

CONTENT

Part 1: Introduction

Part 2: First-Order Difference Equations

Part 3: First-Order Linear Difference Equations

Part 1.1

Example 1 (Part 1)
Dagobert-
Example
cf. compound interest

Starting Point:

Given:
(Kitial capital (in Euro)
(p) interest rate (in \%)
(r) interest factor $r=\frac{p}{100}$

Objective:

Find

1. The amount of capital after 1 year.
2. The amount of capital after 2 years.
:
n. The amount of capital after n years.

Solution:

After one year the amount of capital is:

$$
K_{1}=K_{0}+r \cdot K_{0}=(1+r) K_{0}
$$

After two years the amount of capital is:

$$
\begin{aligned}
K_{2} & =K_{1}+r \cdot K_{1}=(1+r) K_{1} \\
& =(1+r)(1+r) K_{0} \\
K_{2} & =(1+r)^{2} K_{0}
\end{aligned}
$$

Solution:

After n years the amount of capital is:

$$
K_{1}=(1+r)^{1} K_{0}
$$

$$
K_{2}=(1+r)^{2} K_{0}
$$

$$
\vdots
$$

$$
K_{n}=(1+r)^{n} K_{0}
$$

Solution:

After one year the amount of capital is:

$$
K_{1}=K_{0}+r \cdot K_{0}=(1+r) K_{0}
$$

How much capital do we have after 2 years?

Solution:

After one year the amount of capital is:

$$
K_{1}=K_{0}+r \cdot K_{0}=(1+r) K_{0}
$$

After two years the amount of capital is:

$$
K_{2}=(1+r)^{2} K_{0}
$$

Observation:

The solution formula $K_{n}=(1+r)^{n} K_{0}$ can be rewritten in the following way:

recursion formula	special difference equation
$K_{n}=(1+r) K_{n-1}$	$K_{n}-K_{n-1}=r K_{n-1}$
$\mathrm{~K}_{0}$ is given, $n \geq 1$	$\mathrm{~K}_{0}$ is given, $n \geq 1$

Part 1.2

Illustration:

A difference equation is a special system of equations, with
$>$ (countably) infinite many equations,
$>$ (countably) infinite many unknowns.

Hint:
The solution of a difference equation
is a sequence
(countably infinite many numbers).

Definition: Difference Equation

An equation, that relates for any $n \geq k$ the $n^{\text {th }}$ term of a sequence to the (up to k) preceding terms, is called a (nonlinear) difference equation of order k.

Explicit form: \quad	$x_{n}=F\left(n, x_{n-1}, x_{n-2}, \ldots, x_{n-k}\right)$,
	$n \geq k$
Implicit form:	$0=G\left(n, x_{n}, x_{n-1}, \ldots, x_{n-k}\right)$

Part 2.1

Example 2

Starting Point:

Given: Hog-corn price ratio in Chicago in the period 1901-1935:

Starting Point:

Stylized:

Starting Point:

Find:
$>$ A (first) model, which „explains" / describes the cyclical fluctuations of the prices (ratio of prices).

Model (Part 2): Supply and Price

Assumption:

The supply at time $(t+1)$ depends on the hog price $p(t)$ at time t.

Model (Part 3): Demand and Price

Assumption:

For the demand we assume: If the hog price increases, the demand will decrease, thus:

$$
d(t)=-\gamma p(t)+\delta
$$

$\gamma, \delta>0$ parameter

Figure 2: Graphical representation of the demand function

Model (Part 2): Nature of the dependance

Assumption:

The supply function is linear:

$$
s(t+1)=\alpha p(t)-\beta
$$

i.e. it is determined by α and β, and $p(t)$.

$$
\alpha, \beta>0, s(0) \text { is given }
$$

Model (Part 4): Equilibrium

Postulate: Supply equals demand at any time:

$$
s(t+1)=d(t+1)
$$

for all $t \geq 0$

Model (Part 4): Equilibrium

The equilibrium relation yields a defining equation for the price function:
$\alpha p(t)-\beta=-\gamma p(t+1)+\delta$

$$
s(t+1) \quad d(t+1)
$$

Solution (Part 4): Equilibrium

Thus we obtain the following difference equation:

$$
p(t+1)=-\frac{\alpha}{\gamma} p(t)+\frac{\delta+\beta}{\gamma}
$$

$t=0,1,2, \ldots, p(0)=p_{0}, p_{0}$ is given

Model (Part 5): Analysis

$$
\begin{gathered}
p(t+1)=\begin{array}{c}
-\frac{\alpha}{\gamma} \\
\longrightarrow
\end{array} p(t)+\underset{\frac{\delta+\beta}{\gamma}}{\zeta<0 \quad \longrightarrow}=\xi
\end{gathered}
$$

solution formula: $t=0,1,2, \ldots ; \quad p(0)=p_{0}$

$$
p(t)=m^{t}\left(p_{0}-\frac{\xi}{1-m}\right)+\frac{\xi}{1-m}
$$

Deriving the Solution Formula:

$$
\begin{aligned}
p_{t+1} & =m p_{t}+\xi \\
& =m\left(m p_{t-1}+\xi\right)+\xi \\
& =m^{3} p_{t-2}+m^{2} \xi+\mathrm{m} \xi+\xi \\
& \vdots \\
& =m^{t+1} p_{0}+\xi(\underbrace{}_{\frac{1-m^{t+1}}{1-m}+m^{t-1}+\ldots+1}) \\
p_{t+1} & =m^{t+1}\left(p_{0}-\frac{\xi}{1-m}\right)+\frac{\xi}{1-\mathrm{m}}
\end{aligned}
$$

Figure 2: Iteration rule $F(p)=-(1 / 2) p+4$

Model (Part 5): Analysis

Results:
$-1<m<0$ The equation / solution is stable.
"stable": The values $p(t)$ converge to the equilibrium state when $t \rightarrow \infty$.
$m \leq-1$ The equation / solution is unstable.

Figure 3: Price development for: $m=-0,9 ; \quad p_{0}=1 ; \quad \xi=0,6$

Figure 5: Price development for:

$$
m=-1,1 ; \quad p_{0}=1 ; \quad \xi=0,6
$$

Summary:

The given difference equation has a unique solution;
it can be solved explicitly.
\Rightarrow The price is the sum of a constant and a power function.
\Rightarrow The term $\left(-\frac{\alpha}{\gamma}\right)^{t}=(-1)^{t}\left(\frac{\alpha}{\gamma}\right)^{t}$ has an alternating sign, $\alpha / \gamma>0$

CONCLUSION:

We can model and analyze dynamic processes with difference equations.

Part 2.2

Definition:

A (general) first-order nonlinear difference equation has the form :

$$
x_{t+1}=F\left(t, x_{t}\right) \quad t=0,1,2, \ldots
$$

(\mathbf{F} is defined for all values of the variables.)

Important Questions:

> Does at least one solution exist?
> Is there a unique solution?
> How many solutions do exist?
> How does the solution change, if „parameters" of the system of equations are changed (sensitivity analysis)?

Important Questions:

> Do explicit formulae for the solution exist?
> How do we calculate the solution?
$>$ Does the system of equations has a
special structure?
e.g.: a) linear or nonlinear,
b) one- or multidimensional ?

Remark:

If the initial value of the solution (sequence) of a difference equation is given, i.e.

$$
x_{0}=\text { "fixed number", }
$$

then we call our problem an

> " initial value problem "
related to a first-order difference equation.

Remark:

The initial value problem of a first-order difference equation has a unique solution.
\Rightarrow If x_{0} is an arbitrary fixed number, then there exists a uniquely determined function/sequence $x_{t}, t \geq 0$, that is a solution of the equation and has the given value x_{0} for $t=0$.

Remark:

\Rightarrow In general there exists for each choice of x_{0} a different (corresponding) unique solution sequence.

Invariant Points:

For time homogeneous linear difference equations $x_{t+1}=a x_{t}+\xi, \quad(a \neq 1)$, an invariant point is characterized by:

$$
x=\underbrace{a x+\xi}_{F(x)} \Leftrightarrow x=\frac{\xi}{1-a}
$$

Definition: Invariant Points

For time homogeneous nonlinear difference equations $x_{t+1}=F\left(x_{t}\right)$ we call points which satisfy the equation

$$
x=F(x)
$$

invariant points.
F "right-hand side".

Invariant Points:

ATTENTION:

If the solution of a difference equation "starts" at an invariant point, it stays there,
i.e. if x_{0} is an invariant point then

$$
\Rightarrow \quad x_{0}=x_{1}=x_{2}=\ldots
$$

Figure 7: $\operatorname{Solution}\left(x_{t}\right)$ for $\alpha=0,4$

Figure 9: Solution $\left(x_{t}\right)$ for $\alpha=0,3$

Figure 11a: Solution $\left(x_{t}\right)$ for $\alpha=0,2499$

Figure 11b: Solution $\left(x_{t}\right)$ for $\alpha=0,2499$

Starting Point:

Finding the roots of a nonlinear function „analytically" is rarely possible.

Therefore we have to use numerical methods.

Starting Point:

For differentiable functions a numerical root-finding algorithm exists. It goes back to Isaac Newton (1643-1727).

| Goal: |
| :--- | :--- |
| $f(x) \uparrow$ |
| \rightarrow Find an x^{*} with $f\left(x^{*}\right)=0$. |

Idea:
\Rightarrow Choose an initial value x_{0} reasonably „close to" the true root.

Idea:
$f(x)$

Idea:

Determine the intersection of the tangent with the x -axis.

| Idea: |
| :--- | :--- |
| $f(x) \uparrow$ |

Take this intersection x_{1} as a new approximation to the function's root.

Idea:

\Rightarrow Repeat this operation „many times".

Figure 12: Schematic representation of Newton's - Method

Solution:

Let x_{l} denote the root of the tangent and $f^{\prime}\left(x_{0}\right)$ the slope of f at x_{0}. Then, if $f^{\prime}\left(x_{0}\right) \neq 0$, the following formula holds:

$$
\begin{gathered}
\frac{f\left(x_{0}\right)-0}{x_{0}-x_{1}}=f^{\prime}\left(x_{0}\right) \\
f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x_{0}-x_{1}\right) \Leftrightarrow \frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=\left(x_{0}-x_{1}\right)
\end{gathered}
$$

Solution:

Let x_{l} denote the root of the tangent and $f^{\prime \prime}\left(x_{0}\right)$ the slope of f at x_{0}. Then, if $f^{\prime}\left(x_{0}\right) \neq 0$, the following formula holds:

$$
\begin{gathered}
\frac{f\left(x_{0}\right)-0}{x_{0}-x_{1}}=f^{\prime}\left(x_{0}\right) \\
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
\end{gathered} \Leftrightarrow \frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=\left(x_{0}-x_{1}\right)
$$

Solution:

This is a (nonlinear)
first-order difference equation, and:

$$
F(x)=x-\frac{f(x)}{f^{\prime}(x)}
$$

Solution:

By the same idea we compute x_{2}, x_{3}, \ldots as (difference equation):

$$
x_{t+1}=x_{t}-\frac{f\left(x_{t}\right)}{f^{\prime}\left(x_{t}\right)}
$$

$$
t=0,1,2, \ldots, \quad x_{0}=\text { fixed initial value }
$$

Numerical Example:

Consider the problem of finding the root of

$$
f(x)=x^{2}-3 .
$$

The difference equation according to Newton's Method is:
$x_{t+1}=x_{t}-\frac{f\left(x_{t}\right)}{f^{\prime}\left(x_{t}\right)}=x_{t}-\frac{x_{t}^{2}-3}{2 x_{t}}=\frac{x_{t}}{2}+\frac{3}{2 x_{t}}$
x_{0} chosen initial value

Part 3.1

First-Order Linear Difference Equations with a
„Constant a-Term"

Definition:

Time-dependent, inhomogeneous linear difference equations of first order with constant "a-term" take the form :

Equation:

$$
x_{t}=a x_{t-1}+\xi_{t}
$$

$$
(t=1,2, \ldots), \quad x_{0} \text { (is given) }
$$

Lösungsformel:

Time-dependent, inhomogeneous linear difference equations of first order with constant "a-term" have the solution :

Solution
 formula:

$$
x_{t}=a^{t} x_{0}+\sum_{s=1}^{t} a^{t-s} \xi_{s}
$$

$$
(t=0,1,2, \ldots)
$$

Definition:

Time-dependent, inhomogeneous linear difference equations of first order with constant "a-term" take the form :

Equation: Iteration Rule:

$$
\frac{F(t, x)=a x+\xi_{t}}{(t=1,2, \ldots), x_{0} \text { (is given) }}
$$

Deriving the Solution Formula:

$$
\begin{aligned}
x_{t} & =a x_{t-1}+\xi_{t} \\
& =a\left(a x_{t-2}+\xi_{t-1}\right)+\xi_{t} \\
& =a^{2} x_{t-2}+a \xi_{t-1}+\xi_{t} \\
& \vdots \\
& =a^{t} x_{0}+a^{t-1} \xi_{1}+a^{t-2} \xi_{2}+\ldots+a \xi_{t-1}+\xi_{t} \\
x_{t} & =a^{t} x_{0}+\sum_{s=1}^{t} a^{t-s} \xi_{s}
\end{aligned}
$$

Example of an Exam Exercise:

1
Solve the difference equation:

$$
x_{n}=\frac{1}{2} x_{n-1}+3, \quad n \geq 1
$$

Solution: Backwards iteration yields:
$x_{n}=\frac{1}{2} x_{n-1}+3$

Example of an Exam Exercise:

1
Solve the difference equation:

$$
x_{n}=\frac{1}{2} x_{n-1}+3, \quad n \geq 1
$$

Solution: Inserting the predecessor of x_{n-1} :

$$
x_{n}=\frac{1}{2} x_{n-1}+3=\frac{1}{2}\left[\frac{1}{2} x_{n-2}+3\right]+3
$$

Example of an Exam Exercise:

1
Solve the difference equation:

$$
x_{n}=\frac{1}{2} x_{n-1}+3, \quad n \geq 1
$$

Intermediate Calculation: Expanding the equation:
$x_{n}=\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2} x_{n-3}+3\right]+3\right]+3$

Example of an Exam Exercise:

1
Solve the difference equation:

$$
x_{n}=\frac{1}{2} x_{n-1}+3, \quad n \geq 1
$$

Solution: Inserting the predecessor of x_{n-2} etc. yields:
$\frac{1}{2}\left[\frac{1}{2} x_{n-2}+3\right]+3=\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}{2} x_{n-3}+3\right]+3\right]+3$

Example of an Exam Exercise:

1
Solve the difference equation:

$$
x_{n}=\frac{1}{2} x_{n-1}+3, \quad n \geq 1
$$

Solution: Expanding the equation

$$
x_{n}=\frac{1}{2^{3}} x_{n-3}+3+\frac{1}{2} \cdot 3+\frac{1}{2^{2}} \cdot 3
$$

Example of an Exam Exercise:

Solve the associated initial value problem with $x_{0}=6$

Solution: General condensation of the terms:

$$
x_{n}=\frac{1}{2^{n}} x_{0}+3 \sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k}
$$

Example of an Exam Exercise:

2
Solve the associated initial value problem with $x_{0}=6$
i.e., find a solution $x=\left(x_{0}, x_{1}, x_{2} \ldots\right)$ according to the formula
$x_{n}=\frac{1}{2} x_{n-1}+3, n \geq 1 \quad$ with $\quad x_{0}=6$

Example of an Exam Exercise:

2
Solve the associated initial value
problem with $x_{0}=6$

$$
x_{n}=\frac{6}{2^{n}}+3 \sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k}=\frac{6}{2^{n}}+3\left(\frac{1-(1 / 2)^{n}}{1-(1 / 2)}\right)
$$

$$
x_{n}=6=\frac{6}{2^{n}}+6\left(1-\frac{1}{2^{n}}\right)
$$

Example of an Exam Exercise:

2
Solve the associated initial value problem with $x_{0}=6$

Continuing with forward iteration:

$$
x_{1}=6 \quad \Rightarrow \quad x_{2}=\frac{1}{2} x_{1}+3=6
$$

and in general : $x_{n}=\frac{1}{2} x_{n-1}+3=6$

Example of an Exam Exercise:

2
Solve the associated initial value problem with $x_{0}=6$

The initial value problem can be solved either directly by using the solution formula, i.e.

$$
x_{n}=\frac{6}{2^{n}}+3 \sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k}
$$

Example of an Exam Exercise:

Solve the associated initial value problem with $x_{0}=6$
or by forward iteration:

$$
x_{0}=6 \Rightarrow x_{1}=\frac{1}{2} x_{0}+3=\frac{6}{2}+3=6
$$

Example of an Exam Exercise:

The simplest way to solve this special initial value problem is to identify $x_{0}=6$ as an invariant point of the function $F(x)=\frac{1}{2} x+3$, i.e.

Example of an Exam Exercise:

Example 1 (Part 2)

$$
F(6)=6
$$

and it holds:
Does the system starts at an invariant point, i.e. $F(x)=x$, it stays there, i.e. $x_{n}=6$ for all $n \geq 0$.

Starting Point:

Consider the following dynamic of Trick's account balance ω_{t}; at time t it holds:

Moreover, we know the capital stock ω_{0}.

Find: Formula for the account balance

$$
\omega_{t}=(1+r) \omega_{t-1}+\left(y_{t}-c_{t}\right)
$$

Solution formula:

$$
\omega_{t}=(1+r)^{t} \omega_{0}+\sum_{s=1}^{t}(1+r)^{t-s}\left(y_{s}-c_{s}\right)
$$

$t=1,2, \ldots$

Formula for the account balance:

$$
\omega_{t}=(1+r) \omega_{t-1}+\left(y_{t}-c_{t}\right)
$$

The discounted capital flow is:

$$
(1+r)^{-t} \omega_{t}=\omega_{0}+\sum_{s=1}^{t}(1+r)^{-s}\left(y_{s}-c_{s}\right)
$$

$$
t=1,2, \ldots
$$

Summary:

The discounted capital stock at time t equals the capital stock at time $t=0$ plus the sum of the discounted deposits minus the sum of the discounted payments up to time t.

Part 3.2

Definition:

First-order linear difference equations with variable coefficients take the form:
First-Order Linear Difference Equations with Variable Coefficients

Solution formula:
The solution of first-order linear difference equations with variable coefficients is given by:
$x_{t}=\left(\prod_{s=1}^{t} a_{s}\right) x_{0}+\sum_{s=1}^{t}\left(\prod_{k=s+1}^{t} a_{k}\right) \xi_{s}$
$\quad(t=1,2, \ldots)$

Example 1 (Part 3)

Dagobert-
Example
with variable interest rate and proportional deposits and payments

Starting Point:

Consider a capital model with time-dependent interest factor:

Moreover, we know the capital stock ω_{0}.

Starting Point:

Special Case: Capital model with proportional deposits and payments:

$$
\begin{array}{r}
\omega_{t}=\left(1+r_{t}\right) \omega_{t-1}+\left(y_{t}-c_{t}\right) \\
\begin{array}{r}
\downarrow \\
y_{t}=\alpha_{t} \omega_{t-1} \\
c_{t}=\beta_{t} \omega_{t-1} \\
0<\alpha_{t}, \beta_{t}<1
\end{array} ~
\end{array}
$$

Proportional In- and Outpayments:
$\omega_{t}=\left(1+r_{t}+\alpha_{t}-\beta_{t}\right) \omega_{t-1}$,
ω_{0} given
$\omega_{t}=\left[\prod_{s=1}^{t}\left(1+r_{s}+\alpha_{s}-\beta_{s}\right)\right] \omega_{0}$
$t=1,2, \ldots$

Numerical Example:

Capital stock:
$\omega_{0}=1000$ Euro

Numerical Example:

Capital stock:
 $\omega_{0}=1000$ Euro

Interest factor: $\quad r_{t}=0,05+0,02 \sin \left(\frac{t}{3}\right)$

Numerical Example:

Capital stock:

$$
\omega_{0}=1000 \text { Euro }
$$

Interest factor:

$$
r_{t}=0,05+0,02 \sin \left(\frac{t}{3}\right)
$$

Rate of deposits: $\quad \alpha_{t}=\left\{\begin{aligned} 0.1, & 26 \leq t \leq 64 \\ 0, & \text { else }\end{aligned}\right.$
Rate of payments: $\quad \beta_{t}=\left\{\begin{array}{c}0, t<65 \\ 0.07,65 \leq t \leq 74\end{array}\right.$

Numerical Example:

Capital stock: $\quad \omega_{0}=1000$ Euro
Interest factor: $\quad r_{t}=0,05+0,02 \sin \left(\frac{t}{3}\right)$
Rate of deposits: $\quad \alpha_{t}=\left\{\begin{aligned} 0.1, & 26 \leq t \leq 64 \\ 0, & \text { else }\end{aligned}\right.$

Numerical Example:

$$
\omega_{t}=\left\{\begin{array}{rr}
1000 \cdot \prod_{s=1}^{t}\left(1+r_{s}\right), & 0 \leq t \leq 25 \\
\omega_{25} \cdot \prod_{s=26}^{t}\left(1+r_{s}+0.1\right), & 26 \leq t \leq 64 \\
\omega_{65} \cdot \prod_{s=65}^{t}\left(1+r_{s}-0.07\right), & 65 \leq t \leq 74
\end{array}\right.
$$

Numerical Example:	
$\omega_{0}=1.000$	$\omega_{65}=860.246,44$
\vdots	$\omega_{66}=842.889,23$
$\omega_{25}=3.700,58$	$\omega_{67}=820.374,88$
\vdots	\vdots
$\omega_{50}=120.527,19$	$\omega_{74}=635.803,00$
\vdots	

Numerical Example:

Part 3.3

Definition: Stability

A first-order difference equation is called stable, if
\Rightarrow the solution of the homogeneous equation converges for any initial value to zero.
cf.. 1) unstable
2) chaotic

Stability Conditions:

A linear difference equation x_{t} with
constant coefficient is a stable, iff

$$
|a|<1
$$

Stability Conditions: Remark 1

If

$$
x_{s}=\frac{\xi}{1-a}
$$

holds for one time point s, then for all $t \geq s$:

$$
x_{t}=x_{s}=x^{*}=\frac{\xi}{1-a}
$$

Stability Conditions: Remark 2

Stability comes along in different forms:
Example

1. $0<a<1, x_{0}>x^{*}$
$\Rightarrow x_{t}$ converges monotonically decreasing to the equilibrium state x^{*}.

Stability Conditions: Remark 2

Stability comes along in different forms:
Example
(2) $-1<a<0, \quad x_{0}>x^{*}$
$\Rightarrow x_{t}$ shows decreasing "fluctuations" around the equilibrium state x^{*} (damped oscillations)

Stability Conditions: Remark 3

If $|a|>1$, then the equation x_{t} is not stable, i.e. x_{t} moves farther and farther away from the equilibrium state x^{*}.

$$
\text { Exception: } \quad x_{0}=\frac{\xi}{1-a}=x^{*}
$$

