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Abstract. We consider the model where the price of a stock is described
by geometric Brownian motions coupled by a finite state Markov chain. The
problem is to find an optimal stopping rule – within the class of policies deter-
mined by a target price together with a stop-loss limit – which maximizes the
expected discounted relative price increase. Using a linear programming ap-
proach we numerically determine the optimal threshhold values and compute
the corresponding mean holding times and the profit- and loss probabilities.
For the cases of just one or two hidden states we rely on the analytical results
derived by Q. Zhang to illustrate the accuracy of the LP-method.

1. Introduction

Let S = (St)t≥0 denote the price of a stock. We assume the stock to be
modelled by a finite number of geometric Brownian motions which are driven by
a common Wiener process and which are coupled by a finite state Markov chain.
Such regime switching models for stock prices have recently become popular because
the trajectories of these models represent real data better than less sophisticated
models do, while at the same time the typical model to be considered is still simple
enough to do explicit computations.

Let M = {1, 2, . . . , m} denote the state space of the Markov chain α = (αt)t≥0

and Q = (qij)1≤i,j≤m its generator matrix, i. e. qij ≥ 0 for i �= j and
∑m

j=1 qij = 0
for each i ∈ M. We denote the initial distribution of the chain α by (pi)i∈M, i. e.
pi = P [α0 = i]. Furthermore, for every state i ∈ M there is a pair of numbers
(µi, σ

2
i ), σi �= 0, which specify the drift coefficient and the diffusion coefficient of a

geometric Brownian motion driven by a Wiener process (Wt)t. The Wiener process
is assumed to be independent of the Markov chain α. Thus the stock price satisfies
the equation, t ≥ 0,

dS(t) = µα(t)S(t)dt + σα(t)S(t)dWt, S(0) = S0,
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where S0 > 0 denotes its initial price. By the well known solution formula for
geometric Brownian motion it follows that ξt := ln(St) can be written as ξt =
x0 + Xt, where x0 = ln(S0), and

X(t) =
∫ t

0

(
µα(s) − 1

2
σ2

α(s)

)
ds +

∫ t

0

σα(s)dWs.

Let ri = µi − 1
2 σ2

i , i ∈ M. The evolution of the stock price can be equivalently
described by switching Brownian motions with drifts ri and volatilities σ2

i , 1 ≤ i ≤
m, i. e.

(1.1) St = exp(ξt),

and

(1.2) dξ(t) = rα(t)dt + σα(t)dWt, ξ(0) = x0 = ln(S0).

Assuming the stock price to be faithfully modelled by (1.1) and (1.2) Q. Zhang [Z]
analyzes the following fundamental problem in stock trading: Find within a given
set [A1, A2] × [B1, B2], where 0 < A1 < A2 < S0 < B1 < B2 < ∞, a target price
B ∈ [B1, B2] and a stop-loss limit A ∈ [A1, A2] such that when selling the stock at
time

(1.3) τ̃ := τ̃A,B(S0) = inf{t ≥ 0 | St /∈ (A, B)},
the expected discounted reward

(1.4) E

[
S(τ̃ ) − S0

S0
· e−�τ̃

]
is maximized; � > 0 is a given discount factor. This optimal stopping problem
can be phrased in terms of (ξt)t if we put a1 = − ln(A2/S0), b1 = − ln(A1/S0),
a2 = ln(B1/S0) and b1 = ln(B2/S0). Note, 0 < a1 ≤ b1 < ∞, and 0 < a2 ≤ b2 < ∞.
Each stopping time τ̃A,B determined by S, cf. (1.3), is equivalently described by,
a1 ≤ z1 ≤ b1, a2 ≤ z2 ≤ b2,

(1.5) τ−z1,z2(x0) = inf{t ≥ 0 | ξt /∈ (−z1, z2)}.
Thus, due to the pay-off function (1.4), the problem can be formulated as follows:
Find a pair (z1, z2) ∈ I := [a1, b1] × [a2, b2] which maximizes

(1.6)
m∑

i=1

piv0,i(z1, z2),

where, for general initial value x, −z1 ≤ x ≤ z2, x = ξ(0), j = α(0),

vx,j(z1, z2) := Ex,j

[
Φ
(
ξτ−z1,z2(x)

)
exp
(− �τ−z1,z2(x)

)]
,

and
Φ(x) = ex − 1.

Note, the objective function (1.6) clearly reveals the fact that the market-trend in-
dicator process α is assumed to be unobservable, and admissible selling strategies τ ,
see (1.5), are to be based only an Sτ , Q and p. In [Z] it is shown that for fixed
numbers z1 and z2 the function (x, i) �→ vx,i(z1, z2) =: vx,i, x ∈ [−z1, z2], i ∈ M,
satisfies the system of ODEs,

(1.7)
1
2

σ2
i

dvx,i

dx2
+ ri

dvx,i

dx
− �vx,i + Qvx,·(i) = 0,
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with boundary conditions

(1.8) v−z1,i = Φ(−z1) and vz2,i = Φ(z2);

for any vector f ∈ R
|M|, Qf(·)(i) =

∑
j �=i qij(f(j) − f(i)). Moreover, explicit

formulas for the solutions of (1.7) and (1.8) are given when |M| = 1 and |M| = 2.
The solutions turn out to be linear combinations of exponential functions whose
parameters depend in a convoluted way on z1 and z2, see [Z] for details. Similar
results are given by Zhang for the expected holding time

(1.9) (x, i) �→ Tx,i(z1, z2) := Ex,i [τ−z1,z2(x)] ,

and the profit- and loss probabilities

(1.10) (x, i) �→ P
(r)
x,i (z1, z2) := Px,i

[
ξ
(
τ−z1,z2(x)

) ≥ z2

]
,

and

(1.11) (x, i) �→ P
(�)
x,i (z1, z2) := Px,i

[
ξ
(
τ−z1,z2(x)

) ≤ −z1

]
.

Using a non linear optimization solver one can then compute the optimal thresh-
holds (z∗1 , z∗2) for the cases of one or two hidden states.

In this paper we shall present a numerical method based on linear program-
ming for analyzing, in particular, the optimal stopping problem described above
for the case of more than two hidden states and for more general switching dif-
fusions. Different numerical methods for optimal stopping using linear and non
linear programming techniques have recently been proposed by Cho [C1], Cho and
Stockbridge [C2], Helmes [H4] and Röhl [R]. The linear programming approach
to optimal stopping and, more generally, to stochastic control is an extension of
work by Manne [M] who initiated the formulation of stochastic control problems as
linear programs over a space of stationary distributions for the long-term average
control of finite-state Markov chains. The generalization of the LP-formulation for
continuous time, general state and control spaces, and different objective functions
has been established by Stockbridge [S], Kurtz and Stockbridge [K1], [K2] and
Bhatt and Borkar [B]. Their results show the equivalence of such control problems
to infinite dimensional linear programs whose variables are measures. Different
numerical methods are determined by the way these infinite dimensional LPs are
approximated by finite dimensional ones. A particular approximation employing
power functions has been proposed by Helmes et al. [H2], see also Helmes [H4] and
Röhl [R]. An approximation based on finite dimensional semi-definite programs has
recently been proposed by [L]. A novel feature to be presented in this paper is the
use of explicit formulas for the corner points of 1-dimensional Hausdorff polytopes.
Such polytopes are the fundamental sets for the approximating LPs. The formulas
for the corner points speed up computing time and enhance the numerical accuracy
of the finite dimensional LPs.

For detailed discussions and explanations of the basic ideas of the LP-approach
to the analysis of exit and stopping time problems and to some stochastic control
problems we refer to the literature cited above and to [H1] and [H3].

This paper is organized as follows. In Section 2 we describe the finite dimen-
sional approximating linear programs for the stock trading problem. In Section 3
we present some numerical results for the cases |M| = 1 and |M| = 2 and compare
our results with numerical results based on the analytical formulas derived in [Z].
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In Section 4 we consider two numerical examples for |M| = 3 and 4, and draw some
conclusions.

2. Linear and non linear optimization models associated with the stock
trading problem

It follows from the general results to which we referred above, see [K1], that the
optimal selling problem described in the Introduction is equivalent to the following
infinite dimensional optimization problem. The objective is to choose 0 ≤ �p(s) ∈
R

m, 1 ≤ s ≤ 2, zs ∈ [as, bs], µ(dx, i), i ∈ M, non negative measures on [−z1, z2],
such that

sup
z1,z2,�p(1),�p(2),µ

{
Φ(−z1)

m∑
i=1

�p(1)(i) + Φ(z2)
m∑

i=1

�p(2)(i)

}
,

subject to, ∀ j ∈ M, ∀ f ∈ C2,

�p(1)(j)f(−z1) + �p(2)(j)f(z2)

= pjf(0) +
∫ z2

−z1

(
σ2

j

2
f ′′(x) + rjf

′(x) − �f(x)

)
µ(dx, j)(2.1)

+
m∑

i=1

qij

∫ z2

−z1

f(x)µ(dx, i),

is attained. Note, if z1 and z2 are given the non linear problem becomes a linear
one. The resulting infinite dimensional linear programs with variables µ and �p =(
�p(1), �p(2)

)
can be approximated by finite dimensional LPs as follows: Choose N ∈ N

and consider, cf. [R], the corner points of the Hausdorff polytope of order N , i. e.
the vectors �ek ∈ R

N+1, 0 ≤ k ≤ N , where 0 ≤ j ≤ N ,

�ek(j) =



(
N−j
k−j

)
(
N
k

) , j ≤ k

0 , else.

Next, choose variables κ
(s)
k (i) ≥ 0, s ∈ {1, 2}, 0 ≤ k ≤ N , i ∈ M, and define the

quantities, 0 ≤ n ≤ N , i ∈ M, z1 and z2 being fixed,

�µ(1)(n, i) := (−z1)n
N∑

k=0

κ
(1)
k (i)�ek(n),

�µ(2)(n, i) := zn
2

N∑
k=0

κ
(2)
k (i)�ek(n),

(2.2) �µ(n, i) := �µ(1)(n, i) + �µ(2)(n, i),

and

(2.3) �µτ (n, i) := (−z1)n�p(1)(i) + zn
2 �p(2)(i).

The quantities �µ(n, i) include the moments of all occupation measures µ(dx, i) on
(−z1, z2) of the process (Xt, αt)t killed at rate �. We finalize the construction
of the approximating finite dimensional LPs by expanding the pay-off function
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Φ(ξ) = eξ − 1 up to the power N and by restricting the test functions f(x), cf.
(2.1), to be monomials xn, 0 ≤ n ≤ N . The following result is a consequence of the
general theory of the LP-aproach.

Theorem 2.1. The optimal value V ∗
N of the finite dimensional linear program

max
�p,�κ

{
N∑

n=1

m∑
i=1

�µτ (n, i)
n!

}
=: V ∗

N (z1, z2) =: V ∗
N

subject to

(i) �κ =
(
κ

(s)
k (i)

) ≥ 0, s ∈ {1, 2}, 0 ≤ k ≤ N , 1 ≤ i ≤ m,

(ii) ∀ 0 ≤ n ≤ N , j ∈ M

�µτ (n, j) = pj0n +
n(n − 1)σ2

j

2
�µ(n − 2, j) + nrj�µ(n − 1, j) − ��µ(n, j)

+
m∑

i=1

qij�µ(n, i),

where �µτ and �µ are defined by (2.2) and (2.3), tends, for N → ∞, to
the value of the stock trading problem if the target price equals z2 and the
stop-loss limit is −z1.

Remark 2.2. If the pay-off function were a polynomial of order less than N
then V ∗

N would be a corresponding upper bound. The finite expansion of the ex-
ponential function interferes with this property to hold. For all practical purposes,
however, V ∗

N will be an upper bound whenever N is reasonably large.

Next, we use a non linear optimization technique to find the best stopping
points −z1 and z2. For the examples considered in Section 3 and 4 it turns out
that z1 = b1, and the 2-dimensional optimization problem with variables (z1, z2)
becomes a 1-dimensional problem about z2 for which line search techniques can be
applied. Once optimal threshholds z∗1 = z∗1(�, N) and z∗2 = z∗2(�, N) are determined
based on the finite dimensional LPs, cf. Theorem 2.1, we find approximate values
of the mean holding time T ∗(�) and the ratio of the profit-to-loss probabilities
R∗(�) of the trading policy by solving the associated exit time problem for the
jump-diffusion process (Xt)t, cf. [H2]. The corresponding finite dimensional LPs,
see below, provide upper as well as lower bounds for the quantities of interest.
To this end, we again consider variables �p =

(
p
(s)
i

)
s,i

, 1 ≤ s ≤ 2, i ∈ M, and

�ν =
(
ν(n, i)

)
n,i

, 0 ≤ n ≤ N , i ∈ M, such that, this time,

(2.4) p
(s)
i ≥ 0 and

∑
s,i

p
(s)
i = 1,

ν(n, i) = ν(1)(n, i) + ν(2)(n, i), where(2.5)

ν(1)(n, i) = (−z∗1)n
N∑

k=0

α
(1)
k (i)�ek(n), α

(1)
k (i) ≥ 0, 0 ≤ k ≤ N, i ∈ M,

ν(2)(n, i) = (z∗2)n
N∑

k=0

α
(2)
k (i)�ek(n), α

(2)
k (i) ≥ 0,
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and, ∀ 0 ≤ n ≤ N, j ∈ M
(−z∗1)np

(1)
j + (z∗2)np

(2)
j

(2.6)
= 0npj +

n(n − 1)
2

σ2
j ν(n − 2, j) + nrjν(n − 1, j) +

m∑
i=1

qijν(n, i).

We define the set of feasible points S := S(m, N, z∗1 , z∗2) ⊂ R
2m×R

m(N+1) as follows:

S :=
{
(�p, �ν)

∣∣ �p and �ν satisfy (2.4) – (2.6)
}
.

The values of the following finite dimensional linear programs provide, for given z∗1
and z∗2 , upper and lower bounds for exit probabilities and mean holding times of
the corresponding exit problems:

T̄N := max
(�p,�ν)∈S

{
m∑

i=1

ν(0, i)

}
and TN := min

(�p,�ν)∈S

{
m∑

i=1

ν(0, i)

}
;

for 1 ≤ s ≤ 2,

P̄
(s)
N := max

(�p,�ν)∈S

{
m∑

i=1

p
(s)
i

}
and P

(s)
N := min

(�p,�ν)∈S

{
m∑

i=1

p
(s)
i

}
,

and

R̄N :=
P̄

(2)
N

P
(1)
N

and RN :=
P

(2)
N

P̄
(1)
N

.

The essential properties of this particular construction are summarized in the fol-
lowing theorem.

Theorem 2.3. Let z∗1 and z∗2 be given. For every N ≥ 1 the following inequal-
ities hold:

(a) TN ≤
m∑

i=1

piE0,i

[
τ−z∗

1 ,z∗
2
(0)
]

=: T (z∗1 , z∗2) ≤ T̄N ;

(b) RN ≤
∑m

i=1 piP
(r)
0,i (z∗1 , z∗2)∑m

i=1 piP
(�)
0,i (z∗1 , z∗2)

=: R(z∗1 , z∗2) ≤ R̄N .

Remark 2.4. Below, we assume that z∗1 and z∗2 are approximate values for the
optimal stop-loss limit and the optimal target price (depending on �) and that we
haven choosen N large enough so that up to numerical accuracy

TN =̇ T̄N and RN =̇ R̄N .

We then take T (z∗1 , z∗2), R(z∗1 , z∗2) resp., as an approximate value for T ∗(�), R∗(�)
resp.

3. Numerical results for one or two hidden states

To test the accuracy of the LP approximations we have repeated the compu-
tations by Q. Zhang for the case |M| = 1. Using the LPs described in Theorems
2.1 and 2.2 we have duplicated all numbers to be in found in Tables 2 – 4 of [Z]. In
addition we have analyzed the case of one hidden state for r = r1 = 0.26, σ = 0.51
and I = [0.01, 0.36]× [0.01, 2.4], i. e. the loss is limited to ∼ 30% while the maxi-
mum profit is allowed to be ∼ 1100%. The choice of the parameters is motivated
by the two-state model to be considered below. It turns out that in all these cases
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the LP results show the stop-loss limit to be either equal to −b1 or close to −b1;
this again agrees with Zhang’s results.

Table 1 reports approximate values of the optimal selling point, the expected
pay-off, the expected holding time and the ratio of the profit-to-loss probabilities for
some values of �. The numbers reveal what is intuitively clear: For larger discount
factors the target prices are set lower, the expected holding times as well as the
pay-offs decrease, while the ratios of the probabilities increase.

Table 1. Approximate values for the optimal stopping point z∗2 ,
the value function, and upper bounds for the expected holding
time and the ratio of the profit-to-loss probabilities; 1-state model,
r1 = 0.26, σ1 = 0.51; N = 50.

� z∗2 E
[ (

eXτ∗ − 1
)
e−�τ∗

]
E[τ∗]

profit-prob.
loss-prob.

0.6 1.312 0.279 2.036 1.136

0.8 0.895 0.196 1.311 1.265

1 0.712 0.157 1.012 1.399

2 0.381 0.091 0.508 1.998

3 0.276 0.071 0.359 2.485

4 0.227 0.062 0.293 2.889

5 0.197 0.056 0.252 3.237

Next, based on the estimates for ri, σi and qij , 1 ≤ i, j ≤ 2, for Microsoft stocks
that were given in [Z], i. e. r1 = 1.5, r2 = −1.61, σ1 = 0.44, σ2 = 0.63, q12 = 6.04
and q21 = 8.9, we have analyzed the case with two hidden states choosing I as
above and assuming α(0) to be uniformly distributed. In Table 2 we report the
LP-results for the 2-state model for the same quantities of interest as above, again
as a function of �, and compare the values with those numbers (in parantheses)
which are obtained by applying Mathematica’s ODE-solver to (1.7) – (1.11) when
z1 = −b1 and z2 = z∗2 . Note the excellent agreement of the numbers if � ≥ 1. For
small values of � neither the ODE solver nor the LP-results can be fully trusted.
While the LP-numbers for the mean holding time show at least the right qualitative
behaviour the ODE-results for the mean holding time are garbage, see values for
� = 0.6 and � = 0.8.

The difference between some of our values and the numbers reported in [Z] on
p. 79 are due to a trivial typo in Zhang’s original code (private communication by
Q. Zhang). Finally, Table 3 reports the expected relative increase (no discounting)
of the stock value and the relative increase should the investor be lucky, i. e. the
process (Xt)t exits from the interval (−z∗1 , z∗2) at z∗2 . For the particular parameter
constellation the odds are slightly favourable to experience a 66% increase while
holding the stock on average for around 5 months, see Tables 2 and 3, row � = 2;
the average relative increase is 21%.
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Table 2. LP-results of the optimal threshhold, the optimal value,
the mean holding time and the ratio of profit-to-loss probabilities
as a function of �. The numbers in parantheses are based on Math-
ematica’s ODE solver and expressions (1.7) – (1.11); 2-dim. case,
q12 = 6.04, q21 = 8.9, σ1 = 0.44, σ2 = 0.61, r1 = 1.5, r2 = −1.61,
uniform initial distribution; N = 100.

� z∗2 optimal value mean holding time profit-loss
prob. ratio

0.6 2.390 0.362 2.191 0.517
(0.350) (large negative number) (0.495)

0.8 1.380 0.218 1.148 0.620
(0.217) (−0.170) (0.620)

1 1.038 0.162 0.848 0.725
(0.162) (0.848) (0.725)

2 0.504 0.077 0.411 1.158
(0.077) (0.411) (1.158)

3 0.358 0.055 0.297 1.474
(0.055) (0.297) (1.474)

4 0.278 0.045 0.235 1.769
(0.045) (0.235) (1.769)

5 0.231 0.039 0.199 2.026
(0.039) (0.199) (2.026)

Table 3. LP-values of the expected relative increase (no discount-
ing) of the stock value as a function of z∗2(�) together with the prob-
ability of winning, P ∗(r), and related quantities; the parameters
are the same as in Table 2.

� 0.6 0.8 1 2 3 4 5

z∗2 2.390 1.380 1.038 0.504 0.358 0.278 0.231

Φ(z∗2) 9.913 2.975 1.824 0.655 0.431 0.321 0.259

P ∗(r) 0.341 0.385 0.420 0.537 0.596 0.639 0.669

Φ(z∗2)P ∗(r) 3.380 1.144 0.766 0.352 0.256 0.205 0.174

E
[
Φ(xτ∗)

]
3.180 0.958 0.591 0.212 0.134 0.096 0.074

4. Some numerical results for three and four hidden states

An advantage of the LP-approach over other methods is that one can easily
handle more than two hidden states. If, for instance, AMPL or a similar program
is used as an interface to implement the finite dimensional LP then only trivial
modifications of the data file will be necessary; instead of 2-vectors (ri), (σi) and
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(pi), and a 2 × 2 matrix Q only corresponding higher dimensional analogues have
to be specified. Table 4 reports the values of the quantities which were considered
in Section 3 when, besides the up-state 1 and down-state 2, an additional state 3
models the possibility that the stock price fluctuates around its present value for a
while. Specifically, for the same set I as above we haven chosen �r = (r1, r2, r3) =
(1.51, −1.61, 0), �σ = (σ1, σ2, σ3) = (0.44, 0.63, 0.4), �P = (p1, p2, p3) =

(
1
4 , 1

4 , 1
2

)
and

Q =


 −14.08 6.04 8.04

8.9 −17.8 8.9
1.5 1 −2.5


 .

Table 4. An excerpt of the analogue of Table 2 for an example
with 3 hidden states. The numbers for the mean holding time
and the ratio of probabilities are the upper bounds which, up to
5 decimals, are identical to the lower bounds. The parameters are
specified in Section 4; N = 50.

� ẑ2 optimal value mean holding profit-loss
time prob. ratio

0.6 0.6150 0.0890 1.030280 0.78880

1 0.4070 0.0630 0.675408 1.15020

2 0.2550 0.0458 0.422430 1.67476

5 0.1516 0.0360 0.252380 2.66432

Finally, Table 5 illustrates the consequences of model misspecification. Should
the stock price be governed by the 3-state model considered in this Section but
should the optimal trading policy of the 2-state model described in Section 3 be
implemented then the investor would hold the stock on average for too long and
his expectations about making a profit would be too high.

Table 5. Relevant quantities for sub-optimal decisions for the 3-
state case; the paramters, except that ẑ is replaced by z∗2(�), are
as in Table 4.

� 0.6 0.8 1 2 3 4 5

z∗2(�) 2.390 1.380 1.038 0.504 0.358 0.278 0.231

mean holding time 4.537 2.435 1.785 0.840 0.593 0.460 0.383

profit-loss
0.318 0.432 0.525 0.930 1.245 1.552 1.828

prob. ratio

Based on our analysis we draw several conclusions. Investors, by choosing a
stop-loss limit and a target price, face the following gambling situation. For a typical
regime switching model higher target prices imply less favourable odds of making
a profit and increase the average holding duration. Thus it seems reasonable for
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most investors to follow a policy of setting, relative to the stop-loss limit, a “small”
target price to experience, if possible, on average modest but repeated gains while
the capital is only tied up over a relatively short period of time. Such a policy would
still have to take transaction costs and taxes into account. The discount factor � in
our model and the associated objective function (1.4) is one way to rationalize the
setting of the threshhold values −z∗1 and z∗2 . For instance, if � is chosen in a small
neighbourhood of 0.6, e. g. (0.56, 0.64), then the objective (1.4) can be interpreted
as the average quotient of risky gains by investing in a stock and guaranteed interest
payments when buying a riskless asset paying compound interest at an annual rate
of ∼ 1 % – ∼ 6 %. But in general, the factor � is kind of an artifact which changes
a typically unbounded (if B2 = ∞, A1 = 0) problem into a bounded one. Since for
typical switching models the stop-loss limit will always be set at its lowest feasible
point an alternative approach would be to take the target price as the fundamental
control factor and, for given model parameters, compute exit probabilities, mean
holding times and related quantities on which the final choice will be based. The
linear programming technique is well suited for both approaches if jump-diffusions
are used to model the stock price movements. It provides accurate results not only
for models with one or two hidden states but, in principle, for any number of states.
Using the explicit formulas for the corner points of the Hausdorff polytopes, instead
of relying on the characterization by iterated differences, enhances the accuracy of
the LP-technique and makes the code run faster. An additional advantage of the
LP-technique is that constraints like, “do not on average hold the stock for more
than 6 months”, could be easily incorporated into the approximating LPs; typically
this requires but a few exta lines in a code which is based on AMPL. Preliminary
studies of such type of problems have been made but work continues on larger
models.

At the end we briefly analyze just one example with 4 hidden states and com-
pute the corresponding exit probabilities. The example is similar to the one dis-
cussed by Zhang, see Introduction in [Z]. We assume the Markov chain α(t) =(
αI(t), αII(t)

)
, where αI(t) ∈ {UP, DOWN} and αII(t) ∈ {up, down}, to repre-

sent, by its first component, the state of the primary market trend, and its second
component to be an indicator of the state of the secondary market movement. Thus
the state space of α equals

{
(UP, up), (DOWN, up), (UP, down), (DOWN, down

}
.

For our numerical example we assume its generator matrix to be

Q =




−14.08 6.04 8.04 0
8.9 −16.94 0 8.04
5.5 0 −11.54 6.04
0 5.5 8.9 −14.4


 .

Furthermore, we take �r = (1.5, 0.31,−1,−1.8), �σ = (0.44, 0.5, 0.63, 0.3) and �p =
(0.35, 0.35, 0.15, 0.15). If we set z∗1 = 0.36 and z∗2 = 0.24, then chances are roughly
50 − 50 (the profit-to-loss ratio equals 1.00354) that the mean holding time is
∼ 3 months (T ∗(�) = 0.252); the exit probabilities are given by Table 6. While the
parameters of the 2-state model are estimates based on real data the parameters of
the 3- and 4-state models are chosen for illustrative purposes.

A detailed analysis of the example shows that critical parameters which need
to be carefully estimated are the volatilities associated with different hidden states.
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Table 6. The exit probabilities for an example with 4 states. The
parameters are given as above.

state P �(i) P r(i)

1 0.0196539 0.254447

2 0.0514260 0.113069

3 0.2668960 0.128278

4 0.1611420 0.00508889
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