ︷︷ ︸
n−times

=⇒ sn =
1

2
n(n+1)
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Solution: Question 3

The limit of this sequence of partial sums does not exist.

The components/elements of the sequence of partial sums do

not stabilize (around a finite value). The sequence (sn)n is

unbounded.

∞∑
i=0

ai = lim
n→∞

 n∑
i=0

ai

 = lim
n→∞

{
1

2
n(n+1)

}
=∞
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Applications
of

Arithmetic Sequences & Series:

I Linear depreciation of capital goods

I Simple interest calculations

I Annuities

I Inventory problems
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Example: linear depreciation

R0
cost/value of the capital good at time
n = 0 (brand-new)

Rn
value (bookvalue) at the end of year n

r constant rate of depreciation
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Example: linear depreciation

R0
cost/value of the capital good at time
n = 0 (brand-new)

Rn
value (bookvalue) at the end of year n

r constant rate of depreciation
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Example: linear depreciation

Bookvalue after the 1st year :

R1 = R0 − r

Bookvalue after the 2nd year :

R2 = R1 − r ⇔ R2 − R1 = d = −r

Bookvalue after nth year :

Rn = R0 − nr

Prof. Kurt Helmes Sequences and Series



Example: linear depreciation

Bookvalue after the 1st year :

R1 = R0 − r

Bookvalue after the 2nd year :

R2 = R1 − r ⇔ R2 − R1 = d = −r

Bookvalue after nth year :

Rn = R0 − nr

Prof. Kurt Helmes Sequences and Series
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Example: linear depreciation

Find r so that the bookvalue after 5 years is zero,

i.e. satisfy the requirement R5 = 0.

Idea: Choose

r =
R0

5
=̂

purchasing cost

useful lifetime



Recall: Bookvalue after n years:

Rn = R0 − nr

Prof. Kurt Helmes Sequences and Series



Example: linear depreciation

Find r so that the bookvalue after 5 years is zero,

i.e. satisfy the requirement R5 = 0.
Idea: Choose

r =
R0

5
=̂

purchasing cost

useful lifetime



Recall: Bookvalue after n years:

Rn = R0 − nr

Prof. Kurt Helmes Sequences and Series



Example: linear depreciation

Find r so that the bookvalue after 5 years is zero,

i.e. satisfy the requirement R5 = 0.
Idea: Choose

r =
R0

5
=̂

purchasing cost

useful lifetime



Recall: Bookvalue after n years:

Rn = R0 − nr

Prof. Kurt Helmes Sequences and Series



Part 2.3

Geometric Series
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Defintion: Geometric Series

Given: A geometric series (ai)i≥0, i.e. ai = a0 qi , q ∈ R:

∞∑
i=0

ai = lim
n→∞

 n∑
i=0

ai

 = a0

∞∑
i=0

qi

y
geometric series
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Example 2

“Big” Gauß

   

cf. compound interest and annuities

Prof. Kurt Helmes Sequences and Series



Story: Part 1

Imagine that at the time when Christ was born

the roman emperor Augustus had been able to
invest

$ 1.23

in a bank account and had been guaranteed an

annual interest rate of 3%; assume interest

payments to be compounded every year.
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Question: Part 1

What was the balance account at

the end of the first year of the new

millenium, i.e. after 2000 years

of compounded interest payments ?
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Solution: Balance account

Initial amount: a0 = 1.23

After 1 year:

a1 =

1 +
p

100

a0 = qa0, where q = 1.03

After 2 years: a2 = qa1 = a0q
2

...

After n years: an = qan−1 = a0q
n

and n = 2000
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Solution: Balance account

Initial amount: a0 = 1.23

After 1 year:

a1 =

1 +
p

100

a0 = qa0, where q = 1.03

After 2 years: a2 = qa1 = a0q
2

...

After n years: an = qan−1 = a0q
n

and n = 2000
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Solution: Balance account

After 2000 years:

≈ $ 5.8123 · 1025
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Solution: Balance account

After 2000 years:

$ 58, 123, 869, 869, 669, 184, 628, 080, 369.86

... approx. $ 58 septillions
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Balance account over the years n = 1, . . . , 2000
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Balance account over the years n = 333, . . . , 433
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Balance account when Columbus discovered Cuba
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Story: Part 2

Assume that besides the initial deposit

“relatives” of the emperor had since then deposited
$ 1.23

in that very account at the beginning of each new
year.
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Question: Part 2

What was the balance of the account

on December 31, 2000 ?
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Solution: Part 2

The total value of all deposits together with their compounded
interest is given by (n=2000):

sn = ((deposit on 01.01.2000) + its interest)
+ ((deposit on 01.01.1999) + its compound interest)
+ ((deposit on 01.01.1998) + its compound interest)
...

+ ((deposit when Christ was born) + its compound interest)
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Solution:

The balance sn ,n=2000, after 2000 deposits and
(compounded) interest payments:

sn = qa0 + q2a0 + · · ·+ a0q2000

= q a0(1 + q + q2 + · · ·+ q1999)

= q a0

1999∑
i=0

qi
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Problem:

∑1999
i=0 qi =: Qk =???, k = 1999
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Solution:

Qk = 1 + q + q2 + q3 + ...+ qk

−
qQk = q + q2 + q3 + ...+ qk + qk+1

⇓

Qk − qQk = 1− qk+1 =⇒ (1− q)Qk = 1− qk+1
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Solution:

Qk − qQk = 1− qk+1 ⇒ (1− q)Qk = 1− qk+1

⇓

Qk =
1− qk+1

1− q
=

qk+1 − 1

q − 1
if q 6= 1
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Solution:
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Solution:

Qk =
1− qk+1

1− q
=

qk+1 − 1

q − 1
if q 6= 1

⇓
for the special parameter values

Qk =
1999∑
i=0

qi =
(1.03)2000 − 1

(1.03)− 1
=

100

3
((1.03)2000 − 1)
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Solution:

The solution of the 2nd part of the problem is given by:

sn = q a0 Q1999, n = 2000

and:

q a0 Q1999 = q ao

1999∑
i=0

qi ≈ 1.99559 · 1027
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Applications
of

geometric Sequences & Series:

I geometric depreciation

I compound interest calculations

I annuities

I production theory

I dynamical systems
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Example: Geometric depreciation

Decreasing amounts of depreciation
for using of a capital good;

the amounts are a fixed percentage of
the remaining value
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Examples: Geometric Depreciation

National accounting rules, f.i. the rate of
depreciation satisfies:

• p%≤ 200

lifetime
%

and

• p%≤ 20%
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Example: Geometric Depreciation

Formula:

R0 =̂ initial value (purchasing price)

A1 =
p

100
R0 =̂ 1st amount of depreciation

⇒ R1 = R0 − A1 = R0 −
p

100
R0 =

1− p

100

R0
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Example: Geometric Depreciation

Formula:

A2 =
p

100
R1 =̂ 2nd amount of depreciation

R2 = R1 − A2 =

1− p

100

R0 −
p

100

1− p

100

R0

=

1− p

100

2

R0 = q2R0,

where q =

1− p

100
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Example: Geometric Depreciation

Formula:

An =
p

100
Rn−1 =̂ nth amount of depreciation

Bookvalue at the end of the nth year:

Rn = qnR0
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Example: Geometric Depreciation

Formula:

An =
p

100
Rn−1 =̂ nth amount of depreciation

Bookvalue at the end of the nth year:

Rn = qnR0
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Example: Geometric Depreciation

Table:
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Part 2.4

Some Properties

of Series
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Criteria of convergence:

Condition on q so that

geometric series

∞∑
i=0

qi

does converge.
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Criteria of convergence:

A simple idea:
Let q 6= 1, then

∞∑
i=0

qi = lim
n→∞

{
n∑

i=0

qi

}
= lim

n→∞

{
1− qn+1

1− q

}

=
1

1− q
− lim

n→∞
qn+1
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Criteria of convergence:

Hence,

∑∞
i=0 qi =

1

1− q
converges if |q| < 1

∑∞
i=0 qi diverges if |q| ≥ 1
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Criteria of convergence:

(a special case of the dominating principle)

Assumption:

(ai )i≥0 is a sequence such that:

|ai | ≤ qi für 0 < q < 1 und i ≥ i0

Claim:

∞∑
i=0

ai is a convergent series
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Example of the criterium:

Let ai =
i

2i
; the series

∞∑
i=0

i

2i
converges

Proof:
i

2i
≤

3

4

i

, if i ≥ 1, i.e. q =
3

4
and i0 = 1

Prof. Kurt Helmes Sequences and Series



Example of the criterium:

Let ai =
i

2i
; the series

∞∑
i=0

i

2i
converges

Proof:
i

2i
≤

3

4

i

, if i ≥ 1, i.e. q =
3

4
and i0 = 1

Prof. Kurt Helmes Sequences and Series



Finally!!! ;)

The End
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