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Abstract. Computational methods for optimal stopping problems are presented.
The �rst method to be described is based on a linear programming approach to
exit time problems of Markov processes and is applicable whenever the objective
function is a unimodal function of a threshhold parameter which speci�es a stopping
time. The second method, using linear and non-linear programming techniques,
is a modi�cation of a general linear programming approach to optimal stopping
problems recently proposed by S. R�ohl. Both methods are illustrated by solving
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1 Introduction

The purpose of the paper is to describe numerical methods based on linear
programming and on non-linear optimization techniques for solving optimal
stopping problems of Markov processes. We shall illustrate the power of these
methods by (numerically) analyzing Shiryaev's quickest detection problem for
a Wiener process.

The linear programming approach to optimal stopping and to stochastic
control in general is an extension of work by Manne [13] who initiated the
formulation of stochastic control problems as linear programs over a space
of stationary distributions for the long-term average control of �nite-state
Markov chains, see Hernandez-Lerma et. al. [10] for details, generalizations
and additional references. The generalization of the LP formulation for con-
tinuous time, general state and control spaces, and di�erent objective func-
tions has been established by Stockbridge [20], Kurtz and Stockbridge [11],
[12], and Bhatt and Borkar [1]. The LP-formulation for stopping time prob-
lems and numerical methods for the solution of such problems have been
presented by Cho [2], Cho and Stockbridge [3], and R�ohl [16].

The basic idea of the LP-approach to stochastic control of Markov pro-
cesses is to formulate such control problems as linear programs over a space of
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stationary distributions. Speci�cally, the variables in these in�nite-dimensio-
nal linear programs are measures on the product of the state and control
spaces and in the case of exit problems, each such variable is augmented by
a second measure on the exterior of the state space. These variables are tied
together by an adjoint equation involving the generator A of the Markov
process and a family of test functions. Di�erent numerical methods are de-
termined by a judious choice of a �nite set of test functions combined with
a selection of a �nite number of variables and/or restrictions imposed on the
support of the occupation measure and the exterior measure. Such choices de-
termine approximations of the in�nite dimensional optimization problem by
a �nite dimensional one. The viability of these numerical methods has been
demonstrated in an uncontrolled setting by Helmes et. al. [6] and Helmes and
Stockbridge [8] by analyzing the distribution of the exit time for a variety of
processes evolving on bounded intervals in one- and two-dimensions. In [7],
[9] Helmes and Stockbridge have applied the method of moments, i. e. the
test functions chosen are the monomials up to a given order, on a stochastic
control problem and on a particular class of di�usion processes de�ned on
a higher dimensional state space. In [14], [15] Mendiondo and Stockbridge
have applied the discretization method, i. e. the support of all measures is re-
stricted to a �nite set of gridpoints, to the analysis of some stochastic control
problems, while Cho [2] uses the discretization method to analyze a stopping
time problem. R�ohl [16] uses the method of moments and proposes an itera-
tive scheme for the numerical analysis of one- and two-dimensional stopping
problems.

In this note we shall built on [6] and [16] and exploit an advantage which
the method of moments has over other variants of the LP technique. For exit
time problems, cf. [6], the method naturally provides bounds on quantities of
interest, e. g. upper and lower bounds on the mean exit time from a bounded
interval, etc. So for optimal stopping problems whose objective function is a
unimodal function of a threshhold value which speci�es a stopping time, we
can apply line search techniques, f. i. the Fibonacci or Golden Section rule, to
the optimal values of such parametrized LP-problems. This way we obtain a
range for the optimal stopping rule parameter and get bounds for the optimal
value, see Section 3 below. Ideally, if the bounds converge to the same value
we shall �nd an optimal solution to the original problem.

The second method which we propose is applicable to more general stop-
ping problems and replaces R�ohl's iteration technique by a pair of optimiza-
tion problems, one being linear the other one being non-linear, and another
LP-problem which constitutes the veri�cation step of the procedure.

2 Formulation and Fundamental Theorems

We formulate optimal stopping problems in a restricted setting which �ts the
numerical methods which we propose and are adequate for the example to
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be analyzed. In order to keep the notation simple we shall also restrict the
formulation to bounded intervals I � R. Moreover, the Markov processes to
be considered are di�usions with polynomial coeÆcients, i. e. the generator
A has the form, f 2 D := domain(A), x 2 I ,

Af(x) =
a(x)

2
f 00(x) + b(x)f 0(x); (1)

where a(x) and b(x) are polynomials on I . For the quickest detection problem
to be analyzed in Sections 3 and 4, see also Shiryaev [19], I = [0; 1], a(x) =
const �x2(1�x)2, b(x) = ~const � (1�x), while for a stopping problem related
to the valuation of a perpetual Russian option, cf. Shepp and Shiryaev [17],
[18], I = [1;K), K � 1, a(x) = const � x2, b(x) = ~const � x, and D =�
g 2 C2((1;1)) j g0(1+) = 0

	
.

The process (Xt)t�0 to be stopped is characterized as a solution to the
martingale problem for the generator A and an initial position x, i. e. there
exists a �ltration fFtgt�0 such that (Xt)t is fFtg-progressively measurable,
X0 = x, and for every f 2 D, t � 0, the expression

f(Xt)� f(X0)�

tZ
0

Af(Xs)ds

de�nes an fFtg-martingale.
The objective of the decision maker is to minimize (or maximize) an

expected pay-o�,

Ex

2
4R(X� ) +

�Z
0

`(Xs)ds

3
5 ; (2)

over all fFtg-stopping times � for which Ex[� ] < 1, where R and ` are
polynomial functions on I . For instance, for the detection problem R(x) =
1� x and `(x) is proportional to x, and (2) is to be minimized.

There are two well known methods which can be employed to solve the
optimal stopping problem

inf
�;Ex[� ]<1

8<
:Ex

2
4R(X� ) +

�Z
0

`(Xs)ds

3
5
9=
; =: v�(x); (3)

viz. the supermartingale characterization or the variational inequality ap-
proach, cf. Shiryaev [19]. The LP-approach to exit time problems and the
LP-approach to stopping provide an alternative to these methods and are
particularly important from the point of view of numerical computations.

In the sequel we shall repeatedly use the following shorthand writing

h�; fi :=

Z
I

f(x)�(dx);
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where � denotes a non-negative (� � 0) measure on I and f is any (Borel)-
measurable and �-integrable function de�ned on the interval. We formally
de�ne the adjoint operator A� of A, i. e. A� is applied to measures �, by the
equation

hA��; fi := h�;Afi

for all f 2 D. We let Æx denote the Dirac measure at x. So the equation

�1 � Æx �A��0 = 0; (4)

where �0 and �1 are non-negative measures on I , is to be understood as
shorthand writing for the family of equations

8 f 2 D; h�1; fi � f(x)� h�0; Afi = 0:

The symbol 1l stands for the constant function identical to one.

2.1 The exit time approach (cf. Method I)

Let (Xt)t�0 denote the Markov process to be stopped so to minimize the
expected pay-o� (2). By de�nition, the quantity

f(Xt)� f(x)�

tZ
0

Af(Xs)ds

is a martingale for each f 2 D and thus it follows by the optional sampling
theorem that for each admissible stopping time � (note that Ex[� ] <1)

Ex[f(X� )]� f(x)�Ex

2
4 �Z
0

Af(Xs)ds

3
5 = 0: (5)

De�ne the occupation measure �0 and exit distribution �1 by

�0(� ) = Ex

2
4 �Z
0

I� (Xs)ds

3
5 and �1(� ) = Px[X� 2 � ]

for Borel sets � � I . It then follows that (5) can be written as (4).
We refer to (4) as the basic adjoint equation. In Kurtz and Stockbridge [11]

it is shown for very general (controlled) models which include our model as a
special case that for each �0 and �1 satisfying (4) there is a processX = (Xt)t
and a stopping time � for which (5) is satis�ed, and � is essentially the �rst
exit time of X . Thus the basic adjoint equation characterizes the occupation
measure �0 and the exit distribution �1 of a Markov process de�ned on I
having generator A. Applying this reasoning to any subinterval B � I we
obtain the following result.
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Theorem 1. For each measure �0 and �1 restricted to B = [a; b] � I and
satisfying the basic adjoint equation, the expression

h�1; Ri+ h�0; `i =: 	(a; b)

equals the expected pay-o� of a Markov process with generator A which is
stopped when hitting a or b.

2.2 A general LP-approach to optimal stopping (cf. Method II)

The exit time approach will lead to a numerical method which is only appli-
cable to a restricted class of stopping problems. Moreover, it is an indirect
approach by which optimal solutions can be found. A direct method based on
linear programming has recently been proposed in two theses, cf. Cho [2] and
R�ohl [16]. The following result is a special case of general theorems proved
by these authors and provides the analytical underpinning for Method II, see
Section 4.

Theorem 2. Consider the optimal stopping time problem (3). Then v�(x)
equals the optimal value of the in�nite-dimensional linear program

inf
�� ;��0

fh�� ; Ri+ h�; `i j h�� ; 1li = 1; �� � Æx �A�� = 0g : (6)

3 Method I

To further simplify the exposition we shall { without loss of generality {
assume from now on that I equals the unit interval [0 1]; the change of variable
x 7! (x� a)=(b� a) will transform general cases to this special one.

In Section 2.1 we have seen that each exit time problem is equivalent to
a particular in�nite-dimensional linear program. Since measures on bounded
intervals are determined by their moments and since the generator A is as-
sumed to have polynomial coeÆcients, choosing �nitely many moments as
variables we can associate with each stopping time �b := infft j Xt � bg,
0 � b � 1, i. e. we de�ne B = [0; b] in Theorem 1, two linear programs whose
optimal values sandwhich the expected pay-o� when using �b, 0 � x � b,

'(b) := 	(0; b) = Ex

2
4R(X�b) +

�bZ
0

`(Xs)ds

3
5 :

To formulate these programs we let a(x) =
NaP
i=0

�ix
i, b(x) =

NbP
i=0

�ix
i,

`(x) =
NP̀
i=0


ix
i and R(x) =

NRP
i=0

Æix
i, where Na, Nb, N` and NR are inte-

gers, and �0; : : : ; �Na
, �0; : : : ; Æ1; : : : ; ÆNR

2 R. For any integer M � N :=



6 Kurt Helmes

maxfNa; Nb; N`; NRg we de�ne for � = (�0; �1; : : : ; �M ) 2 R
M+1 the i-th

iterated di�erences of �, (i; n) 2M := f(i; n) j 0 � i �M; 0 � n �M � ig,

(�1)i�i�(n) =
iX

k=0

(�1)k
�
i

k

�
�k+n; (7)

and call

HM :=
�
� 2 RM+1 j �i�(n) � 0; (i; n) 2M

	
� R

M+1

the Hausdor� polytope of order M , cf. Helmes [5] and, for the general-
ization of this concept to higher dimensions, R�ohl [16]. For vectors � =
(�0; : : : ; �Na

; 0; : : : ; 0) 2 RM+1 , �, 
 and Æ similarly de�ned, we denote their
scalar product with vectors � 2 HM by

h�;�i :=
MX
k=0

�k�k;

for further use we shall also introduce the following abbreviations, k 2 K :=
fk 2 N j 0 � k �M �Ng, �k := �k(x;�;�;�

(1);�(0)) and

�k :=
k(k � 1)

2

NaX
i=0

�i�
(0)
i+k�2 + k

NbX
i=0

�i�
(1)
i+k�1 + xk � �

(1)
k :

Next we de�ne two linear programming problems, Pmin and Pmax:

'(b) := min
�(0);�(1)

(
h�(1); Æi+ h�(0);
i

����� �
(0);�(1) 2 HM ; �

(1)
0 = 1;

�k = 0; k 2 K

)

and

�'(b) := max
�(0);�(1)

(
h�(1); Æi+ h�(0);
i

����� �
(0);�(1) 2 HM ; �

(1)
0 = 1;

�k = 0; k 2 K

)
:

Since the Hausdor� polytope includes the set of all moment sequences up to
order M , we obtain the inequalities

min
0�b�1

'(b) � min
0�b�1

'(b) � min
0�b�1

�'(b):

Furthermore, if there is a b� such that

min
0�b�1

'(b) = '(b�) = �'(b�) = min
0�b�1

�'(b) (8)

then �b� is the optimal stopping time in the class of all stopping rules f�bg0�b�1.
If

"� := min
0�b�1

�'(b)� min
0�b�1

'(b) > 0; (9)
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and �b�, b� resp., is a solution of Pmax, Pmin resp., then ��b� and �b� are "�-
optimal stopping times within the class f�bgb.

These observations underly the following numerical procedure, where the
tacit assumption about '(b) and �'(b) is that unimodality of ' might ensure
unimodality of ' and �', at least for large values of M .

Method I.

Assume that '(b) is a unimodal function of b. Apply a line search
technique, e. g. the Golden Section rule, etc. to '(b) and �'(b). If
equality (8), inequality (9) resp., holds then the line search will
determine an optimal, "�-optimal resp., stopping rule within the
class of all stopping times f�bg0�b�1.

We shall illustrate Method I by analyzing Shiryaev's quickest detection
problem.

Example (The detection problem for a Wiener process, part I).

The detection problem, sometimes called the disruption problem, for
Brownian motion is to detect the onset, assumed to be conditionally ex-
ponentially distributed and independent of the noise, of a drift value r. The
decision is to choose a random variable � , the time at which an \alarm signal"
is given, such that a linear combination of the probability of false alarm and
the average delay of detecting the occurence of disruption is minimized. The
disruption problem for a Wiener process is equivalent to an optimal stopping
time problem of a di�usion. This problem has been solved by Shiryaev us-
ing a variational inequality approach, see [19] for more details. The stopping
problem has the form

inf
�;Ex[� ]<1

�
(1�X� ) + c

Z �

0

Xs ds

�
; (10)

where c > 0 is a given number, and (Xt)t satis�es the stochastic di�erential
equation, x, r, �, � positive parameters, 0 < x < 1,

dXt = �(1�Xt)dt+
r

�
Xt(1�Xt)d �Wt; X(0) = x; (11)

where ( �Wt)t, a Brownian motion, is the innovation process determined by the
original noise process and accumulated estimates up to time t. The process
(Xt)t�0 represents the conditional probability of the events f� � tg, � the
time of disruption, given the observations FYt = �(Ys; 0 � s � t), where the
data are described by

Yt =

�
�Wt; 0 � t � �

r(t� �) + �Wt; t � �;

and (Wt)t is a Wiener process.
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The random variable � is assumed to be distributed according to

P [� = 0] = x and P [� � t j � > 0] = e��t:

Since the Markov process X satis�es Equation (11), the generator A of this
process equals, f 2 C2(R), cf. (1),

Af(x) = �(1� x)f 0(x) +
r2

2�2
x2(1� x)2f 00(x):

The following (in�nite dimensional) LP-problem, cf. Section 2, solves (10):

v�(x) = min
�� ;�

8<
:
Z 1

0

(1� �)�� (d�) + c

Z 1

0

��(d�)

������
�� � Æx �A�� = 0;
h�� ; 1li = 1;
�� ; � � 0

9=
; :

Below we compare the numerical results for the optimal value (as a function
of x) using Method I with the exact values based on Shiryaev's formula, viz.

v�(x) =

8<
: (1�A�)�

Z A�

�

 �(z) dz; x 2 [0; A�)

1�X; x 2 [A�; 1]

(12)

where, � = 2�2�=r2, C = 2�2c=r2, H(y) = ln(y=(1 + y))� 1=y,

 �(z) = �C

Z z

0

exp
h
� �[H(z)�H(y)]

i dy

y(1� y)2
;

and A� is the root of the equation

 �(A�) = �1: (13)

Figures 1 and 2 show the graphs of the functions A�(c) and v�(x) as
de�ned by (12) and (13) for a particular set of parameters.

1.2 1.4 1.6 1.8 2
c

0.1

0.2

0.3

0.4

0.5

A*HcL

Fig. 1. The optimal stopping point A� as a function of c (r = � = � = 1).
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0.2 0.4 0.6 0.8 1
x

0.1
0.2
0.3
0.4
0.5
0.6

v*HxL

Fig. 2. The value function v� on [0:02; 1] (r = � = � = c = 1).

For the same parameters Table 1 reports the numerical results for A�(c)
and v� as a function of c using Method I, while Table 2 reports the results
for v�(x) as a function of the initial position x. In each case we have applied
the Golden Section rule to the min and max LP-problems using moments
up to order 30 and terminated the line search after 40 iterations. Note the
excellent agreement of the numerical results with the exact values which were
obtained employing Mathematica to evaluate formulas (12) and (13). Table 3
illustrates the limitations of the method if more extreme parameter settings,
e. g. r=� � 1, for instance r=� = 10, are analyzed. In Table 3 we display
the computed quantities v�(0:3) and A� (for � = 1, r = 10 and � = 1) as a
function of the number of moments used.

Table 1. The optimal stopping point A� and the optimal value v� as a function of
c using Method I (r = � = � = 1, x = 0:3 and M = 30)

objective optimal exact value optimal exact value
c value of LPs stopping point for A� value for v�

1.0 min 0.556066 0.556066 0.609534 0.609534
max 0.556066 0.609534

1.2 min 0.506103 0.506093 0.637820 0.637820
max 0.506091 0.637820

1.4 min 0.463688 0.463688 0.658360 0.658360
max 0.463687 0.658360

1.6 min 0.427376 0.427384 0.673251 0.673254
max 0.427376 0.673251

1.8 min 0.396020 0.396014 0.683900 0.683910
max 0.396015 0.683900

2.0 min 0.368711 0.368709 0.691282 0.691308
max 0.368709 0.691282
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Table 2. The optimal stopping point A� and the optimal value v� as a function of
the initial position using Method I (r = � = � = c = 1 and M = 30)

initial objective optimal optimal exact value
position of LPs stopping point value for v�

0.1 min 0.556064 0.656103 0.656103
max 0.556075 0.656103

0.2 min 0.556066 0.639540 0.639540
max 0.556067 0.639540

0.3 min 0.556066 0.609534 0.609534
max 0.556066 0.609534

0.4 min 0.556065 0.562906 0.562906
max 0.556064 0.562906

0.5 min 0.556065 0.494628 0.494628
max 0.556066 0.494628

0.6 min 0.600000 0.400000 0.400000
max 0.600000 0.400000

0.7 min 0.700000 0.300000 0.300000
max 0.700000 0.300000

0.8 min 0.800000 0.200000 0.200000
max 0.800000 0.200000

0.9 min 0.900000 0.100000 0.100000
max 0.900000 0.100000

Table 3. The computed values v� and A� as functions of M (� = � = 1, r = 10)

number of objective optimal optimal
moments used M of LPs stopping point value

30 min 0.975893 0.125080
max 0.977355 0.134995

40 min 0.979529 0.126333
max 0.976450 0.132733

50 min 0.973717 0.126144
max 0.979016 0.131450

60 min 0.979407 0.126074
max 0.978503 0.130838

70 min 0.976796 0.126813
max 0.977235 0.130920

80 min 0.978065 0.126408
max 0.982095 0.130700

90 min 0.979725 0.126207
max 0.978065 0.130427

100 min 0.975573 0.126339
max 0.979408 0.130085
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This parameter setting provides an example where '(b) and �'(b) are
not unimodal functions. Using numerical integration we found the optimal
stopping point to be A� _=0:977968 and the optimal value v�(0:3) _=0:129128.

4 Method II

According to Theorem 2, choosing as variables the �rst M + 1 moments of
measures de�ned on I we can associate with each optimal stopping problem
(3) one �nite dimensional linear minimization problem PM whose optimal
value vM (x) is a lower bound on v�(x). Let a(x), b(x), `(x), R(x), �, �, 
, Æ,
�, M, K and (�k)k2K be de�ned as in Section 3, then we have the following
inequality:

v�(x) = inf
�� ;��0

fh�� ; Ri+ h�; `i j h�� ; 1li = 1; �� � Æx �A�� = 0g

� min
�(�);�

8<
:h�(�); Æi+ h�;
i

������
�i�(�)(n); �i�(n) � 0;
(i; n) 2M;

�
(�)
0 = 1; �k = 0; k 2 K

9=
; (14)

=: vM (x):

Note that for a general stopping problem the method of moments for the
LP-approach does not determine a linear optimization problem which bounds
v�(x) from above. However, as will be illustrated below, the transformation
TM , to be de�ned next, cf. Feller [4] and R�ohl [16], when applied to a solution
�(�) yields valuable information which allows to improve the lower bound
vM (x):

�(�) TM7�!
�
q k
M

�
0�k�M

and q k
M

:=

�
M

k

�
(�1)M�k�M�k�(�)(k):

Along with the optimization problem PM , see (14), we shall consider a non-
linear optimization problem P̂M . The problem P̂M di�ers from PM in that
convex combinations of moments (up to M) of a (�xed) �nite set of Dirac

measures are substituted for the variables
�
�
(�)
k

�
0�k�M

. For instance, decid-

ing on Np Dirac measures at (variable) points 0 � b1; b2; : : : ; bNp
� 1 and a

(variable) non-negative vector p 2 RNp ,
NpP
j=1

pj = 1, we put

�(�)
m =

NpX
j=1

pjb
m
j ; 0 � m �M: (15)

The non-linear problem P̂M is de�ned as

v̂M (x) := min
�;p;b

�
h�(�); Æi+ h�;
i

����� 2 HM ; �(�) satis�es (15)
and �k = 0; k 2 K

�
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In general, nothing can be said about the relative size of v�(x) and v̂M (x).
In many applications, however, v̂M (x) equals v�(x) up to numerical accuracy.
A bene�t of computing v̂M (x) is that an optimal solution of P̂M yields a
re�nement of PM which yields a better lower bound than vM (x). Again,
to simplify the exposition, let us assume that an optimal solution of P̂M
assigns weights to only two points, b̂1 and b̂2; the general case is a straight
forward extension of this special one. Then we cover the unit interval by �ve
subintervals, 0 � "1; "2 � 1,

[0; 1] = [0; b̂1 � "1] [ [b̂1 � "1; b̂1 + "1] [ [b̂1 + "1; b̂2 � "2]

[ [b̂2 � "2; b̂2 + "2] [ [b̂2 + "2; 1]

=

5[
j=1

Ij :

For any such covering of [0; 1] the in�nite-dimensional linear program (6) can
be written as

inf
�(1);:::;�(5;��0

 
5X
i=1

h�(j); Ri+ h�; `i

!

subject to

5X
i=1

h�(j); 1li = 1; support
�
�(j)

�
� Ij ; 0 � j � 5;

and

5X
i=1

�(i) � Æk �A�� = 0:

Switching from measures �(j) to �nite sequences �(j) 2 R
M+1 such that

each vector �(j) satis�es the analogue of the \Hausdor� conditions" (7) for
measures de�ned on a general interval [a; b], 0 � a < b � 1, i. e.

�(j)
n =

nX
k=0

�
n

k

�
(b� a)kan�k�

(j)
k ;

where each vector �(j) satis�es (7), we obtain a re�nement of PM . The value
of the re�ned problem will be denoted by v�M (x). By construction the follow-
ing inequalities hold:

vM (x) � v�M (x) � v�(x):

A re�nement of PM typically yields a much improved lower bound. The
following procedure, Method II, formalizes the ideas described above.
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Method II.

Step 1. Solve PM .

Step 2. Solve P̂M .
Use the solution of PM and the transformtion TM to
specify an initial value for a non-linear solver.

Step 3. Use the solution of P̂M to determine a re�nement of
PM ; choose "i \small", e. g. 10�4 or 10�5.
If v�M (x) � v̂M (x) take v�M (x) as an estimate (lower
bound) for v�(x).

Remark. Whenever the solution of P̂M involves but one Dirac measure
Æb� a further heuristic is to combine methods I and II and to compare the
values v�M (x) and min0�b�1 �'(b). Should the numbers be close then these
numbers determine a (reasonable) range for the optimal value of a general
stopping problem.

Example (The quickest detection problem for a Wiener process, part II).

Tables 4 { 7 display the results of our analysis of the quickest detection
problem using Method II for the parameters r = � = � = 1; c = 1 and
x = 0:3 if �xed. In Table 4 we compare the values vM (x), v̂M (x) and v�M (x),
M = 25, with v�(x) as functions of x, and in Table 5 we compare the values of
A�(c), as a function of c, with the values for A� derived from the optimization
problems PM , P̂M and a re�nement of PM . For the veri�cation step (Step 3
of Method II) we used the covering

[0:0556][ [0:556; 0:55612][ [0:55612; 1] (16)

which is suggested by the numbers in Table 6.

Table 4. The values vM (x), v̂M (x), v�M (x) and v�(x) as functions of x; r = c =
� = � = 1, M = 25

initial vM(x) v̂M(x) v�M (x) exact value
position v�(x)

0.1 0.63958 0.65610 0.656101 0.656103
0.2 0.62301 0.63954 0.639538 0.639540
0.3 0.59301 0.60953 0.609533 0.609534
0.4 0.54643 0.56291 0.562904 0.562906
0.5 0.47995 0.49463 0.494630 0.494628
0.6 0.39497 0.4 0.4 0.4
0.7 0.29941 0.3 0.3 0.3
0.8 0.19997 0.2 0.2 0.2
0.9 0.09999 0.1 0.1 0.1
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Table 5. Approximating values of A�(c) based on PM , P̂M and a re�nement of
PM (r = � = � = 1, x = 0:3, M = 25)

c value estimate of A� estimate of A� estimate of A� exact value
based on Step 1 based on Step 2 based on Step 3 A�(c)

1 0.56 0.55607194 0.5561 0.556066
1.2 0.52 0.50609462 0.5065 0.506093
1.4 0.47 0.46368731 0.4640 0.463688
1.6 0.44 0.42737578 0.4270 0.427384
1.8 0.40 0.39601437 0.3960 0.396014
2 0.40 0.36870895 0.3687 0.368709

In Table 6 we illustrate how the transformation TM is used. The numbers
shown, (qk=M )0�k�M , are the image of �(�), an optimal solution of PM , under
TM ; x = 0:3 in this case. From these numbers we can infer that the non-linear
solver should be initialized at a point nearby 14=25 = 0:56; 14=25 is our �rst
estimate of the optimal stopping point.

The same idea is applied in Step 3 of Method II. Table 7 illustrates this
part of the procedure. The solution of P̂M , b� = 0:55607194, is an estimate
of the optimal stopping time and b� suggests the covering (16). Applying
transformation TM to each solution vector �(i) associated with covering (16)
we obtain Table 7. It shows that the solution of the re�ned LP concentrates
\all" its mass on [0:556; 0:55612]; the spurious mass q

(3)
0 = 0:0242408 actually

dissapears for larger values ofM . So we use 0:556+14=25�0:00012 = 0:550672
and 0:556 + 16=25 � 0:00012 = 0:550738 to specify a range for the optimal
stopping point.

Since the detection problem can be analyzed by Method I as well as
Method II we can combine the values v�M (x) and �'(b�), see Table 2 for the
latter value, to get an estimate of v�(x) and to obtain a (numerical) error
bound, viz.

0:609533+ 10�6:

Table 6. The values qk=M , 0 � k � M = 25; r = c = � = � = 1, x = 0:3 for an
optimal solution of PM

k qk=M k qk=M k qk=M k qk=M k qk=M

0 0 6 0 12 0 18 0 24 0
1 0 7 0 13 0.299145 19 0 25 0
2 0 8 0 14 0.512821 20 0
3 0 9 0 15 0.188034 21 0
4 0 10 0 16 0 22 0
5 0 11 0 17 0 23 0
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Table 7. The values qk=M , 0 � k � M = 25, for an optimal solution of PM ;
r = c = � = � = 1, x = 0:3

k q
(1)

k=M q
(2)

k=M q
(3)

k=M

0 0 0 0.0242408
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0
11 0 0 0
12 0 0 0
13 0 0 0
14 0 0.333593 0
15 0 0.48927 0
16 0 0.152897 0
17 0 0 0
18 0 0 0
19 0 0 0
20 0 0 0
21 0 0 0
22 0 0 0
23 0 0 0
24 0 0 0
25 0 0 0

5 Concluding Remarks

We have described numerical procedures for analyzing optimal stopping prob-
lems of Markov processes. Both methods are based on a linear programming
approach to such kind of decision problems. We have illustrated these meth-
ods by numerically analyzing Shiryaev's quickest detection problem for a
Wiener process. This example was chosen for its importance and for the fact
that the numerical results can be compared with analytical ones.

We conclude by commenting on some of our computational experiences.
We used AMPL as a convenient interface and employed the CPLEX solver.
When using Method I to analyze the quickest detection problem we ran LP
problems with M up to 140 accepting unscaled infeasibilities. If M = 50
an individual LP-run typically requires � 500 iterations, most of them in
phase I of the Simplex algorithm. To be able to check computations within
loops, etc. we set AMPL- and CPLEX-options in such way that previously
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computed bases were not used. Large values of M and N naturally increase
the run time of Method I. For di�erent parameter settings we made `ad hoc'
decisions to strike a compromise between accuracy and run time.

When using Method II we used smaller values for M , M � 40; for larger
values we very often experienced the program to exit because of detected
(numerical) infeasibilities. For the larger linear and non-linear problems of
Method II the solvers, CPLEX for the linear problems and MINOS for the
non-linear ones, typically required 1000{ 1500 iterations, half of them during
phase I of the Simplex algorithm. For the detection problem, as far as re-
�nements of PM are concerned, we had to use but one Dirac measure Æb (cf.
Method II); depending on the size of M and the parameters given we used
" = 10�4 or 10�5.

In light of the excellent agreement between the numerical and analytical
results for a large set of di�erent parameters we consider the LP-techniques
a convenient and easy to use tool for analyzing the detection problem as well
as similarly structured ones, e. g. pricing perpetual Russian options, etc.
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