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Abstract. A computational method for the analysis of the di�usion approximation to the Wright-

Fisher model in population genetics is presented. This paper evaluates the stationary distribution

of the di�usion when such a distribution exists and examines the extinction probabilities and mean

extinction time when extinction of at least one allele occurs. The computational method uses a

characterization of the di�usion through an adjoint relation between the di�usion operator and its

stationary distribution or between the di�usion operator and a pair of measures giving the expected

occupation of the process and the state when extinction occurs. Application of the adjoint relations

to a set of functions in the domain of the generator leads to a set of constraints for linear programs

which are solved to obtain bounds on numerical quantities of interest. The accuracy of the method

is illustrated on examples for which analytical results are known. The method is also used in cases

for which exact solutions are unknown.
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1 Introduction and model formulation

The purpose of this paper is to provide a numerical method based on linear programming
for computing quantities of interest, such as the mean exit time and the moments of the
stationary distribution, for a particular class of di�usion models on the unit simplex. We
concentrate on the di�usion approximation to the Wright-Fisher model in population genetics
since, for speci�c choices of the parameters, theoretical results exist for the mean exit time
and stationary distribution and thus we can exhibit the accuracy of the linear programming
method, but for other parameter selections no analytical results are known. We illustrate
the numerical procedure on one-dimensional, two-dimensional and four-dimensional di�usion
models.

We take as our starting point the di�usion approximation to the Wright-Fisher genetic
model with r alleles and refer the reader to [5, Chapter 10] for an excellent explanation of the
original model and the di�usion approximation. Let K = fx = (x1; : : : ; xr�1) 2 [0; 1]r�1 :Pr�1

i=1 xi � 1g denote the (r�1)-dimensional simplex which identi�es the proportions of each
allele in the population (the rth proportion being determined by the others). The di�usion

1This research is partially supported by NSF under grant DMS 9803490.
2Institute for Operations Research, Humboldt University of Berlin, Berlin, Germany, helmes@wiwi.hu-

berlin.de.
3Department of Mathematical Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin and

Department of Statistics, University of Kentucky, Lexington, Kentucky, stockbri@uwm.edu.

1



operator for the evolution of these proportions is
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where aij(x) = xi(Æij � xj), Æij being the Kronecker Æ, and
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!
(2)

and we set the domain of the operator to be D(A) = C2(K). The coeÆcients �ij are related
to the mutation rates between alleles (�ii = 0; 8i) and the coeÆcients �ij correspond to
selection. As in [5], letting X(t) = (X1(t); : : : ; Xr�1(t)) denote the proportions of the alleles
in the population at time t, the process

f(X(t))�

Z t

0

Af(X(s)) ds (3)

is a martingale for each f 2 D(A).
Our linear programming approach for the analysis of this di�usion involves utilizing an

adjoint equation involving the generator A and either the stationary distribution of the
process, or the occupation measure of the process in the simplex up to the time of extinction
and the measure giving the state of the process at extinction. The adjoint equation takes the
form (4) when the model has a stationary distribution to be determined and is (22) when
the model is such that one or more of the alleles will become extinct.

Consider �rst the case in which �ij > 0 for i 6= j so the process X has a stationary
distribution on K; denote this distribution by �. When � is also the initial distribution of
X, X(t) is distributed according to � for each t � 0. Since (3) is a martingale for each
f 2 D(A),

E[f(X(0))] = E

�
f(X(t))�

Z t

0

Af(X(s)) ds

�
= E[f(X(t))]�

Z t

0

E[Af(X(s))] ds

and by the stationarity of the process, it follows thatZ
K

Af(x1; : : : ; xr�1) �(dx1 � � � � � dxr�1) = 0: (4)

The identity (4), in fact, characterizes the stationary distribution � (see [5, Theorem 4.9.17]).
The basic idea of our approach is to judiciously select a �nite collection of f 2 D(A) and

set the conditions (4) for these f as the constraints of a linear program. A careful selection
of objective function then allows for the determination of the quantities of interest. This
numerical approach has an advantage over other approaches in that it naturally provides
bounds on the quantities of interest and excellent software is readily available.

The authors have applied this numerical method [8, 10] to the analysis of the distribu-
tion of the exit time for a variety of processes from a bounded interval in one-dimension and
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bounded rectangle in two-dimensions. The paper [8] computed the moments of the exit time
distribution directly, whereas in [10] the Laplace transform of the moments were determined.
A similar approach has been applied on stochastic control problems ([9]) and optimal stop-
ping problems by R�ohl [16] and Schwerer [17] uses a linear programming approach involving
the moments of a reected Brownian motion process over an unbounded domain.

Formulating the evolution of the Markov process through occupation measures developed
from work by Young [20] for problems in the calculus of variations. The present approach
is a special case of the more general situation of formulating stochastic control problems as
linear programs over a space of stationary distributions studied in very general settings in
[1, 11, 18, 19]. The variable in the in�nite-dimensional linear program is a measure on the
product of the state and control spaces, and in the case of exit problems, this variable is
augmented by a second measure on the exterior of the state space (see [11]).

The linear programming approach to stochastic control at this level of generality had
its foundations in the existence of stationary processes corresponding to the measure which
satis�es an adjoint equation. This was established in [18] and later extended to the more
general adjoint equation for exit problems in [11]. Kurtz also applied these techniques in
uncontrolled settings for patchwork and constrained martingale problems ([12, 13]) and, in
joint work with Dai, used this in the analysis of Brownian networks [3]. The adjoint equation
corresponding to the heavy traÆc limit of queueing processes had previously been introduced
by Harrison and Reiman [7]. Other papers using linear programming for stochastic control
include [14, 15].

The Wright-Fisher process of this paper is not controlled. However, the results cited
above are applicable to it by taking the control space to consist of a single element. It then
follows that the variables are measures solely on the states of the process.

This paper is organized as follows. Section 2 formulates the linear program associated
with the stationary distribution of the Wright-Fisher di�usion approximation and computes
the moments of the stationary distribution for several choices of parameters for which the
process has a stationary distribution. The discussion includes a careful examination of ad-
ditional linear constraints for the two-dimensional simplex due to Dale [4], and its extension
to higher dimensions, which are necessary to ensure that the computed values are consistent
with being moments of a distribution. Section 3 then presents the LP formulation used to
compute quantities related to extinction for the cases when at least one allele will become
extinct in the population. In this paper, we focus on the mean extinction time and the
probability of each allele becoming extinct. The section includes numerical illustrations for
cases in which there are analytical results and for some choice of parameters for which no
analytical results are known. We make brief concluding remarks in section 4 and provide
the code for one of the examples in an appendix.

2 Evaluation of the stationary distribution

The goal of this section is the computation of the moments of the stationary distribution
of the Wright-Fisher di�usion on the unit simplex so consider the case in which �ij > 0 for
i 6= j. Since the adjoint equation (4) characterizes the stationary distribution � and the
distribution � on the (bounded) simplex is speci�ed by its joint moments, it is suÆcient to
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restrict attention to the countable collection

D1 = ff(x1; : : : ; xr�1) = xk11 � � �x
kr�1
r�1 : k1; : : : ; kr�1 2 Z

+g: (5)

In this way, (4) can be expressed in terms of the moments of the distribution. Speci�cally,

�x k1; : : : ; kr�1 and consider f(x1; : : : ; xr�1) = xk11 � � �x
kr�1
r�1 . De�ne the joint (k1; : : : ; kr�1)-

moment of � by

m(k1; : : : ; kr�1) =

Z
K

xk11 � � �x
kr�1
r�1 �(dx1 � � � � � dxr�1): (6)

Then applying the generator A of (1) to f , (4) becomes

0 =
r�1X
i=1

ki(ki � 1)

2
(m(k1; : : : ; ki � 1; : : : ; kr�1)�m(k1; : : : ; kr�1))

�
r�1X

i;j=1;i6=j

(kikj)m(k1; : : : ; kr�1)�
r�1X
i=1

ki

 
rX

i=1

�ij

!
m(k1; : : : ; kr�1) (7)

+
r�1X
i=1

rX
j=1

ki�jim(k1; : : : ; ki � 1; : : : ; kj + 1; : : : ; kr�1)

+
r�1X
i=1

rX
j=1

ki�ijm(k1; : : : ; kj + 1; : : : ; kr�1)

�
r�1X
i=1

rX
j;l=1

ki�jlm(k1; : : : ; kj + 1; : : : ; kl + 1; : : : kr�1);

where the notation m(k1; : : : ; ki � 1; : : : ; kj + 1; : : : ; kr�1) denotes the joint moment having
(ki � 1)-moment in the ith variable, (kj + 1)-moment in the jth variable and kl-moment for
the lth variables for all other variables. When i = j, m(k1; : : : ; ki� 1; : : : ; kj+1; : : : ; kr�1) =
m(k1; : : : ; ki; : : : ; kr�1) and m(k1; : : : ; ki+1; : : : ; kj+1; : : : kr�1) = m(k1; : : : ; ki+2; : : : ; kr�1).

2.1 Motivating example

To illustrate the approach, consider the simplest example for which analytic results are
known. Let �ij = �j for i 6= j; j = 1; : : : ; r and set �ij = 0 for all i; j. In this case, the
stationary distribution � of the allele proportions (X1; : : : ; Xr�1) is a Dirichlet distribution
with parameters (2�1; : : : ; 2�r); that is, (X1; : : : ; Xr�1) has density on the (r�1)-dimensional
simplex K given by

p(x1; : : : ; xr�1) = C

 
r�1Y
i=1

x2�i�1i

! 
1�

r�1X
i=1

xi

!2�r�1

; (8)

where C = �(2�1+���+2�r)
�(2�1)����(2�r)

is the normalizing constant. A simple computation shows that the

joint (k1; : : : ; kr�1)-moment of � is

m(k1; : : : ; kr�1) =
� (2

Pr
i=1 �i)

Qr�1
i=1 �(2�i + ki)

�
�
2
Pr

i=1 �i +
Pr�1

i=1 ki
�Qr�1

i=1 �(2�i)
:
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Now let r = 5. Taking each �j = 0:5, the Dirichlet distribution actually gives the
uniform distribution on the four-dimensional simplex. In this example, the conditions (7)
can be solved recursively for the joint moments.

Considering functions f with k1; k2; k3; k4 � 20 in (7) and solving a linear program
having these conditions as the constraints, the LP determines the joint moments of �. Note
the fact that the moments can be determined recursively is displayed when the software
package CPLEX determines these values exactly using a presolver to reduce the number of
undetermined variables in the program. As a result the choice of objective function for the
LP has no e�ect on the optimal solution since there is a unique feasible point.

We illustrate the numerical results with the joint moments m(k1; k2; 0; 0) for k1 � 10 and
k2 � 5 in Table 2.1.

Table 2.1: Values of m(k1; k2; 0; 0) from LP

k2

0 1 2 3 4 5

0 1 0.2 0.0666667 0.0285714 0.0142857 0.00793651
1 0.2 0.0333333 0.00952381 0.00357143 0.0015873 0.000793651

k1 2 0.0666667 0.00952381 0.00238095 0.000793651 0.00031746 0.0001443
3 0.0285714 0.00357143 0.000793651 0.000238095 8.65801e-05 3.6075e-05
4 0.0142857 0.0015873 0.00031746 8.65801e-05 2.886e-05 1.11e-05
5 0.00793651 0.000793651 0.0001443 3.6075e-05 1.11e-05 3.96429e-06
6 0.0047619 0.0004329 7.21501e-05 1.665e-05 4.75715e-06 1.58572e-06
7 0.0030303 0.000252525 3.885e-05 8.32501e-06 2.22e-06 6.93751e-07
8 0.0020202 0.0001554 2.22e-05 4.44e-06 1.11e-06 3.26471e-07
9 0.0013986 9.99001e-05 1.332e-05 2.4975e-06 5.87648e-07 1.63235e-07
10 0.000999001 6.66001e-05 8.32501e-06 1.46912e-06 3.26471e-07 8.59134e-08

These values agree with the analytic values m(k1; k2; 0; 0) =
4!k1!k2!

(k1+k2+4)!
.

2.2 The Dale conditions

Consider now the general model in which �ij > 0 for i 6= j (and �ii = 0) but in which there
are no other assumptions on �ij, and �ij 6= 0 for some i; j. It is no longer the case that the
adjoint relation (7) can be solved recursively for the joint moments. (Even the case with
�ij = �j for i 6= j, j = 1; : : : ; r cannot be solved recursively when some of the �ij values are
nonzero.)

At this point, we have reformulated the adjoint relation (4) using the joint moments of
the distribution � as the linear conditions in (7) involving the variables fm(k1; : : : ; kr�1) :
k1; : : : ; kr�1 2 Z

+g. These conditions on their own, however, do not imply that the collection
corresponds to the collection of moments of a measure. It is necessary to impose additional
conditions on the collection to ensure that it is the collection of moments of some distribution.

When r = 2 so the simplex is actually the unit interval, necessary and suÆcient condi-
tions (see [6]) to ensure that the sequence fm(0); m(1); m(2); : : :g are the moments of some
distribution � on [0; 1] are the Hausdor� moment conditions

nX
j=0

(�1)j
�
n

j

�
m(j + k) � 0; (9)

the necessity following from the observation that
R
xk(1� x)n �(dx) � 0 for each k; n 2 Z+.

The one-dimesional (and two-dimensional extension to the unit square) Hausdor� moment
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conditions were used by the authors in [8, 10] in the analysis of the exit time distribution
for some Markov processes.

When r = 3 so the simplex is the triangle in two dimensions having vertices (0; 0), (1; 0)
and (0; 1), necessary and suÆcient conditions for the collection fm(k1; k2) : k1; k2 2 Z

+g to
be the moments of a distribution � on K were derived by Dale [4]. These conditions are most
easily expressed in terms of iterated di�erences of the moments, which we now describe. For
k1; k2 2 Z

+, de�ne
w(k1; k2; 0) = m(k1; k2)

and for k1; k2; k3 2 Z
+, with k3 � 1, de�ne

w(k1; k2; k3) = w(k1; k2; k3 � 1)� w(k1 + 1; k2; k3 � 1)� w(k1; k2 + 1; k3 � 1):

The Dale conditions require, for k1; k2; k3 2 Z
+

w(0; 0; 0) = 1 and w(k1; k2; k3) � 0; (10)

the necessity follows from the observations thatZ
K

xk11 x
k2
2 (1� x1 � x2)

k3�(dx1 � dx2) � 0 (11)

for each k1; k2; k3 � 0, and additionally when k3 � 1,Z
K

xk11 x
k2
2 (1� x1 � x2)

k3�(dx1 � dx2) =

Z
K

xk11 x
k2
2 (1� x1 � x2)

k3�1�(dx1 � dx2) (12)

�

Z
K

xk1+1
1 xk22 (1� x1 � x2)

k3�1�(dx1 � dx2)

�

Z
K

xk11 x
k2+1
2 (1� x1 � x2)

k3�1�(dx1 � dx2):

Dale's conditions can be extended to the (r � 1)-dimensional simplex.

Theorem 2.1. A collection fm(k1; : : : ; kr�1) : k1; : : : ; kr�1 2 Z
+g are the joint moments

of some distribution � on the (r � 1)-dimensional simplex K (see (6)) if and only if the
conditions

w(0; : : : ; 0) = 1 and w(k1; : : : ; kr�1; kr) � 0 (13)

are satis�ed, where
w(k1; : : : ; kr�1; 0) = m(k1; : : : ; kr�1) (14)

and for kr 2 Z
+ with kr � 1,

w(k1; : : : ; kr�1; kr) = w(k1; : : : ; kr�1; kr � 1)

�
r�1X
i=1

w(k1; : : : ; ki + 1; : : : ; kr�1; kr � 1): (15)
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Proof. The necesssity for the higher dimension follows analagously from observations as in
(11) and (12).

Now assume that the collection M = fm(k1; : : : ; kr�1) : k1; : : : ; kr�1 2 Z
+g satis�es (13),

(14) and (15). For each n � 0, de�ne a discretization Kn of the simplex K by

Kn = K
\��

i1
n
; : : : ;

ir�1
n

�
: i1; : : : ; ir�1 2 Z

+

�
:

Note, in particular, that 0 � i1; : : : ; ir�1 � n and i1 + � � �+ ir�1 � n; denote this collection
of (r � 1)-tuples by In. Again for each n, for ( i1

n
; : : : ; ir�1

n
) 2 Kn de�ne

pn

�
i1
n
; : : : ;

ir�1
n

�
=

�
n

i1; : : : ; ir�1

�
w

 
i1; ; : : : ; ir�1; n�

r�1X
l=1

il

!
(16)

where �
n

i1; : : : ; ir�1

�
=

n!

(
Qr�1

l=1 il!)(n�
Pr�1

l=1 il)!
:

Observe that by their de�nition in conjunction with (13), p0(0; : : : ; 0) = 1 and pn(i1; : : : ; ir�1)
� 0 for every 0 � i1; : : : ; ir�1 � n with i1+ � � �+ ir�1 � n. To establish an important identity
((18) below) it is helpful to express w(i1; : : : ; ir) in terms of the elements of the set M :

w(i1; : : : ; ir�1; ir) (17)

=
X

(j1; : : : ; jr�1) :
j1 + � � �+ jr�1 � ir

(�1)
P

r�1

l=1
jl

�
ir

j1 � � � jr�1

�
m(i1 + j1; : : : ; ir�1 + jr�1)

A tedious but straightforward calculation shows that

X
(u1;:::;ur�1)2In

 
r�1Y
l=1

�
ul
il

�!
pn
�u1
n
; : : : ;

ur�1
n

�

=
X

(u1;:::;ur�1)2In

X
(j1; : : : ; jr�1) :

j1 + � � �+ jr�1 � n�
P

r�1

l=1
ul

(�1)
P

r�1

l=1
jl

 
r�1Y
l=1

�
ul
il

�!

�

�
n

i1; : : : ; ir�1

��
n�

Pr�1
l=1 ul

j1; � � � ; jr�1

�
m(u1 + j1; : : : ; ur�1 + jr�1)

=
X

(u1;:::;ur�1)2In

X
(j1; : : : ; jr�1) :

j1 + � � �+ jr�1 � n�
P

r�1

l=1
ul

(�1)
P

r�1

l=1
jl

�

�
n

i1; � � � ; ir�1; (u1 � i1); � � � ; (ur�1 � ir�1); j1; � � � ; jr�1

�
m(u1 + j1; : : : ; ur�1 + jr�1)

=

�
n

i1 � � � ir�1

�
m(i1; : : : ; ir�1); (18)
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where the summations over (u1; : : : ; ur�1) 2 In are also subject to the restriction that each
ul � il and �

n
i1; � � � ; ir�1; (u1 � i1); � � � ; (ur�1 � ir�1); j1; � � � ; jr�1

�

=
n!Qr�1

l=1 (il!(ul � il)!jl!) � (n�
Pr�1

l=1 (ul + jl))!
:

Of particular interest is the case in which i1 = � � � = ir�1 = 0, in which case (17) implies

X
(u1=n;:::;ur�1=n)2Kn

pn

�u1
n
; : : : ;

ur�1
n

�
= 1

and thus
Pn =

n
pn
�u1
n
; : : : ;

ur�1
n

�
:
�u1
n
; : : : ;

ur�1
n

�
2 Kn

o
is a probability measure on Kn � K. Pn is also a probability measure on the simplex K.

Since K is compact, the collection fPn : n 2 Z
+g is tight and there exists at least

one probability measure P that is a weak limit of a subsequence of fPng. Without loss of
generality, we assume that the entire sequence converges: Pn ) P.

Now let X(n) = (X
(n)
1 ; : : : ; X

(n)
r�1) be a random vector having distribution Pn and let X

be a random vector having distribution P. Then (18) and the weak convergence of Pn to P
implies

m(i1; : : : ; ir�1) =

�
n

i1 � � � ir�1

��1
E

"
r�1Y
l=1

�
nX

(n)
l

il

�#

=
n
P

r�1

l=1
il(n�

Pr�1
l=1 il)!

n!
E

"
r�1Y
l=1

ilY
kl=0

�
X

(n)
l �

kl
n

�#

! E

"
r�1Y
l=1

X il
l

#

and hence M is the set of joint moments of the distribution P on K. Note that since the
collection M characterizes the distribution, P is, in fact, unique and moreover, the entire
sequence Pn does converge weakly to P.

2.3 Bounds on the joint moments

The inclusion of the Dale conditions implies that the variables fm(k1; : : : ; kr�1)g are the joint
moments of some distribution. In order to numerically solve a linear program, however, it
is necessary to limit the analysis to a �nite subset and require the adjoint relation (7) to
be satis�ed only for this �nite collection of variables. The result of doing this is that the
feasible points fm(k1; : : : ; kr�1)g no longer need to be the moments of a distribution.

The key observation, however, is that the set of feasible points contains the (�nite subset
of) the moments of the stationary distribution. This containment enables both upper and
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lower bounds to be determined on the values of the moments. By selecting a particular
moment as the objective function of a linear program with the adjoint conditions (7) and
the Dale conditions (13) as constraints, running a minimization procedure will provide a
lower bound and a maximization procedure will give an upper bound.

2.4 Numerical examples

Example 2.4.1. Consider a modi�cation of the model in Section (2.1) in which r = 5 and
�ij = �j for i 6= j, j = 1; : : : ; 5, only this time we require �ij 6= 0 for some i; j (along with
the symmetry conditions �ij = �ji for all i; j). Again under these conditions the stationary
distribution can be analytically determined. The distribution is absolutely continuous with
respect to Lebesgue measure on the simplex and has density

p(x1; x2; x3; x4) = Cx2�1�11 x2�2�12 x2�3�13 x2�4�14 (1� x1 � x2 � x3 � x4)
2�5�1es(x1;x2;x3;x4) (19)

where s(x1; x2; x3; x4) = ~xT�~x in which

� =

0
BBBB@

�11 �12 �13 �14 �15
�21 �22 �23 �24 �25
�31 �32 �33 �34 �35
�41 �42 �43 �44 �45
�51 �52 �53 �54 �55

1
CCCCA ; and ~x =

0
BBBB@

x1
x2
x3
x4

1� x1 � x2 � x3 � x4

1
CCCCA ;

and C is a normalizing constant.
Again, let �j = 0:5 for j = 1; : : : ; 5 and let

� =

0
BBBB@

1 0:5 0:5 0:5 0:5
0:5 0 0 0 0
0:5 0 0 0 0
0:5 0 0 0 0
0:5 0 0 0 0

1
CCCCA : (20)

It then follows that each 2�i � 1 = 0 and s(x1; x2; x3; x4) = x1 in (19) so the density is
p(x1; x2; x3; x4) = ex1 and the moments can be exactly determined.

Table 2.2 displays the exact values of the joint (x1; x2)-moments up to order 5 as well
as the values obtained by maximizing and minimizing linear programs having constraints
given by (7) and (13) with objective functions consisting of each joint moment. The linear
programs were run using up to the sixth moment in each variable.

Example 2.4.2. We now consider a modi�cation of the model in Example 2.4.2 by removing
the condition that �ij = �j for i 6= j and all j. Speci�cally select0

BBBB@
�11 �12 �13 �14 �15

�21 �22 �23 �24 �25

�31 �32 �33 �34 �35

�41 �42 �43 �44 �45

�51 �52 �53 �54 �55

1
CCCCA =

0
BBBB@

0 2 0:5 0:5 0:5
3 0 0:5 0:5 0:5
0:5 0:5 0 1 0:5
0:5 0:5 1 0 0:5
0:5 0:5 0:5 0:5 0

1
CCCCA
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and let � be as in (20). The stationary distribution for this choice of parameters is not
known. Nevertheless, the linear programming approach gives bounds on the moments of the
stationary distribution. Table 2.3 displays the bounds for the joint (x1; x2)-moments up to
order 5 obtained by solving the LPs having constraints (7) and (13) with objective functions
consisting of each joint moment individually. The LPs were run using moments up to order
six in each variable.

Table 2.2. Values of m(k1; k2; 0; 0) from LP

k2

0 1 2 3 4 5

max 1 0.1927437 0.0625848 0.0263031 0.0129544 0.0076051
0 exact 1 0.1927437 0.0625848 0.0263031 0.0129544 0.0071103

min 1 0.1927436 0.0625848 0.0263031 0.0129544 0.0065777

max 0.2290259 0.0362818 0.0099787 0.0036328 0.0015769 0.0008325
1 exact 0.2290254 0.0362818 0.0099787 0.0036328 0.0015769 0.0007734

min 0.2290249 0.0362816 0.0099786 0.0036328 0.0015769 0.0006959

max 0.0839003 0.0113354 0.0027131 0.0008733 0.0003395 0.0001667
2 exact 0.0838984 0.0113350 0.0027130 0.0008733 0.0003395 0.0001507

k1 min 0.0838964 0.0113348 0.0027129 0.0008733 0.0003395 0.0001342

max 0.0385699 0.0045542 0.0009667 0.0002794 9.856e-05 4.939e-05
3 exact 0.0385584 0.0045529 0.0009664 0.0002792 9.839e-05 3.992e-05

min 0.0385481 0.0045512 0.0009660 0.0002790 9.822e-05 2.750e-05

max 0.0204125 0.0021457 0.0004101 0.0001083 3.592e-05 3.055e-05
4 exact 0.0203429 0.0021312 0.0004080 0.0001070 3.452e-05 1.291e-05

min 0.0202700 0.0021280 0.0004058 0.0001059 3.311e-05 0

max 0.0123896 0.0011815 0.0002101 5.602e-05 2.838e-05 1.274e-05
5 exact 0.0118376 0.0011624 0.0001939 4.662e-05 1.387e-05 4.810e-06

min 0.0113047 0.0010463 0.0001774 3.488e-05 0 0

Table 2.3. Bounds on the Values of m(k1; k2; 0; 0) from LP

k2

0 1 2 3 4 5

0 max 1 0.1712548 0.0425506 0.0131836 0.0047600 0.0021360
min 1 0.1712546 0.0425504 0.0131834 0.0047568 0.0016055

1 max 0.2527244 0.0456259 0.0113314 0.0034436 0.0012238 0.0005410
min 0.2527241 0.0456255 0.0113309 0.0034426 0.0011850 0.0003830

2 max 0.0872044 0.0157279 0.0038019 0.0011166 0.0003851 0.0001700
k1 min 0.0872027 0.0157259 0.0038005 0.0011107 0.0003636 0.0001100

3 max 0.0359544 0.0063569 0.0014827 0.0004192 0.0001400 6.310e-05
min 0.0359430 0.0063478 0.0014787 0.0004133 0.0001287 2.690e-05

4 max 0.0167553 0.0028873 0.0006506 0.0001770 5.883e-05 5.029e-05
min 0.0166578 0.0028493 0.0006338 0.0001682 4.875e-05 0

5 max 0.0089794 0.0015198 0.0003363 9.641e-05 4.818e-05 2.160e-05
min 0.0080040 0.0012834 0.0002666 5.468e-05 0 0

3 Mean extinction time and extinction probabilities

We now consider the model in which �ij = 0 for all i 6= j for at least one j and thus one or
more of the alleles will become extinct in the population. Let � denote the random time at
which extinction occurs for the �rst such allele. Note that this corresponds to the �rst time
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that the di�usion process hits the boundary of the simplex. In this section, we evaluate the
mean of � and the probabilities of the alleles becoming extinct. We assume E[� ] <1.

Since (3) is a martingale for each f 2 D(A), an application of the optional sampling
theorem implies

E

�
f(X(�))�

Z �

0

Af(X(s)) ds

�
= E[f(X(0))]: (21)

Let �� denote the distribution of X(�) and �occ be the expected occupation measure of X
up to the time � de�ned by

�occ(G) = E

�Z �

0

IG(X(s)) ds

�
; 8 Borel sets G � K

and notice that by taking G = K, E[� ] = �occ(K); that is the mean exit time is given by the
total mass of the occupation measure. The identity (21) can be written in terms of �� and
�occ as Z

@K

f d�� �

Z
K

Af d�occ =

Z
fd�0; 8f 2 D(A); (22)

where �0 denotes the initial distribution of X(0) on K. (For simplicity of notation in the
sequel, assume X(0) = (~x1; : : : ; ~xr�1).)

In [11], it is shown in a controlled setting that for each �occ and �� satisfying (22) there is
a process X and a stopping time � for which (3) is satis�ed for t � � and � is essentially the
�rst exit time ofX. Thus (22) characterizes the occupation measure �occ and exit distribution
�� of the Wright-Fisher di�usion process having generator A. The relation (22) is the adjoint
relation between the generator A of the Wright-Fisher di�usion and the measures �� and
�occ.

As in the analysis of the stationary distribution, �� and �occ are measures on bounded
sets so their respective joint moments uniquely characterize them. Restrict the set of test
functions to D1 de�ned in (5) and de�ne the two moment sets, respectively, by

m� (k1; : : : ; kr�1) =

Z
@K

xk11 � � �x
kr�1
r�1 �� (dx1 � � � � � dxr�1) (23)

and

mocc(k1; : : : ; kr�1) =

Z
K

xk11 � � �x
kr�1
r�1 �occ(dx1 � � � � � dxr�1): (24)

For f 2 D1, the adjoint relation (22) is

~xk11 � � � ~x
kr�1
r�1 = m� (k1; : : : ; kr�1)

�
r�1X
i=1

ki(ki � 1)

2
(mocc(k1; : : : ; ki � 1; : : : ; kr�1)�mocc(k1; : : : ; kr�1))

+
r�1X

i;j=1;i6=j

(kikj)mocc(k1; : : : ; kr�1) +
r�1X
i=1

ki

 
rX

j=1

�ij

!
mocc(k1; : : : ; kr�1)

�
r�1X
i=1

rX
j=1

ki�jimocc(k1; : : : ; ki � 1; : : : ; kj + 1; : : : ; kr�1)
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�
r�1X
i=1

rX
j=1

ki�ijmocc(k1; : : : ; kj + 1; : : : ; kr�1) (25)

+
r�1X
i=1

rX
j;l=1

ki�jlmocc(k1; : : : ; kj + 1; : : : ; kl + 1; : : : kr�1):

Again, the adjoint relation (25) does not imply that the collections fm� (k1; : : : ; kr�1) :
k1; : : : ; kr�1 2 Z

+g and fmocc(k1; : : : ; kr�1) : k1; : : : ; kr�1 2 Z
+g are the moments of some

distributions �� and �occ,respectively. It is necessary to include the Dale conditions (13) on
each collection. Notice, in particular, that the boundary of the (r � 1)-dimensional simplex
consists of (r � 2)-dimensional simplices so the measure �� can be split into measures on
each (r � 2)-dimensional face, and thus the variables fm� (k1; : : : ; kr�1) : k1; : : : ; kr�1 2 Z

+g
can also be split into variables on each (r � 2)-dimensional face. These variables then need
to satisfy the (r � 2)-dimensional Dale conditions.

Additional information is contained in the distribution �� and these collections of mo-
ments on the faces. Since each face corresponds to the extinction of an allele, the mass of ��
on each face gives the extinction probability for the corresponding allele. These probabilities
are therefore provided by the zeroth order moments of �� on each face.

3.1 Numerical examples

Example 3.1.1. Consider the model of r = 2 alleles with �1 = �2 = 0, so the Wright-Fisher
di�usion process evolves in the unit interval in one-dimension and may exit at either endpoint
(corresponding to the extinction of one of the alleles from the population). The extinction
probability for the second allele is given analytically (see equation (2.32) of [5, Chapter 10])
as a function of the initial proportion x0 of the �rst allele by

x0
'0
7�!

8<
:

x0; � = 0

1� e�2�x0

1� e�2�
; � 6= 0

where �1 = ��2 = �. Table 3.1 compares the numerical results with the analytical values
for the exit probability of the process at the point 1 (the probability of extinction of the
second allele) in the case that �1 = ��2 = � = 10. The values are computed using 20 and
35 moments.

Table 3.1. Extinction Probability as a function of x0

� = 10; M = 20 and M = 35

M = 20 moments M = 35 moments
initial value x0 lower bound exact value upper bound lower bound exact value upper bound

0.10 0.855396 0.864665 0.874617 0.864665 0.864665 0.864665
0.20 0.974084 0.981684 0.989759 0.981684 0.981684 0.981684
0.30 0.996259 0.997521 0.999449 0.997521 0.997521 0.997521
0.40 0.999481 0.999665 0.999986 0.999785 0.999665 0.999665
0.50 0.999929 0.999955 1.000000 0.999955 0.999955 0.999955
0.60 0.999990 0.999994 1.000000 0.999994 0.999994 0.999994
0.70 0.999999 0.999999 1.000000 0.999999 0.999999 0.999999
0.80 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.90 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
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The mean extinction time of the second allele for the (general) case �1 = 0, �2 > 0,
�1; �2 2 R as a function of the initial proportion x0 of the �rst allele is given by (see [5]),

x0 7! Ex0 [� ] = 2

1Z
x0

y�2�2e��(y)
yZ

0

z2�2�1e�(z)

1� z
dz dy;

where �(y) = �1y
2 + �2(1 � y)2. For the special cases �2 = 0, �2 = 0 and �1 = ��2 = �,

respectively, this formula changes to

Ex0[� ] = 2

x0Z
0

e��(y)
1=2Z
y

e�(z)

z(1� z)
dz dy � 2'0(x0)

1Z
0

e��(y)
1=2Z
y

e�(z)

z(1� z)
dz dy (26)

and
Ex0 [� ] = �2 [x0 log(x0) + (1� x0) log(1� x0)] ;

respectively.
Table 3.2 reports the results for the mean extinction time as a function of the number of

moments used for the case �2 = 0, �1 = ��2 = 1. If, as for the computations for Table 3.1
we only use monomials as test functions, the gap between the maximum value and the
minimum value of the associated LPs might be large. To reduce the gap we have included
additional test functions like x log(x), (1 � x) log(1 � x) and log(x), and used their Taylor
series approximations up to order M as well as substitutions like log(10�7) for log(0) in our
programs.

Table 3.2. Bounds on the mean extinction time as a function of the moments

�1 = �2 = 0, �1 = ��2 = 1, x0 = 0:5

number of moments lower bound exact value upper bound

10 1.258551 1.293240 1.369422
20 1.285232 1.293240 1.307876
30 1.289563 1.293240 1.299367
40 1.290855 1.293240 1.296671
50 1.291369 1.293240 1.295419
60 1.291853 1.293240 1.294976
70 1.292097 1.293240 1.294466
80 1.292412 1.293240 1.294412
90 1.292592 1.293240 1.294182
100 1.292527 1.293240 1.294090

Tables 3.3 and 3.4 report the results for Ex0 [� ] as a function of x0 for the following two
cases: �1 = 0, �2 = 0 and �1 = ��2 = 1 (case I), and �1 = 0, �2 = 1 and �1 = 1 and
�2 = 2 (case II). Whereas for case I, Maple and Mathematica have no diÆculties evaluating
formula (26), neither program can directly deal with case II. The numbers in the column
labeled NEF are the solutions of an approximation of the boundary value problem for which
x0 7! Ex0 [� ] is the solution. The numbers in the column \estimated values" are the average
values of the upper and lower bounds. The accuracy of the estimates decreases for larger
sigma parameters and increases should these parameter values become smaller.
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Table 3.3. Mean extinction time as a function of x0

�1 = �2 = 0, �1 = ��2 = 1, M = 100

initial value x0 lower bound exact value estimated value upper bound

0.1 0.750470 0.752053 0.751667 0.752865
0.2 1.101586 1.103172 1.102855 1.104124
0.3 1.272638 1.273869 1.273683 1.274728
0.4 1.325367 1.326332 1.326250 1.327134
0.5 1.292527 1.293240 1.293308 1.294090
0.6 1.192493 1.193147 1.193221 1.193948
0.7 1.034307 1.034934 1.035021 1.035736
0.8 0.817125 0.817530 0.817739 0.818352
0.9 0.520805 0.521171 0.521351 0.521897

Table 3.4. Mean extinction time as a function of x0

�1 = 0, �2 = 1, �1 = 1, �2 = 2, M = 100

initial value x0 lower bound NEF estimated value upper bound

0.1 2.0507 2.1185 2.0887 2.1266
0.2 1.9413 1.9867 1.9663 1.9913
0.3 1.8039 1.8328 1.8200 1.8361
0.4 1.6359 1.6574 1.6479 1.6599
0.5 1.4477 1.4618 1.4557 1.4637
0.6 1.2402 1.2477 1.2445 1.2488
0.7 1.0091 1.0154 1.0127 1.0163
0.8 0.7566 0.7609 0.7590 0.7615
0.9 0.4649 0.4667 0.4660 0.4670

Example 3.1.2. To illustrate the power but also the limitations of the LP-method we close
with the numerical analysis of a case with three alleles (r = 3) so the di�usion operates in
the two-dimensional simplex. The tables below are representative of the results obtained for
a variety of parameters.

Table 3.5 reports the moments up to M = 12 of the boundary distributions for the case
of three alleles and �ij = 0, �ij = 0 for all i; j. The numbers nicely reveal the symmetry of
the distributions on the boundary if, at the beginning of the evolution, the proportions of
the alleles are the same, i.e. x0 = y0 = 1=3. We have included one additional test function,
f(x; y) = x ln(x)+y ln(y)+(1�x�y) ln(1�x�y), along with the monomials up to order 12.
The use of this function has been suggested by the analysis of the one-dimensional model.

Table 3.5. Moments of extinction probabilities

�12 = �21 = �ij = 0, M = 100

M moments for moments for moments for
x = 0 x+ y = 1 y = 0

0 0.333333 0.333335 0.333331
1 0.166666 0.166668 0.166666
2 0.102935 0.120856 0.10717
3 0.0687223 0.0930412 0.0774225
4 0.0469631 0.0715403 0.0571901
5 0.0325845 0.0549768 0.0417154
6 0.0229829 0.0421709 0.029809
7 0.0163253 0.0321397 0.0208761
8 0.0114141 0.0240968 0.014322
9 0.00755308 0.0174522 0.00955211
10 0.00441248 0.0118128 0.0059716
11 0.00189479 0.006982 0.0029858
12 0 0.00295978 0
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Table 3.6 reports bounds for the mean extinction time of at least one allele for the same
set of parameters. To narrow the gap between the maximum and minimum values of the
corresponding LP problems we have used three additional test functions, f(x; y) = ln(x+y),
f(x; y) = ln(1�x) and f(x; y) = ln(1�y). To implement the associated constraints we have
used the truncated power series of these functions.

In the two-dimensional case the choice of largest moment M becomes critical and a
balance needs to be struck between accuracy and computing time. For instance, if M =
20 each LP run requires approximately 25,000 Simplex iterations. We have used CPLEX
versions 6 and 7 on SUN worstations and modern PCs.

Table 3.6. Bounds on the mean exit time

�12 = �21 = �ij = 0, M = 100

M lower bound upper bound estimated value

13 0.530103 0.575364 0.552734
14 0.533645 0.575364 0.554505
15 0.536699 0.575364 0.556031
16 0.539007 0.575364 0.557186
17 0.541503 0.575364 0.558433
18 0.542556 0.575365 0.558961
19 0.544815 0.575365 0.560090
20 0.546042 0.575365 0.560703

4 Concluding remarks

In this paper, we have illustrated the accuracy of linear programming in determining the
mean extinction time and extinction probabilities for the di�usion approximation of the
Wright-Fisher model in population genetics, and in computing the moments of the station-
ary distribution. The examples have included one-dimensional, two-dimensional and four-
dimensional models. The method relies on adjoint equations (appropriate to the quantities
of interest) which are determined from the martingale formulation of the dynamics of the
di�usion. This approach naturally provides both lower and upper bounds on the moments of
the distributions. An important issue which remains open is an inverse problem in which, for
example, the density of the stationary distribution is approximated based on the computed
moments. We expect that having both upper and lower bounds on the moments will be
quite valuable since clear error estimates are provided.

5 Appendix

AMPL code for the stationary distribution of the Wright-Fisher model having 5 alleles

#

option cplex_options 'feasibility=1.0e-9 advance=0';

#

# Here are the Parameters

#

param M default 6 ; # M denotes the highest moment in each variable

#

param mu11:=0 ; param mu12:=2 ; param mu13:=0.5; param mu14:=0.5; param mu15:=0.5;

param mu21:=3 ; param mu22:=0 ; param mu23:=0.5; param mu24:=0.5; param mu25:=0.5;

param mu31:=0.5; param mu32:=0.5; param mu33:=0 ; param mu34:=1 ; param mu35:=0.5;
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param mu41:=0.5; param mu42:=0.5; param mu43:=1 ; param mu44:=0 ; param mu45:=0.5;

param mu51:=0.5; param mu52:=0.5; param mu53:=0.5; param mu54:=0.5; param mu55:=0 ;

param sg11:=1 ; param sg12:=0.5; param sg13:=0.5; param sg14:=0.5; param sg15:=0.5;

param sg21:=0.5; param sg22:=0 ; param sg23:=0 ; param sg24:=0 ; param sg25:=0 ;

param sg31:=0.5; param sg32:=0 ; param sg33:=0 ; param sg34:=0 ; param sg35:=0 ;

param sg41:=0.5; param sg42:=0 ; param sg43:=0 ; param sg44:=0 ; param sg45:=0 ;

param sg51:=0.5; param sg52:=0 ; param sg53:=0 ; param sg54:=0 ; param sg55:=0 ;

#

#

set IM := -2..M ; %# Indizes i bezeichnen die Differenzenordnung

set I := 0..M ; %# Indizes i bezeichnen die Differenzenordnung

set I1M := 1..M ; %# hat programmtechnischen Grund

set I2M := 2..M ; %# hat programmtechnischen Grund

set QUAD := { IM, IM ,IM, IM } ; %# Definitionsbereich fuer Variable y

set QUINT:= { IM, IM ,IM, IM, IM } ; %# Definitionsbereich fuer Variable y

set PAIRS := { I ,I } ; %# Definitionsbereich fuer Variable y

#

# Definition of the variables

#

var y { QUAD } ;

var v {QUINT} ;

var w {QUINT} ;

#

# The objective function

maximize perform_max:

y[3,5,0,0];

minimize perform_min:

y[3,5,0,0];

#

subject to prob :

y[0,0,0,0] = 1;

subject to equation1 {r in 0..M-2,s in 0..M-2,t in 0..M-2,u in 0..M-2}:

# the diffusion term for the Wright-Fisher model

(1/2)* r*(r-1)*(y[r-1,s,t,u] - y[r,s,t,u]) + 1/2*s*(s-1)*(y[r,s-1,t,u] - y[r,s,t,u] )

+ (1/2)* t*(t-1)*(y[r,s,t-1,u] - y[r,s,t,u]) + (1/2)* u*(u-1)*(y[r,s,t,u-1] - y[r,s,t,u])

-r*s*y[r,s,t,u] - r*t*y[r,s,t,u] - r*u*y[r,s,t,u] - s*t*y[r,s,t,u] - s*u*y[r,s,t,u] - t*u*y[r,s,t,u]

# zusaetzlicher Drifterm

- r*(mu12+mu13+mu14+mu15+mu51)*y[r,s,t,u]

+ r*(mu21-mu51)*y[r-1,s+1,t,u] + r*(mu31-mu51)*y[r-1,s,t+1,u] + r*(mu41-mu51)*y[r-1,s,t,u+1]

+ r*mu51*y[r-1,s,t,u]

- s*(mu21+mu23+mu24+mu25+mu52)*y[r,s,t,u]

+ s*(mu12-mu52)*y[r+1,s-1,t,u] + s*(mu32-mu52)*y[r,s-1,t+1,u] + s*(mu42-mu52)*y[r,s-1,t,u+1]

+ s*mu52*y[r,s-1,t,u]

- t*(mu31+mu32+mu34+mu35+mu53)*y[r,s,t,u]

+ t*(mu13-mu53)*y[r+1,s,t-1,u] + t*(mu23-mu53)*y[r,s+1,t-1,u] + t*(mu43-mu53)*y[r,s,t-1,u+1]

+ t*mu53*y[r,s,t-1,u]

- u*(mu41+mu42+mu43+mu45+mu54)*y[r,s,t,u]

+ u*(mu14-mu54)*y[r+1,s,t,u-1] + u*(mu24-mu54)*y[r,s+1,t,u-1] + u*(mu34-mu54)*y[r,s,t+1,u-1]

+ u*mu54*y[r,s,t,u-1]

# the terms involving the sigmas in the drift terms

#b_1
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+ r*(sg15-sg55)*y[r,s,t,u]

+ r*(sg15+sg25+sg51+sg52-sg12-sg21-2*sg55)*y[r+1,s+1,t,u]

+ r*(sg15+sg35+sg51+sg53-sg13-sg31-2*sg55)*y[r+1,s,t+1,u]

+ r*(sg15+sg45+sg51+sg54-sg14-sg41-2*sg55)*y[r+1,s,t,u+1]

+ r*(sg25+sg35+sg52+sg53-sg23-sg32-2*sg55)*y[r,s+1,t+1,u]

+ r*(sg25+sg45+sg52+sg54-sg24-sg42-2*sg55)*y[r,s+1,t,u+1]

+ r*(sg35+sg45+sg53+sg54-sg34-sg43-2*sg55)*y[r,s,t+1,u+1]

+ r*(sg15+sg51-sg11-sg55)*y[r+2,s,t,u]

+ r*(sg25+sg52-sg22-sg55)*y[r,s+2,t,u]

+ r*(sg35+sg53-sg33-sg55)*y[r,s,t+2,u]

+ r*(sg45+sg54-sg44-sg55)*y[r,s,t,u+2]

+ r*(sg11+2*sg55-2*sg15-sg51)*y[r+1,s,t,u]

+ r*(sg12+2*sg55-sg15-sg25-sg52)*y[r,s+1,t,u]

+ r*(sg13+2*sg55-sg15-sg35-sg53)*y[r,s,t+1,u]

+ r*(sg14+2*sg55-sg15-sg45-sg54)*y[r,s,t,u+1]

#b_2

+ s*(sg25-sg55)*y[r,s,t,u]

+ s*(sg15+sg25+sg52+sg51-sg12-sg21-2*sg55)*y[r+1,s+1,t,u]

+ s*(sg15+sg35+sg51+sg53-sg13-sg31-2*sg55)*y[r+1,s,t+1,u]

+ s*(sg15+sg45+sg51+sg54-sg14-sg41-2*sg55)*y[r+1,s,t,u+1]

+ s*(sg25+sg35+sg52+sg53-sg23-sg32-2*sg55)*y[r,s+1,t+1,u]

+ s*(sg25+sg45+sg52+sg54-sg24-sg42-2*sg55)*y[r,s+1,t,u+1]

+ s*(sg35+sg45+sg53+sg54-sg34-sg43-2*sg55)*y[r,s,t+1,u+1]

+ s*(sg15+sg51-sg11-sg55)*y[r+2,s,t,u]

+ s*(sg25+sg52-sg22-sg55)*y[r,s+2,t,u]

+ s*(sg35+sg53-sg33-sg55)*y[r,s,t+2,u]

+ s*(sg45+sg54-sg44-sg55)*y[r,s,t,u+2]

+ s*(sg21+2*sg55-sg15-sg25-sg51)*y[r+1,s,t,u]

+ s*(sg22+2*sg55-2*sg25-sg52)*y[r,s+1,t,u]

+ s*(sg23+2*sg55-sg25-sg35-sg53)*y[r,s,t+1,u]

+ s*(sg24+2*sg55-sg25-sg45-sg54)*y[r,s,t,u+1]

#b_3

+ t*(sg35-sg55)*y[r,s,t,u]

+ t*(sg15+sg25+sg52+sg51-sg12-sg21-2*sg55)*y[r+1,s+1,t,u]

+ t*(sg15+sg35+sg51+sg53-sg13-sg31-2*sg55)*y[r+1,s,t+1,u]

+ t*(sg15+sg45+sg51+sg54-sg14-sg41-2*sg55)*y[r+1,s,t,u+1]

+ t*(sg25+sg35+sg52+sg53-sg23-sg32-2*sg55)*y[r,s+1,t+1,u]

+ t*(sg25+sg45+sg52+sg54-sg24-sg42-2*sg55)*y[r,s+1,t,u+1]

+ t*(sg35+sg45+sg53+sg54-sg34-sg43-2*sg55)*y[r,s,t+1,u+1]

+ t*(sg15+sg51-sg11-sg55)*y[r+2,s,t,u]

+ t*(sg25+sg52-sg22-sg55)*y[r,s+2,t,u]

+ t*(sg35+sg53-sg33-sg55)*y[r,s,t+2,u]

+ t*(sg45+sg54-sg44-sg55)*y[r,s,t,u+2]

+ t*(sg31+2*sg55-sg15-sg35-sg51)*y[r+1,s,t,u]

+ t*(sg32+2*sg55-sg25-sg35-sg52)*y[r,s+1,t,u]

+ t*(sg33+2*sg55-2*sg35-sg53)*y[r,s,t+1,u]

+ t*(sg34+2*sg55-sg35-sg45-sg54)*y[r,s,t,u+1]

#b_4

+ u*(sg45-sg55)*y[r,s,t,u]

+ u*(sg15+sg25+sg52+sg51-sg12-sg21-2*sg55)*y[r+1,s+1,t,u]

+ u*(sg15+sg35+sg51+sg53-sg13-sg31-2*sg55)*y[r+1,s,t+1,u]

+ u*(sg15+sg45+sg51+sg54-sg14-sg41-2*sg55)*y[r+1,s,t,u+1]

+ u*(sg25+sg35+sg52+sg53-sg23-sg32-2*sg55)*y[r,s+1,t+1,u]

+ u*(sg25+sg45+sg52+sg54-sg24-sg42-2*sg55)*y[r,s+1,t,u+1]

+ u*(sg35+sg45+sg53+sg54-sg34-sg43-2*sg55)*y[r,s,t+1,u+1]

+ u*(sg15+sg51-sg11-sg55)*y[r+2,s,t,u]

+ u*(sg25+sg52-sg22-sg55)*y[r,s+2,t,u]

+ u*(sg35+sg53-sg33-sg55)*y[r,s,t+2,u]

+ u*(sg45+sg54-sg44-sg55)*y[r,s,t,u+2]

+ u*(sg41+2*sg55-sg15-sg45-sg51)*y[r+1,s,t,u]

+ u*(sg42+2*sg55-sg25-sg45-sg52)*y[r,s+1,t,u]

+ u*(sg43+2*sg55-sg35-sg45-sg53)*y[r,s,t+1,u]

+ u*(sg44+2*sg55-2*sg45-sg54)*y[r,s,t,u+1]

= 0;
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############## The Dale Conditions ########################

#

#

# Defining the initial values of v

#

subject to diff_dale0 {r in 0..M, s in 0..M, t in 0..M, u in 0..M}:

v[0,r,s,t,u] = y[r,s,t,u];

#

# Defining the iterative differences of v

#

subject to diff_dale1 {t1 in I1M, r in 0..(M-t1),s in 0..(M-t1),t in 0..(M-t1),u in 0..(M-t1)}:

v[t1,r,s,t,u] = v[t1-1,r,s,t,u] - v[t1-1,r+1,s,t,u] - v[t1-1,r,s+1,t,u]

- v[t1-1,r,s,t+1,u] - v[t1-1,r,s,t,u+1] ;

#

# The Dale conditions

#

subject to haussdorff_dale1 {t1 in 0..M, r in 0..(M-t1), s in 0..(M-t1), t in 0..(M-t1), u in 0..(M-t1)}:

v[t1,r,s,t,u] >= 0;
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