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Abstract

We present a numerical method, based on

linear programming (LP), to compute up-

per and lower bounds on (higher) moments

of distributions of low-dimensional di�usion

processes, e. g. 2- or 3-dimensional processes.

The method relies on a LP-formulation of the
evolution of time- and space truncated ver-

sions of such processes. It leads to �nite di-

mensional LP problems on the space of Haus-

dor� sequences of �nite order where the ob-

jective is to maximize and minimize moments

of distributions under consideration. Since

Hausdor� sequences of �nite order comprise

all moment sequences this approach provides

upper as well as lower bounds on the quantity

of interest. For the 1-dimensional case the set

of Hausdor� sequences of order M is de�ned

by
M(M+1)

2 nontrival linear inequalities. We
provide a characterization of the set of such

sequences based on just M linear inequali-

ties. This characterisation, expecially for 2-

and 3-dimensional process, yields a substan-

tial reduction in the dimensions of the LP

problems to be solved.

We shall illustrate the method by looking at

examples which range from exponential func-

tionals of Brownian motion related to Asian

options to exit time distributions of squares

of Bessel processes.

1 Introduction

The numerical method to be described be-
low is based on the fact that the evo-

lution of a Markov process can be de-
scribed through the occupation measure
of the process. This description involves
a system of equations over measures on
the state space of the Markov process,
cf. e. g. Bhatt and Borkar [1], Kurtz and
Stockbridge [7], Hernandez-Lerma et al.
[6]. The system of equations is indexed
by test functions to be chosen from a
class rich enough to specify the genera-
tor of the Markov process. Depending
on the set of test functions used this sys-
tem of equations, see Eqn. (2.1) below,
determines uncountably many linear con-
straints for the measures involved. If the
state space is a closed bounded interval
these measures are uniquely characterized
by their moments, and these moments,
due to the Hausdor� conditions, cf. e. g.
[8], are uniquely characterized by count-
ably many linear inequalities. Thus, if
we choose as test functions the monomi-
als restricted to a closed bounded interval
the evolution of the process is captured by
countably many linear equations together
with countably many linear inequalities in
as many unknowns. Any quantity of in-
terest which can be expressed as a linear
form of these variables can therefore be
characterized as the value of an in�nite di-
mensional linear program. For numerical
computation, any such problem is reduced
to �nite dimensions by considering only
a �nite number of moments and �nitely
many constraints. To analyze processes
on an unbounded state space we employ a
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truncation technique. Since the set of fea-
sible points of the �nite dimensional prob-
lem is larger than the set of feasible points
of the original in�nite dimensional prob-
lem maximizing and minimizing the indi-
vidual moments subject to the constraints
yields upper and lower bounds for these
moments.

The paper is organized as follows. In
section 2 we state some theoretical re-
sults which form the basis of the numeri-
cal method. In section 3 we illustrate the
method by computing higher moments of
the exit time of squared Bessel processes
from a bounded domain. Squared Bessel
processes are related, among other things,
to a particular interest rate model. The
exit time problem is important for the
analysis of a class of barrier options. In
section 4 we report on numerical results
concerning some exponential functionals
of Brownian motion which are of interest
in the context of Asian options. Since an-
alytical results are known for these prob-
lems they are good test cases for judging
the accuracy of the method proposed.

2 The LP formulation

Let (Yt)t�0 be a Markov process on R
d

with generator A and initial point y0. Let
its state space be written as the disjoint
union of a bounded set G and part or all
of its boundary @G. The following result is
an immediate consequence of the martin-
gale characterization of Markov processes,
see [2], and the optional sampling theo-
rem.

Theorem 2.1 Let � denote the �rst exit
time of (Yt)t from G. Let @G denote the
exit region. Assume E[� ] < 1. Then
there exists a probability measure �@G on
@G and a measure �G on G such that for

every f in the domain of the generator
A (a test function) the following equation
holds:Z
@G

f(y)�@G(dy)�f(y0) =

Z
G

Af(y)�G(dy):

(2.1)

It is shown in [1] and [7] that the converse
of Theorem 2.1 holds, i. e. given measures
�@G and �G which satisfy Eqn. (2.1) these
measures are the exit distribution and the
occupation measure of a Markov process
with generator A.

Theorem 2.1 and its converse are the basis
of the LP formulation and the numerical
method to be described below.

The following variant of Theorem 2.1 and
its converse is applied in section 4. For
another example see [5].

Corollary 2.2 Let A� denote the gener-
ator of the process de�ned by killing a
Markov process with generator A at rate
� and restarting the process at the initial
position. There exists a measure � on the
state space G[@G such that for every test
function f

Z
G[@G

A�f(y)�(dy) = 0; (2.2)

and for any measurable real-valued func-
tion '

�

1Z
0

e��tE['(Yt)]dt =

Z
G[@G

'(y)�(dy):

From now on we shall assume that G is a
rectangle and, without loss of generality,
see examples in section 3 and 4 for details,
that G is a hypercube.
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The measures �@G and �G are uniquely
characterized by their moment sequences,
z@G and zG, i. e. n = (n1; : : : ; nd), ni 2 N0 ,

z@G(n) =

Z
@G

zn11 � : : : � zndd �@G(dz)

and

zG(n) =

Z
G

zn11 � : : : � zndd �G(dz):

Since G is assumed to be a hypercube
(zG(n))n and (z@G(n))n are sequences
characterized by linear inequalities, viz.
by the Hausdor� conditions, cf. e. g. [8].
In order to simplify the exposition we
shall only state the conditions for the 1-
dimensional case and the 2-dimensional
one, i. e. if G = [0; 1],

nX
j=0

(�1)j
�
n

j

�
zG(j + k) � 0; (2.3)

for n; k = 0; 1; 2; : : :, and, if G = [0; 1] �
[0; 1],

n1X
j1=0

n2X
j2=0

�
n1
j1

��
n2
j2

�
(�1)k1+k2 �

zG(j1 + k1; j2 + k2) � 0; (2.4)

for all n1; n2; k1; k2 = 0; 1; 2; : : :; the
conditions for dimensions 3 and up are
straightforward generalizations of inequal-
ities (2.4).

Any in�nite sequence which satis�es the
inequalities (2.3) is called a 1-dimensional
moment sequence. A �nite sequence
(z0; z1; : : : ; zM) is called a 1-dimensional
Hausdor� sequence of order M i� inequal-
ities (2.3) hold for all k = 0; 1; 2; : : : ;M
and n = 0; 1; 2; : : : ;M � k. There is obvi-
ously a natural extension of the terminol-
ogy for multi-dimensional sequences.

In many applications the generator A is
composed of di�erential and/or di�erence

operators. Choosing monomials as test
functions in such cases, Af becomes a
polynomial and the (adjoint) Eqn. (2.1)
can be phrased in terms of moments.
Choosing only �nitely many such test
functions the following �nite dimensional
LP problems provide upper and lower
bounds for, e. g. the mean exit time of � .

Theorem 2.3 Let A be a di�erential op-
erator composed of a di�erential and/or
di�erence operator. Let �v(M) be the opti-
mal value of

max
!
= zG(0)

subject to zG, z@G resp., Hausdor�-
sequences of orderM of dimension d, d�1
resp., which satisfy the adjoint equation
(2.1) if f is chosen to be any monomial
of order less or equal to M . Let v(M) be
the minimum value of the same LP prob-
lem. Then

v(M) � E[� ] � �v(M):

Corollary 2.4 Let T� be an exponential
random variable independent of (Yt)t. Let
(�t)t denote the �rst component of Y .
Then for every n and M

v(M;n) � E[�nT�] � �v(M;n);

where �v(M;n) is the value of the LP-
problem:

max
!
= zG(n; 0; : : : ; 0);

subject to all Hausdor� sequences of or-
der M which satisfy Eqn. (2.2) if f is a
monomial of order less or equal to M .

To �nd bounds on higher moments of exit
time distributions we reformulate Theo-
rems 2.1 and 2.2 and the Corallaries for
the case of time-space processes (t; Yt)t
whose generator equals @

@t
+A; see section

3 for an example. Additional examples
can be found in [3] and [4].
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3 Squares of Bessel pro-

cesses

Let (Bt)t�0 be a d-dimensional, d 2 N ,
Brownian motion starting from a, and let
Yt := jBtj

2 denote the square of the cor-
responding Bessel process. Then (Yt)t�0
satis�es the following stochastic di�eren-
tial equation, Y (0) = y0 = jaj2,

dYt = d � dt+ 2
p
Ytd�t; (3.1)

where (�t)t�0 is a 1-dimensional Brown-
ian motion starting at zero. Eqn. (3.1)
has a (strong) solution not only for non-
negative integers but for any non-negative
real number d; we call the correspond-
ing solution of Eqn. (3.1) the (generalized)
squared Bessel process of \dimension" d.

The generator of (Xt) = (t; Yt)t is given
by, f a test function,

Af(t; y) =
@f

@t
(t; y) + 2y

@2f

@y2
(t; y):

For given b and T > 0 let � denote the �rst
exit time of (Xt)t�0 from the domain G =
(0; b)�(0; T ); the (relevant) boundary @G
consists of three parts Gbottom = [0; T ] �
f0g, Gtop = [0; T ] � fbg and Gright =
fTg�[0; b]. Thus we shall work with the 2-
dimensional (occupation) measure �G de-
�ned on (0; T )� (0; b) and the probability
measure �@G de�ned on Gbottom [ Gtop [
Gright. We split the exit distribution �@G
into three parts de�ned on the three di�er-
ent pieces which form the boundary. Let

�ij =
R
G

�
t
T

�i �y
b

�j
�G(dt; dy) denote the

(scaled) i; jth moment of the occupation

measure �G and let us denote by �
(b)
i , �

(t)
i

and �
(r)
i resp. the (similarly) scaled ith

moment of the boundary measures on Gb,
Gt and Gr resp. The feasible set of the
�nite dimensional LP problem, cf. section
2, is described by the linear inequalities,

mX
k=0

nX
`=0

�
m

k

��
n

`

�
(�1)k+`�i+k;j+` � 0;

for all m;n 2 f0; 1; : : : ;Mg and for all
0 � i � M �m, 0 � j �M � n,

mX
k=0

�
m

k

�
(�1)k�

(s)
i+k � 0;

for s 2 fbottom; top; rightg, and the lin-
ear equations

0 =
m

T
�m�1;n +

2n(n� 1)

b2
�m;n�2

+
nd

b
�m;n�1 � �(t)

m � �(r)
n ;

for m � 1; n � 2;

0 =
m

T
�m�1;1 +

d

b
�m;0 � �(t)

m � �(r)
n ;

for m � 1; n = 1;

0 =
m

T
�m�1;0 � �(b)

m � �(t)
m � �

(r)
0 ;

for m � 1; n = 0;

0 =
2n(n� 1)

b2
�0;n�2 +

nd

b
�0;n�1 +

�y0
b

�n
� �(t)

0 � �(r)
n ;

for m = 0; n � 1:

We obtain bounds on, for instance, the
mth moment of the exit time distribu-
tion of � by maximizing/minimizing the
expression mTm�1�m�1;0 subject to the
linear constraints described above. If we
let T become large we get bounds on the
moments of the exit distribution of the
squared Bessel process from a strip (0; b).

In the talk we shall present numerical re-
sults based on numerous computations.
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4 Exponential function-

als of Brownian mo-

tion

In section 4 (Bt)t�0 denotes a 1-
dimensional Brownian motion starting at
zero. Let, % 2 R,

At :=

tZ
0

exp[2(Bs+ %s)]ds:

The process (At) is of interest in the con-
text of Asian options, cf. [9]. Yor, see [9],
p. 69, derived the following formula for the
nth moment of the random variable AT� ,
where T� denotes an exponential variable
with parameter � independent of (Bt):

E
�
An
T�

�
=

n!
nQ

j=1

(�� 2(j2 + j%))
: (4.1)

The following method by which these mo-
ments can be numerically computed is
based on Corollary 2.4. To begin with,
we de�ne the 2-dimensional Markov pro-

cess Yt =
�
Zt;

R t

0
Zsds

�
, where Zt =

exp[2(Bt + %t)]. Obviously, At =
R t

0
Zsds,

t � 0, and (Zt)t satis�es the stochastic
di�erential equation, Z(0) = 1,

dZt = (% + 2)Ztdt+ 2ZtdBt:

The process (Yt)t evolves on the non-
negative orthant in R

2 . Its generator is
given by, f a test function, 0 � y =
(y1; y2) 2 R

2 ,

Af(y) = 2y21
@2f

@y21
+ (%+ 2)y1

@f

@y1
+ y1

@f

@y2
:

To compute the right-hand side of Eqn.
(4.1) we kill the process (Yt)t at rate � and
restart it at y0 = (1; 0). The generator A�

of the modi�ed process has the form, f a
test function,

A�f(y) = Af(y) + �[f(y0)� f(y)]:

To obtain a LP problem we further mod-
ify the process as follows. We choose a
\large" number b and we restrict the killed
and restarted process to G = (0; b]� [0; b).
Whenever one of the components hits the
level b the process jumps back to the start-
ing point (1; 0) after it spent an exponen-
tial (with parameter �) random time at
the hitting point. Since the killing mecha-
nism operates independently of the jump
mechanism the generator of the process
becomes

A�f(y)Ify2Gg+(�+�)[f(y0)�f(y)]Ify2@Gg;

where @G = fbg� [0; b][ (0; b]�fbg. The
linear programming formulation (see [7])
which yields bounds for the left-hand side
of Eqn. (4.1) reads:

max =min

Z
G

yn�G(dy) +

Z
@G

yn�@G(dy)

subject to

Z
G

A�f(y)�G(dy)+

Z
@G

A�f(y)�@G(dy) = 0;

�G + �@G is a probability measure.

We shall report on the stability and, in
light of the analytical results, on the ac-
curacy of the method.
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