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Extension of Dale’s Moment Conditions with
Application to the Wright-Fisher Model*

Kurt Helmes1 and Richard H. Stockbridge2

Abstract

Dale’s necessary and sufficient conditions for an ar-
ray to contain the joint moments for some probability
distribution on the unit simplex in R

2 are extended to
the unit simplex in R

d. These conditions are then used in
a computational method, based on linear programming,
to evaluate the stationary distribution for the diffusion
approximation of the Wright-Fisher model in popula-
tion genetics. The computational method uses a char-
acterization of the diffusion through an adjoint relation
between the diffusion operator and its stationary distri-
bution. Application of this adjoint relation to a set of
functions in the domain of the generator leads to one set
of constraints for the linear program involving the mo-
ments of the stationary distribution. The extension of
Dale’s conditions on the moments add another set of lin-
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ear conditions and the linear program is solved to obtain
bounds on numerical quantities of interest. Numerical
illustrations are given to illustrate the accuracy of the
method.

Key Words: Dale moment conditions, Wright-Fisher
model, stationary distribution, linear programming,
moments, computational probability.

I. Introduction and model formulation

In this paper, necessary and sufficient conditions on an array to
contain the joint moments of a distribution on the unit simplex in R

2

derived by Dale [1] are extended to the unit simplex in R
d. The moti-

vation for this extension is the numerical evaluation, based on linear
programming, of the Wright-Fisher model in population genetics.

We take as our starting point the diffusion approximation to the
Wright-Fisher genetic model with r alleles and refer the reader to [2],
Chapter 10, for an excellent explanation of the original model and
the diffusion approximation. We use the notation of [2] so d = r −
1. Let K = {x = (x1, . . . , xr−1) ∈ [0, 1]r−1 :

∑r−1
i=1 xi ≤ 1} denote the

(r − 1)-dimensional simplex which identifies the proportions of each
allele in the population (the rth proportion being determined by the
others). The diffusion operator for the evolution of these proportions
is

A =
1
2

r−1∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

r−1∑
i=1

bi(x)
∂

∂xi
, (1)

where aij(x) = xi(δij − xj), δij being the Kronecker δ, and

bi(x) = −
r∑

j=1

µijxi +
r∑

j=1

µjixj
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+ xi


 r∑

j=1

σijxj −
r∑

k,l=1

σklxkxl


 (2)

and we set the domain of the operator to be D(A) = C2(K). The
coefficients µij are related to the mutation rates between alleles
(µii = 0, ∀i) and the coefficients σij correspond to selection. As in
[2], letting X(t) = (X1(t), . . . ,Xr−1(t)) denote the proportions of the
alleles in the population at time t, the process

f(X(t)) −
∫ t

0
Af(X(s)) ds (3)

is a martingale for each f ∈ D(A).
When µij > 0 for i �= j, the process X has a stationary distribu-

tion on K; denote this distribution by ν. When ν is also the initial
distribution of X, X(t) is distributed according to ν for each t ≥ 0.
Since (3) is a martingale for each f ∈ D(A),

E[f(X(0))] = E

[
f(X(t)) −

∫ t

0
Af(X(s)) ds

]

= E[f(X(t))] −
∫ t

0
E[Af(X(s))] ds

and by the stationarity of the process, it follows that∫
K

Af(x1, . . . , xr−1) ν(dx1 × · · · × dxr−1) = 0. (4)

The identity (4), in fact, characterizes the stationary distribution ν

(see [2, Theorem 4.9.17]).
Our linear programming approach for the analysis of this diffusion

involves utilizing this characterization of ν through (4). The basic
idea is to select the collection of test functions

D∞ = {f(x1, . . . , xr−1)

= xk1
1 · · · xkr−1

r−1 : k1, . . . , kr−1 ∈ Z
+}. (5)

and set the conditions (4) for these f as the constraints of a linear
program. Using these test functions, the left hand side of (4) becomes
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a linear combination of the joint moments of ν and the linear program
only involves these joint moments.

It is at this point that the extension of Dale’s conditions are
needed. The array is required to satisfy (4) but need not be an ar-
ray of joint moments. The linear sufficient conditions are also added
as constraints to the linear program. A careful selection of objec-
tive function then allows for the determination of the quantities of
interest. This numerical approach has an advantage over other ap-
proaches in that it naturally provides bounds on the quantities of
interest and excellent software is readily available.

The authors have applied this numerical method [4], [6] to the
analysis of the distribution of the exit time for a variety of processes
from a bounded interval in one-dimension and bounded rectangle in
two-dimensions. The paper [4] computed the moments of the exit
time distribution directly, whereas in [6] the Laplace transform of
the moments were determined. A similar approach has been applied
on stochastic control problems [5] and optimal stopping problems
by Röhl [7]. Schwerer [8] uses a linear programming approach in-
volving the moments of a reflected Brownian motion process over an
unbounded domain.

This paper is organized as follows. Section 2 formulates the linear
program associated with the stationary distribution of the Wright-
Fisher diffusion approximation and computes the moments of the
stationary distribution for a special choice of parameters for which
the linear program can be immediately solved. A careful examina-
tion of the moment conditions for the two-dimensional simplex due
to Dale [1] and its extension to higher dimensions is given in Section
3. These conditions are needed for most choices of the parameters.
Section 4 then illustrates the accuracy of the LP formulation and
includes numerical illustrations for a case in which there are known
analytical results and for a choice of parameters for which no ana-
lytical results are known.

The numerical illustrations are given for a Wright-Fisher model
with r = 5 alleles in which case K is the simplex in R

4. Many nu-
merical methods have difficulty with problems in dimensions strictly
greater than 3 due to the “curse of dimensionality”. We have chosen
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a high dimension so as to demonstrate that the linear programming
approach gives accurate results for this high dimensional problem.

II. Linear Program for Wright-Fisher Model

The goal of this section is the computation of the moments of the
stationary distribution of the Wright-Fisher diffusion on the unit
simplex so consider the case in which µij > 0 for i �= j. Since the
adjoint equation (4) characterizes the stationary distribution ν and
the distribution ν on the (bounded) simplex is specified by its joint
moments, it is sufficient to restrict attention to the countable col-
lection D∞ of (5). In this way, (4) can be expressed in terms of the
moments of the distribution. Specifically, fix k1, . . . , kr−1 and con-
sider f(x1, . . . , xr−1) = xk1

1 · · · xkr−1
r−1 . Define the joint (k1, . . . , kr−1)-

moment of ν by

m(k1, . . . , kr−1) =
∫

K
xk1

1 · · · xkr−1
r−1 ν(dx1 × · · · × dxr−1). (6)

Then applying the generator A of (1) to f , (4) becomes

0 =
r−1∑
i=1

ki(ki − 1)
2

(m(k1, . . . , ki − 1, . . . , kr−1)

− m(k1, . . . , kr−1)) −
r−1∑

i,j=1;i�=j

(kikj)m(k1, . . . , kr−1)

−
r−1∑
i=1

ki

(
r∑

i=1

µij

)
m(k1, . . . , kr−1)

+
r−1∑
i=1

r∑
j=1

kiµjim(k1, . . . , ki − 1, . . . , kj + 1, . . . , kr−1)

+
r−1∑
i=1

r∑
j=1

kiσijm(k1, . . . , kj + 1, . . . , kr−1)

−
r−1∑
i=1

r∑
j,l=1

kiσjlm(k1, . . . , kj + 1, . . . , kl + 1, . . . kr−1), (7)
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where the notation m(k1, . . . , ki − 1, . . . , kj + 1, . . . , kr−1) denotes the
joint moment having (ki − 1)-moment in the ith variable, (kj + 1)-
moment in the jth variable and kl-moment for the lth variables for all
other variables. When i = j, m(k1, . . . , ki − 1, . . . , kj + 1, . . . , kr−1) =
m(k1, . . . , ki, . . . , kr−1) and m(k1, . . . , ki + 1, . . . , kj + 1, . . . kr−1)
= m(k1, . . . , ki + 2, . . . , kr−1).

A. Motivating example

To illustrate the approach, consider the simplest example for which
analytic results are known. Let µij = µj for i �= j, j = 1, . . . , r and set
σij = 0 for all i, j. In this case, the stationary distribution ν of the
allele proportions (X1, . . . ,Xr−1) is a Dirichlet distribution with pa-
rameters (2µ1, . . . , 2µr); that is, (X1, . . . ,Xr−1) has density on the
(r − 1)-dimensional simplex K given by

p(x1, . . . , xr−1) = C

(
r−1∏
i=1

x2µi−1
i

)(
1 −

r−1∑
i=1

xi

)2µr−1

, (8)

where C = Γ(2µ1+···+2µr)
Γ(2µ1)···Γ(2µr) is the normalizing constant. A simple com-

putation shows that the joint (k1, . . . , kr−1)-moment of ν is

m(k1, . . . , kr−1) =
Γ (2

∑r
i=1 µi)

∏r−1
i=1 Γ(2µi + ki)

Γ
(
2
∑r

i=1 µi +
∑r−1

i=1 ki

)∏r−1
i=1 Γ(2µi)

.

Now let r = 5. Taking each µj = 0.5, the Dirichlet distribution
actually gives the uniform distribution on the four-dimensional sim-
plex. In this example, the conditions (7) can be solved recursively
for the joint moments.

Considering functions f with k1, k2, k3, k4 ≤ 20 in (7) and solving
a linear program having these conditions as the constraints, the LP
determines the joint moments of ν. Note the fact that the moments
can be determined recursively is displayed when the software package
CPLEX determines these values exactly using a presolver to reduce
the number of undetermined variables in the program. As a result the
choice of objective function for the LP has no effect on the optimal
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solution since there is a unique feasible point.
We illustrate the numerical results with the joint moments

m(k1, k2, 0, 0) for k1 ≤ 10 and k2 ≤ 5 in Table 1.

Table 1. Values of m(k1, k2, 0, 0) from LP
k2

0 1 2 3 4 5

0 1 0.2 0.06666 0.02857 0.01428 0.00793
1 0.2 0.03333 0.00952 0.00357 0.00158 0.00079
2 0.06666 0.00952 0.00238 0.00079 0.00031 0.00014
3 0.02857 0.00357 0.00079 0.00023 8.658e-05 3.607e-05
4 0.01428 0.00158 0.00031 8.658e-05 2.886e-05 1.11e-05

k1 5 0.00793 0.00079 0.00014 3.607e-05 1.11e-05 3.964e-06
6 0.00476 0.00043 7.215e-05 1.665e-05 4.757e-06 1.585e-06
7 0.00303 0.00025 3.885e-05 8.325e-06 2.22e-06 6.937e-07
8 0.00202 0.00015 2.22e-05 4.44e-06 1.11e-06 3.264e-07
9 0.00139 9.99e-05 1.332e-05 2.497e-06 5.876e-07 1.632e-07
10 0.00099 6.66e-05 8.325e-06 1.469e-06 3.264e-07 8.591e-08

These values agree with the analytic values

m(k1, k2, 0, 0) =
4!k1!k2!

(k1 + k2 + 4)!
.

III. The Dale conditions

Consider now the general model in which µij > 0 for i �= j (and
µii = 0) but in which there are no other assumptions on µij, and
σij �= 0 for some i, j. It is no longer the case that the adjoint rela-
tion (7) can be solved recursively for the joint moments. (Even the
case with µij = µj for i �= j, j = 1, . . . , r cannot be solved recursively
when some of the σij values are nonzero.)

At this point, we have reformulated the adjoint relation (4) using
the joint moments of the distribution ν as the linear conditions in (7)
involving the variables {m(k1, . . . , kr−1) : k1, . . . , kr−1 ∈ Z

+}. These
conditions on their own, however, do not imply that the collection
corresponds to the collection of moments of a measure. It is necessary
to impose additional conditions on the collection to ensure that it is
the collection of moments of some distribution.

When r = 2 so the simplex is actually the unit interval, neces-
sary and sufficient conditions (see [3]) to ensure that the sequence
{m(0),m(1),m(2), . . .} are the moments of some distribution ν on
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[0, 1] are the Hausdorff moment conditions
n∑

j=0

(−1)j
(

n

j

)
m(j + k) ≥ 0; (9)

the necessity following from the observation that
∫

xk(1 − x)n ν(dx)
≥ 0 for each k, n ∈ Z

+. The one-dimensional (and two-dimensional
extension to the unit square) Hausdorff moment conditions were used
by the authors in [4], [6] in the analysis of the exit time distribution
for some Markov processes.

When r = 3 so the simplex is the triangle in two dimensions having
vertices (0, 0), (1, 0) and (0, 1), necessary and sufficient conditions
for the collection {m(k1, k2) : k1, k2 ∈ Z

+} to be the moments of a
distribution ν on K were derived by Dale [1]. These conditions are
most easily expressed in terms of iterated differences of the moments,
which we now describe. For k1, k2 ∈ Z

+, define

w(k1, k2, 0) = m(k1, k2)

and for k1, k2, k3 ∈ Z
+, with k3 ≥ 1, define

w(k1, k2, k3) = w(k1, k2, k3 − 1) − w(k1 + 1, k2, k3 − 1)

− w(k1, k2 + 1, k3 − 1).

The Dale conditions require, for k1, k2, k3 ∈ Z
+

w(0, 0, 0) = 1 and w(k1, k2, k3) ≥ 0; (10)

the necessity follows from the observations that∫
K

xk1
1 xk2

2 (1 − x1 − x2)k3ν(dx1 × dx2) ≥ 0 (11)

for each k1, k2, k3 ≥ 0, and additionally when k3 ≥ 1,∫
K

xk1
1 xk2

2 (1 − x1 − x2)k3ν(dx1 × dx2)

=
∫

K
xk1

1 xk2
2 (1 − x1 − x2)k3−1ν(dx1 × dx2)

−
∫

K
xk1+1

1 xk2
2 (1 − x1 − x2)k3−1ν(dx1 × dx2)
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−
∫

K
xk1

1 xk2+1
2 (1 − x1 − x2)k3−1ν(dx1 × dx2). (12)

Dale’s conditions can be extended to the (r − 1)-dimensional sim-
plex.
Theorem 2.1. A collection {m(k1, . . . , kr−1) : k1, . . . , kr−1 ∈ Z

+} are
the joint moments of some distribution ν on the (r − 1)-dimensional
simplex K (see (6)) if and only if the conditions

w(0, . . . , 0) = 1 and ∀k1, . . . , kr−1 ∈ Z
+

w(k1, . . . , kr−1, kr) ≥ 0, (13)

are satisfied, where

w(k1, . . . , kr−1, 0) = m(k1, . . . , kr−1) (14)

and for kr ∈ Z
+ with kr ≥ 1,

w(k1, . . . , kr−1, kr)

= w(k1, . . . , kr−1, kr − 1)

−
r−1∑
i=1

w(k1, . . . , ki + 1, . . . , kr−1, kr − 1). (15)

Proof. The necesssity for the higher dimension follows analagously
from observations as in (11) and (12).

Now assume that the collection M = {m(�k) | �k = (k1, . . . , kr−1),
ki ∈ Z

+} satisfies (13), (14) and (15). For each n ≥ 0, define a dis-
cretization Kn of the simplex K by

Kn = K
⋂{(

i1
n

, . . . ,
ir−1

n

)
: i1, . . . , ir−1 ∈ Z

+

}
.

Note, in particular, that 0 ≤ i1, . . . , ir−1 ≤ n and i1 + · · · + ir−1 ≤
n; denote this collection of (r − 1)-tuples by In. Again for each n,
for ( i1

n , . . . , ir−1

n ) ∈ Kn define

pn

(
i1
n

, . . . ,
ir−1

n

)
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=
(

n

i1, . . . , ir−1

)
w

(
i1, , . . . , ir−1, n −

r−1∑
l=1

il

)
(16)

where(
n

i1, . . . , ir−1

)
=

n!
(
∏r−1

l=1 il!)(n −∑r−1
l=1 il)!

.

Observe that by their definition in conjunction with (13),
p0(0, . . . , 0) = 1 and pn(i1, . . . , ir−1) ≥ 0 for every 0 ≤ i1, . . . , ir−1 ≤
n with i1 + · · · + ir−1 ≤ n. To simplify the typing we shall use the
following abbreviations throughout the remaining part of the proof:

1l := (1, . . . , 1) ∈ R
r−1

� := (j1, . . . , jr−1) ∈ N
r−1
0 , etc.

n − |�u| := n −
r−1∑
l=1

ul

(
ir
�

)
:=
(

ir
j1 . . . jr−1

)

m(�ı + �) := m(i1 + j1, . . . , ir−1 + jr−1)

(�ı, ir) := (i1, . . . , ir−1, ir) ∈ N
r
0

�u ≥�ı ⇐⇒ u1 ≥ i1, . . . , ur−1 ≥ ir−1

�h�ı,�v,� :=
(
�h(1),�h(2),�h(3)

)
:= (�ı, �v,�) ∈ N

r−1
0 × N

r−1
0 × N

r−1
0

(
n

�h�ı,�u−�ı,�

)
=

n!(∏r−1
l=1

(
h

(1)
l !h(2)

l !h(1)
l !
))

· (n − |�u + �|)!
.

To establish an important identity ((18) below) it is helpful to
express w(i1, . . . , ir) in terms of the elements of the set M:

w(i1, . . . , ir−1, ir) = w
(
(�ı, ir)

)
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=
∑
�∈Iir

(
ir
j

)
(−1)|�| m(�ı + �). (17)

Using (17) we have

∑
�u∈In
�u≥�ı

(
r−1∏
l=1

(
ul

il

))
pn

(u1

n
, . . . ,

ur−1

n

)

=
∑
�u∈In
�u≥�ı

∑
�∈In−|�u|

(
r−1∏
l=1

(
ul

il

))(
n

�u

)(
n − |�u|

�

)
(−1)|�| m(�u + �)

=
∑
�u∈In
�u≥�ı

∑
�∈In−|�u|

(−1)|�|
(

n
�h�ı,�u,�

)
m(�u + �)

=
∑
�u∈In
�u≥�ı

∑
�∈In−|�u|

(
n

�ı

)(
n − |�ı|
�h1l,�u−�ı,�

)
(−1)|�| m(�u + �) (18)

=
(

n

�ı

)∑
�k∈In
�k≥�ı

(
n − |�ı|
�k −�ı

) ∑
�∈In−|�u|

( |�k − �u|
�h1l,�k−�ı−�,�

)
(−1)|�| m(�k) (19)

=
(

n

�ı

)∑
�k∈In
�k≥�ı

(
n − |�ı|
�k −�ı

)
(1 + · · · + 1 − 1 − · · · − 1)|�k−�i| m(�k) (20)

=
(

n

�ı

)
m(�ı); (21)

the term (1 + · · · + 1 − 1 − · · · − 1) in the second to last expression
consists of r − 1 terms of +1 and r − 1 terms of −1 and a careful
examination of the summation in the third to last expression shows
that, in the second to last expression, (1 + · · · + 1 − 1 − · · · − 1)0 =
1. Of particular interest is the case in which i1 = · · · = ir−1 = 0, in
which case (18) implies
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∑
(u1/n,...,ur−1/n)∈Kn

pn

(u1

n
, . . . ,

ur−1

n

)
= 1

and thus

Pn =
{

pn

(u1

n
, . . . ,

ur−1

n

)
:
(u1

n
, . . . ,

ur−1

n

)
∈ Kn

}
is a probability measure on Kn ⊂ K. Pn is also a probability measure
on the simplex K.

Since K is compact, the collection {Pn : n ∈ Z
+} is tight and there

exists at least one probability measure P that is a weak limit of a
subsequence of {Pn}. Without loss of generality, we assume that the
entire sequence converges: Pn ⇒ P.

Now let X(n) = (X(n)
1 , . . . ,X

(n)
r−1) be a random vector having dis-

tribution Pn and let X be a random vector having distribution P.
Then (18) and the weak convergence of Pn to P implies

m(�ı) =
(

n

�ı

)−1

E

[
r−1∏
l=1

(
nX

(n)
l

il

)]

=
n|�ı|(n − |�ı|)!

n!
E


r−1∏

l=1

il∏
kl=0

(
X

(n)
l − kl

n

)

→ E

[
r−1∏
l=1

Xil
l

]

and hence M is the set of joint moments of the distribution P on K.
Note that since the collection M characterizes the distribution, P is,
in fact, unique and moreover, the entire sequence Pn does converge
weakly to P.

IV. Numerical examples

The inclusion of the Dale conditions implies that the variables
{m(k1, . . . , kr−1)} are the joint moments of some distribution. In
order to numerically solve a linear program, however, it is necessary
to limit the analysis to a finite subset and require the adjoint relation
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(7) to be satisfied only for this finite collection of variables. The result
of doing this is that the feasible points {m(k1, . . . , kr−1)} no longer
need to be the moments of a distribution.

The key observation, however, is that the set of feasible points
contains the (finite subset of) the moments of the stationary distri-
bution. This containment enables both upper and lower bounds to
be determined on the values of the moments. By selecting a partic-
ular moment as the objective function of a linear program with the
adjoint conditions (7) and the Dale conditions (13) as constraints,
running a minimization procedure will provide a lower bound and a
maximization procedure will give an upper bound.

Example 4.1. Consider a modification of the model in Section (A)
in which r = 5 and µij = µj for i �= j, j = 1, . . . , 5, only this time
we require σij �= 0 for some i, j (along with the symmetry conditions
σij = σji for all i, j). Again under these conditions the stationary
distribution can be analytically determined. The distribution is ab-
solutely continuous with respect to Lebesgue measure on the simplex
and has density

p(x1, x2, x3, x4)

= Cx2µ1−1
1 x2µ2−1

2 x2µ3−1
3 x2µ4−1

4 (1 − x1 − x2 − x3 − x4)2µ5−1

·es(x1,x2,x3,x4) (22)

where s(x1, x2, x3, x4) = x̃T Σx̃ in which

Σ =




σ11 σ12 σ13 σ14 σ15

σ21 σ22 σ23 σ24 σ25

σ31 σ32 σ33 σ34 σ35

σ41 σ42 σ43 σ44 σ45

σ51 σ52 σ53 σ54 σ55


 , and

x̃ =




x1

x2

x3

x4

1 − x1 − x2 − x3 − x4


 ,
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and C is a normalizing constant.
Again, let µj = 0.5 for j = 1, . . . , 5 and let

Σ =




1 0.5 0.5 0.5 0.5
0.5 0 0 0 0
0.5 0 0 0 0
0.5 0 0 0 0
0.5 0 0 0 0


 . (23)

It then follows that each 2µi − 1 = 0 and s(x1, x2, x3, x4) = x1 in
(22) so the density is p(x1, x2, x3, x4) = ex1 and the moments can be
exactly determined.

Table 2 displays the exact values of the joint (x1, x2)-moments
up to order 5 as well as the values obtained by maximizing and
minimizing linear programs having constraints given by (7) and (13)
with objective functions consisting of each joint moment. The linear
programs were run using up to the sixth moment in each variable.

Example 4.2. We now consider a modification of the model in Ex-
ample 4.1 by removing the condition that µij = µj for i �= j and all
j. Specifically select


µ11 µ12 µ13 µ14 µ15

µ21 µ22 µ23 µ24 µ25

µ31 µ32 µ33 µ34 µ35

µ41 µ42 µ43 µ44 µ45

µ51 µ52 µ53 µ54 µ55


 =




0 2 0.5 0.5 0.5
3 0 0.5 0.5 0.5

0.5 0.5 0 1 0.5
0.5 0.5 1 0 0.5
0.5 0.5 0.5 0.5 0




and let Σ be as in (23). The stationary distribution for this choice
of parameters is not known. Nevertheless, the linear programming
approach gives bounds on the moments of the stationary distribu-
tion. Table 3 displays the bounds for the joint (x1, x2)-moments up
to order 5 obtained by solving the LPs having constraints (7) and
(13) with objective functions consisting of each joint moment indi-
vidually. The LPs were run using moments up to order six in each
variable.
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Table 2. Values of m(k1, k2, 0, 0) from LP
k2

0 1 2 3 4 5

max 1 0.19274 0.06258 0.02630 0.01295 0.00760
0 exact 1 0.19274 0.06258 0.02630 0.01295 0.00711

min 1 0.19274 0.06258 0.02630 0.01295 0.00657

max 0.22902 0.03628 0.00997 0.00363 0.00157 0.00083
1 exact 0.22902 0.03628 0.00997 0.00363 0.00157 0.00077

min 0.22902 0.03628 0.00997 0.00363 0.00157 0.00069

max 0.08390 0.01133 0.00271 0.00087 0.00033 0.00016
2 exact 0.08389 0.01133 0.00271 0.00087 0.00033 0.00015

k1 min 0.08389 0.01133 0.00271 0.00087 0.00033 0.00013

max 0.03856 0.00455 0.00096 0.00027 9.85e-05 4.93e-05
3 exact 0.03855 0.00455 0.00096 0.00027 9.83e-05 3.99e-05

min 0.03854 0.00455 0.00096 0.00027 9.82e-05 2.75e-05

max 0.02041 0.00214 0.00041 0.00010 3.59e-05 3.05e-05
4 exact 0.02034 0.00213 0.00040 0.00010 3.45e-05 1.29e-05

min 0.02027 0.00212 0.00040 0.00010 3.31e-05 0

max 0.01238 0.00118 0.00021 5.60e-05 2.83e-05 1.27e-05
5 exact 0.01183 0.00116 0.00019 4.66e-05 1.38e-05 4.81e-06

min 0.01130 0.00104 0.00017 3.48e-05 0 0

Table 3. Bounds on the Values of m(k1, k2, 0, 0) from LP
k2

0 1 2 3 4 5

0 max 1 0.17125 0.04255 0.01318 0.00476 0.00213
min 1 0.17125 0.04255 0.01318 0.00475 0.00160

1 max 0.25272 0.04562 0.01133 0.00344 0.00122 0.00054
min 0.25272 0.04562 0.01133 0.00344 0.00118 0.00038

2 max 0.08720 0.01572 0.00380 0.00111 0.00038 0.00017
k1 min 0.08720 0.01572 0.00380 0.00111 0.00036 0.00011

3 max 0.03595 0.00635 0.00148 0.00041 0.00014 6.31e-05
min 0.03594 0.00634 0.00147 0.00041 0.00012 2.69e-05

4 max 0.01675 0.00288 0.00065 0.00017 5.88e-05 5.02e-05
min 0.01665 0.00284 0.00063 0.00016 4.87e-05 0

5 max 0.00897 0.00151 0.00033 9.64e-05 4.81e-05 2.16e-05
min 0.00800 0.00128 0.00026 5.46e-05 0 0
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