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Abstract

Let Y = (Y});>0 be the price of a stock. The concept of a Russian put
option, introduced by Shepp and Shiryaev, refers to a contract when the
buyer of the option is guaranteed the larger of two (discounted) values, one
being a fixed amount ¢ and the other one being the maximum value of the
stock up to the time the option is exercised; it is assumed that the buyer can
borrow or lend unlimited amounts of money at a fixed interest rate r > 0.
Assuming Y to be geometric Brownian motion and no bound on the exercise
time, i.e. a perpetual option, Shepp and Shiryaev derived an explicit formula
for the fair price of such an option exploiting the equivalence of the pricing
problem with optimal stopping problems. In this note we shall compute the
price of a Russian option — with and without average time constraints — using
numerical methods which are based on a linear programming formulation of
optimal stopping problems. The LP approach to optimal stopping exploits a
characterization of a stopped Markov process through a family of equations
which relate the generator of the process with a pair of measures representing
the expected occupation of the process and the distribution of the state when
the process is stopped. The computational analysis of Russian options leads
to bounds on the fair price of such contracts. We illustrate the accuracy of the
numerical results by comparing them with the analytical values in the case of
no constraints.

1 Introduction

Let Y = (Y;)i>o denote geometric Brownian motion with drift coefficient p and
diffusion coefficient o starting at yo > 0, i.e. Y is the one-dimensional Markov
process whose generator G equals, f € D = domain(G), y € (0, 00),

1

Gfly) = 502y2f”(y) + py f'(y);

equivalently, the process can be represented as

2

Y, = yoexp [aWt—%t—i-,ut], t >0,

where W = (W) is a standard Wiener process on a filtered probability space (€2,
F = (Fi)iz0, P). Let S = (S;)s>0 denote the stochastic process

S;:=poV max Y, = max{g, max Yu} , (1)

0<u<t 0<u<t



where 0 > yg is a given number. Let » > 0 be fixed and let it represent the interest
rate at which investors can either borrow or lend. It is shown in [9], see also [2], [6],
[8] and [10], that the pricing of a perpetual Russian option without borrowing or
lending restrictions is related to the following family of optimal stopping problems,
A >0,

R(A\) = R(0,yo; A) :== 51211? Eyy, [e’)‘Te’”ST] , (2)

where T is the set of all finite stopping times adapted to the filtration F. Moreover,
see [9],
joyo V max Yu
X, = DSt >0, dp= 2>, (3)
Y; Yo

is a Markov process with respect to the measure P, where

2

df’m = exp |:O'Wt — % t] dPg,.

Actually, X = (j(t)tzo is a diffusion process with instant reflection at the point {1}
on the state space £ = [1,00) whose infinitesimal operator A applied to functions
g € C?((1,00)) equals, x € (1, 0),

Ag(@) = rag' () + T 2" (o),
and the following condition holds at the boundary point {1}:
J(14) = lim ' (z) = 0 (1)
Let 15;,30 denote the probability distribution of the process X, and let
R(@o; A) = sup By, |e "X, (5)

where the supremum is taken over all finite (Pz, — a.s.) Markov times 7. The first
main result of [9] is that (2) and (5) are proportional.

Proposition 1. .

R(A) = yolU(To; N), (6)
and (6) is finite whenever A > 0.
Next, following Shepp and Shiryaev [9], we consider the jump-diffusion process
X = (Xy)i>0 on € = [1,00) U {0} with instant reflection at {1} and cemetery state

{0} whose infinitesimal operator A on twice-continuously differentiable functions g
vanishing at zero equals, z € (1, 00),

Ag(r) = Ag(x) — Ag(w), (7)

and the boundary condition (4) holds.



We put zy = Ty and consider
V*(xo) := sup By [X,], (8)
T
where the supremum is over all finite Markov times 7, and E,, denotes expectation
with respect to the distribution of the process X.

The second main result of [9] is the equality of (5) and (8) and an explicit formula
for V.

Proposition 2. Let A > 0, zyp > 1, then

Vi(zg) = 22— 21 A A (9)
T ) T 2 A*a
where
_ 0% —2r o2 —2r\? 2)
Ap T e T 202 Tz
and

21 ZQ—]_

A = (ﬁ i 1) o (10)

Moreover, the optimal time 7* to exercise a Russian option is when the process X,
see (3), passes the threshhold A* i.e.

T*:inf{tZO‘thA*}.

In this paper we shall take the first part of Proposition 2 as a starting point for the
computational analysis of perpetual Russian options. Extending the applicability
of two numerical methods, see [4], from analyzing stopped diffusions to analyzing
stopped jump-diffusion processes we find the approximate value for and (numerical)
error bounds on the fair price of a perpetual Russian put option, with and without
average time constraints.

The methods are based on a linear programming approach to exit time problems and
to stopping time problems of Markov processes. The first method exploits the fact
that the values of quantities of interest of exit time problems can be sandwiched
between the values of appropriately defined (finite-dimensional) linear programs,
cf. [5]. Applying line search techniques to these bounds while choosing varying
threshholds as exit boundaries we obtain accurate estimates of V*(z() and determine
a range for A*. Whenever the line search (numerically) converges we get “exact”
values for the price and the exercise policy of a Russian option.



The second method is a modification of a numerical approach to general stopping
problems recently proposed by Rohl [7], see also [1], and it replaces R6hl’s iteration
technique by a pair of optimization problems, one being linear the other one being
non-linear, and a second LP-problem which constitutes the verification step of the
procedure. The second method has the advantage over the first one that additional
(average) time constraints can be easily incorporated.

In Section 2 we formulate the approximating finite dimensional linear programs and
give a detailed computational analysis of the pricing of a Russian option without
time constraints. In Section 3 we compute the price of a perpetual Russian option
when an average time constraint is imposed.

2 Approximating LP-problems

According to the theory and the results described in [4] and given the generator A
defined by (7) and (4) and the objective specified by (8) we consider the following
two LP-problems, b € (1,C), C > 1, M € N,

min{bp} and max{bp} (11)
pifi pifi
subject to, p € R, i € Rw,
0<p<1, and (=1)%i(i,j) >0, o<i<M, 0<j<M-—i, (12)
fi, ) =i —1,7+1) = fii —1,7), 1<i<M, 0<j<M i, (13)
p+A-f(0,0) =1 (14)
p— <a:bo_—11)m — <—m -r+m(m — I)U?2 - )\) f(0,m)

- (P = DT oy (15)

m(m — 1)o?
— | ——————ji(0bm—-2) =0 m=2,...,M.
(Mt ) Aom=2) = 0, mes
We let C' be a number large enough so that the optimal stopping point A*, cf. (8)
and (10), is included in the interval (1,C), and we denote the optimal value of the
minimization problem, cf. (11), maximization problem resp., by ¢(b), ¢(b) resp. By
construction, the following inequality holds:
max p(b) < V*(zp) < max @(b).

1<b<C — 1<b<C

Furthermore, if there is a b* such that

max o(b) = p(b*) = @(b") = max (b7 (16)

1<b<C — 1<b<C



then 7;- is the optimal stopping time for (8) in the class of all stopping rules {7, }1<p<c
where

T, = inf{t20|Xth}-
If

= 5(b) — min (b)) > 0 17
€ max @(b) — min o(b) , (17)
and b*, b* resp., is a solution of the minimization problem (11), the maximization
problem resp., then 7« and 7. are e*-optimal stopping times within the class {7, },.
Thus the following procedure, Method I, can be used to find the price of a Russian

option:

Method 1.

Apply a line search technique, e. g. the Golden Section rule or the Fibonacci
rule, etc. to p(b) and @(b). If equality (16), inequality (17) resp., holds
then the line search determines the value of A*, an e*-optimal stopping
point resp., and

Yo-(0*) = yo-o(b")

is the price of the Russian option, cf. (6) and Proposition 2.

The following tables illustrate typical results which we obtained. Table 1, Table 2
resp., reports the numerical values for A* and V* as a function of the parameter
A, the initial position x( resp., using Method I. In each case we have applied the
Golden Section rule to the appropriate min- and max-LP-problem terminating the
line search after 30 iterations. Note the excellent agreement of the numerical results

with the exact values which were obtained employing Mathematica to evaluate (9)
and (10).

Table 1:
The optimal stopping point A* and the optimal value V* as a function of A € [0.01,0.1] compared with the results
when using Method I (r = 0.07, o0 = 0.4, z¢p = 1)

objective optimal exact value optimal exact value
A value of LPs stopping point for A* value for V*

0.01 min 5.750417 5.819119 3.156561 3.157538
max 5.911762 3.157812

0.02 min 3.896830 3.896875 2.309536 2.309543
max 3.897405 2.309566

0.03 min 3.100739 3.102079 1.959601 1.959601
max 3.101702 1.959604

0.04 min 2.656646 2.656733 1.762739 1.762739
max 2.656608 1.762740

0.05 min 2.369417 2.369419 1.635011 1.635011
max 2.369413 1.635011

0.06 min 2.167847 2.167929 1.544895 1.544895
max 2.167933 1.544895

0.07 min 2.018520 2.01852 1.477677 1.477677
max 2.018520 1.477677

0.08 min 1.903190 1.903191 1.425503 1.425503
max 1.903200 1.425503

0.09 min 1.811419 1.811419 1.383773 1.383773
max 1.811419 1.383773

0.10 min 1.736629 1.736629 1.349603 1.349603
max 1.736629 1.349603




Table 2:
The optimal stopping point A* and the optimal value V* as a function of the starting point g compared with the
results when using Method I (r = 0.07, 0 = 0.4, A = 0.1)

initial objective optimal optimal exact value
position zg of LPs stopping point value for V*

1.1 min 1.736625 1.357751 1.357751
max 1.736629 1.357751

1.2 min 1.736625 1.381242 1.381242
max 1.736629 1.381242

1.3 min 1.736625 1.418994 1.418994
max 1.736629 1.418994

1.4 min 1.736625 1.470263 1.470263
max 1.736629 1.470263

1.5 min 1.736625 1.534537 1.534537
max 1.736629 1.534537

1.6 min 1.736625 1.611467 1.611467
max 1.736629 1.611467

1.7 min 1.736629 1.700822 1.700822
max 1.736629 1.700822

1.8 min 1.800000 1.799998 1.800000
max 1.800000 1.799998

1.9 min 1.900000 1.899999 1.900000
max 1.900000 1.899999

For the same set of parameters Figures 1 and 2 show the graphs of the functions
A*(X\) and V*(zo) as defined by (10) and (9).
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Fig. 1: The optimal stopping point A* as a function of A (r = 0.07, 0 = 0.4,
Ty — ].)
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Fig. 2: The value function V* with xy € [0,2.2] (r =0.07, 0 = 0.4, A = 0.1).
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While Method I can only be applied should an optimal stopping rule be an element
of {7 }per, as in the case of pricing a perpetual Russian option, the following method
is applicable in general, cf. [4]. This time we associate with the optimal stopping
problem (8) one finite dimensional linear mazimization problem whose optimal value
Upr(20) is an upper bound on V*(zy), viz.

max {(C — 1) (0,1) + @7(0,0)} =: tpr(z0) (18)

A i

(M+1)(M+2)

subject to, 7, i € R 2 ,
(=)' (i,4) =0 and  (=1)'i(i,j) >0, o<i<m, 0<j<m—i,
A7) = A0 — 1,5+ 1) = g7 —1,5), 1<i<m, o<i<m—;
pli,j)=j(i—1,7+1)— (i —1,7), 1<i<M, 0<j<M-—i
A7(0,0) + - ji(0,0) = 1,

.'L'O—]_ 2

i0m) — (2=3)" = (—mer+mlm = 0%~ 2) g0

- (A D o - 1) (23)

(e

)ﬁ(O,m—Q)zO, m=2,...,M.

Conditions (19) and (20) constitute the finite dimensional analogue of the Hausdorff
conditions, cf. [5]. The Hausdorff conditions are necessary and sufficient for an
infinite sequence to be equal to the sequence of moments of a distribution whose
support is contained in [0, 1]. Hence,

V*(xo) < Tpr(g); (24)

for the corresponding infinite dimensional LP-problem, i.e. M = oo, equality holds
in (24). Next, whenever /i) is a solution of (18) — (23) then the transformation 7y,
to be defined below, cf. [3] and [4] or [7], yields valuable information which helps to
improve the upper bound v, (zy):

= (=1)MF (f) AO(M =k, k).

s LN (qk and ¢

:) .
M/ o<k<M M
Along with the optimization problem (18) — (23) we shall consider a non-linear
optimization problem which is almost identical with the linear one, execpt for an
additional constraint and a transformation of variables:

max {(C = 1)0,1) + (0,00} = b (z0) (25)



subject to b, F€ RV, N, e N, 7> 0, Y0/ py = 1,1 < by < by < -+~ < by, < C,
(19) — (23) and

Np
A7 (0,m) = ijb;-", 0<m< M. (26)
7j=1

In light of Proposition 2 we shall choose IV, = 1 for the case of a Russian option.

While in general nothing can be said about the relative size of V*(xzq) and 0p(x), it
happens in many applications that both numbers are equal (close) up to numerical
accuracy, see below. The real benefit of the non-linear optimization problem (25),
(26) and (19) — (23) is that a solution suggests refinements of (18) — (23) which
yield better upper bounds on V*(xy) than vys(zq). To see how this is done let p and
lA), assuming N, = 1 for simplicity, be elements of an optimal solution of the non-
linear problem. Then we cover the interval [1, C] by the following three subintervals,
0<exl,

1,C] = [1, 13—5] U [13—5, 3+5] U [3+5, C] ,
and express the variables (") as follows:
(C =)™ (0,m) = 7Y (m) + 7P (m) + 7% (m), o <m<u, (27)
where

#m) = (b—==1)" 7@(0,m),

(73) (2¢)F (13 e 1)"”“ (0, m), (28)

(ZL) (c . e)k (13 n e)m_k 7 (0, m),

and (7i% (i, 7)), 1 < k < 3, satisfy the constraints (19) and (20).

m
k=0
m
k=0

The value of the refined problem will be denoted by o},(x). The following inequal-
ities hold by construction:

V*(xo) < 0yy(x0) < Opr(20)-

Tables 3 and 4 display the results of our numerical analysis of the pricing of a
perpetual Russian option using a three step procedure based on the optimization
problem described above: Step 1: Solve the linear problem (18) — (23). Step 2: Solve
the non-linear problem (25), (26) and (19) — (23). Use the solution of the linear
problem together with the transformation 7;; to initialize the non-linear problem.
Step 3: Use the solution of the non-linear problem to determine a refinement of the
linear one; choose € to be small, e. g. equal to 1072 or 1073, Take v%,(z0) as an upper
bound for V*(zy).



In Table 3 we compare the values v, 0y, U3, and V* as functions of A € {0.01,...,0.1}
for the parameters r = 0.07, 0 = 0.4 and o = 1. For the individual verification
steps, i.e. Step 3, we take appropriate coverings; for instance, for A = 0.01 we use

[1, 5.817] U [5.817, 5.823] U [5.823, 6]. (29)

This covering was suggested by the result of the corresponding non-linear problem
and a first run of problem (18) — (23), (27) and (28).

Table 3:
The values vps, Opr, 3, and V* as functions of A\; xp =1, r = 0.07, 0 = 0.4 and M = 20

A | Vg DL I_I}k\/[ v*
0.01 3.16007  3.15858 3.15858 3.157538
0.02 2.33217  2.31014 2.30955 2.309543
0.03 1.99198 1.95962 1.95971 1.959601
0.04 1.80326 1.76275 1.76274 1.762739
0.05 1.68103 1.63501 1.63502 1.635011
0.06 1.59552 1.54490 1.54490 1.544895
0.07 1.53278 1.47768 1.47768 1.477677
0.08 1.48229 1.42550 1.42551 1.425503
0.09 1.44513 1.38377 1.38378 1.383773
0.10 1.41380 1.34960 1.34961 1.349603

Applying transformation 7T, to the solution of the refined problem and using the
covering (29) we obtain the numbers in Table 4.

Table 4:

The values q,(:/)M, 0 < k < M = 25, for an optimal solution of the refined problem; zo = 1, r = 0.07, 0 = 0.4

(1) (2) (3)
9%/ 9 /01 9%/

© 00~ Uk WK~ Of &

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

[=NeloBololololoRoloReoohoRohoh =N =)

0
0.542589
0

DO O ODODDODDDDODDODDODODO0ODODODODODODOO0OOOCOOC OO0
DO O ODODDODDDDODDODDODODO0ODODODODODODOO0OOOCOOC OO0

oo oo oo

They show that the solution of the refined LP “concentrates its mass” on the interval
[5.817, 5.823]. The index of the non-zero entry in Table 4, 18, suggests using

18
0.817 + % 0.006 = 5.82132



as an (approximate) optimal threshhold for the stopping problem. If we combine
the results of both methods, i.e. we take p(b) = 3.156561 and v}, = 3.15858, then
we obtain the following range for the price of a perpetual Russian option, zq = 1,
r=0.07,c = 0.4 and A = 0.01,

[3.1565, 3.1586];

the midpoint of this interval is in excellent agreement with the true value, see Table 3.

3 Pricing problems with constraints

In this section we solve the stopping problem (8) under the additional constraint
that all stopping times 7 satisfy the condition, 7" > 0,

E[f]<T. (30)

In our LP-models the variable ji(0,0) is approximately equal to E[r]. Thus, to take
care of (30), we add to all optimization models which are part of Method II the
extra line

(0,0) < T. (31)

This way, whenever we are using Method II, we can easily handle average time
constraints. As far as Method I goes the following modification yields good results
as long as the constraint (31) is binding. We replace the maximization problem, see
(11), by
max{bp — kw} =: ¥ (b; T), (32)
paw,id
where w is a non-negative real variable and the parameter x is some “large” number;
to the constraints (12) — (15) we add the following two inequalities:

f(0,0) —w <T and w—fi(0,0) <T. (33)

We then apply a line search technique to W (b; 7). While we have a counterpart for
¢ we do not have one for o.

Table 5 displays the values of #%,, checked against the numbers 9y, and ¥ (b*;T),
and the optimal stopping points b* = b*(xg), together with the values of /i(0,0) and
the dual variables corresponding to the constraint (31) as a function of the initial
position zy when T = 1. Please note that the constraint (31) is no longer binding
should the initial position get close to the point where immediate stopping is best.
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Table 5:
The values b* and 7}, as functions of zo when E[7] = 1; A = 0.1, 7 = 0.07, 0 = 0.4 and M = 20

initial b* Ty 1(0,0) dual

position variable
1.0 1.44807 1.30326 1 0.089348
1.1 1.46201 1.31581 1 0.082935
1.2 1.50025 1.35022 1 0.0662675
1.3 1.5567 1.40111 1 0.0470164
1.4 1.62606  1.46356 1 0.0264184
1.5 1.70437 1.53398 1 0.00705969
1.6 1.73663  1.61147  0.720713 0
1.7 1.73663  1.70082  0.206181 0
1.8 1.8 1.8 0 0
1.9 1.9 1.9 0 0

Figure 3 shows the graphs of T+ W(b*; T) and T+ b*(T'), when T € {0.01,0.02, .. .,
0.99,1} and A = 0.1, »r = 0.07, 0 = 0.4 and 25 = 1. The values of U (b*;T) have
been checked against the values vy, and v},.

1.45
14r
— b* values
© V*values

1.35f
131

1.25f
121
1151

11r

1.05f,

1 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3: The graphs of T'— ¥ (b*;T) and T — b*(T), T € {0.01,0.02,...,0.99, 1};
ro=1, A=0.1,r=0.07, 0 = 0.4 and M = 20.

4 Conclusions

We have formulated finite dimensional linear programming problems, derived from
a LP-approach to optimal stopping, and have computed the price of a discounted
Russian option. For various parameter constellations we have compared the numer-
ical results with the analytical ones. Our computational analysis has shown that the
linear programming technique is an easy to use and accurate method to compute
the price of a Russian option for a large range of parameter values, cf. results in
Section 2 and some additional results collected in Appendix A. Appendix B contains
an example of an AMPL-model file used for some of the computations. The fact
that the file is so short illustrates how useful interfaces like AMPL and GAMS are.
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Such programs are easy to modify should changes be warranted. For instance, it
only requires an extra line to be added to the program in Appendix B to compute
the price of a Russian option with an average time constraint.
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Appendix A

Table 6:
The optimal stopping point A* and the optimal value V* as a function of A € [0.001, 0.01] compared with the
results when using Method I; r = 0.07, 0 = 0.4, g = 1

objective optimal exact optimal exact value
A of LPs stopping point stopping point value

0.001 min 20.504658 21.33600 10.130699 10.20230
max 21.448930 10.407792

0.002 min 14.291994 14.55350 7.080385 7.09311
max 14.587538 7.109600

0.003 min 11.533998 11.59840 5.743571 5.74944
max 11.983427 5.760774

0.004 min 9.639487 9.85697 4.958397 4.96243
max 10.035447 4.967894

0.005 min 8.629283 8.67978 4.432446 4.43305
max 8.760390 4.435024

0.006 min 7.775992 7.81822 4.046460 4.04716
max 7.827776 4.047705

0.007 min 7.084095 7.15399 3.750360 3.75064
max 7.140455 3.750778

0.008 min 6.641438 6.62270 3.514061 3.51412
max 6.631472 3.514352

0.009 min 6.179400 6.18591 3.320052 3.32013
max 6.174981 3.320405

0.010 min 5.844771 5.81912 3.157457 3.15754
max 5.849002 3.157612

Table 7:

The optimal stopping point A* and the optimal value V* as a function of r € [0.01, 0.11] compared with the
results when using Method I; A = 0.05, 0 = 0.4, z¢g =1

objective optimal exact optimal exact value
r of LPs stopping point stopping point value

0.01 min 3.265851 3.26447 1.838161 1.83816
max 3.264860 1.838176

0.02 min 3.026813 3.02688 1.792408 1.79241
max 3.032295 1.792411

0.03 min 2.837939 2.84043 1.752841 1.75284
max 2.839670 1.752843

0.04 min 2.689689 2.68966 1.718148 1.71815
max 2.689669 1.718149

0.05 min 2.564593 2.56485 1.687385 1.68738
max 2.564711 1.687385

0.06 min 2.459568 2.45958 1.659850 1.65985
max 2.459396 1.659850

0.07 min 2.369418 2.36942 1.635011 1.63501
max 2.369479 1.635011

0.08 min 2.290938 2.29121 1.612452 1.61245
max 2.291212 1.612452

0.09 min 2.222671 2.22263 1.591841 1.59184
max 2.222642 1.591841

0.10 min 2.161918 2.16194 1.572915 1.57291
max 2.161941 1.572915

0.11 min 2.107788 2.10779 1.555455 1.55545
max 2.107602 1.555455
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Appendix B

# This is the LP-model (18)-(23)

# Options
option cplex_options ’feasibility=1.0e-8 advance=0’;

# Parameters:
param M default 25;
param lam default 0.01;
param r default 0.07;
param sig default 0.4;
param x0 default 1;
param C default 6;

# Sets:
set ORD := 0 .. M;

# Variables
var mu {ORD, ORD} ;
var mul {ORD, ORD} ;

# Objective function
maximize goal:
(C-1)*mu1[0, 11 + mul [0, 0];

# Constraints
subject to Hausdorff_diff mu {i in1 .. M, jin O .. M - i}:
mufi, j] = muli -1, j + 1] - mu[i - 1, jl;
subject to Hausdorff_diffineq_mu {i in ORDNUNG, j in 0 .. M - i}:
(-1)°i * mu[i, jl >= 0;

subject to Hausdorff_diff mul {i in1 .. M, jin 0 .. M - i}:
muili, j1 = muili - 1, j + 11 - mut[i - 1, j1;

subject to Hausdorff_diffineq_mul {i in ORDNUNG, j in O .. M - i}:
(-1)"i * mulf[i, j] >= 0;

subject to dynamic_0
mul[0,0] + lam*mul[0,0] = 1;
subject to dynamic {m in 2 .. M}:
mul[0, m]*(C-1)"m - (x0-1)"(m)
-(-r * m + sig”2*m*(m-1)/2 -lam )* mul[0, m]*(C-1)"m
-(-r * m + 2xsig”2*m*(m-1)/2 )* mu[0, m-1]*(C-1) " (m-1)
-( sig”2#m*(m-1)/2 )* mul[0, m-2]*(C-1)"(m-2) = 0;
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