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Abstract

The quickest detection problem of a Wiener process for the case
of an exponential delay-penalty was recently solved by Beibel. He
derived an explicit solution to the problem exploiting the equiva-
lence of this detection problem to an optimal stopping problem of
a 2-dimensional degenerate diffusion process. In this publication we
shall compute the minimal risk and the optimal stopping rule – with
and without additional constraints – using linear programming mod-
els. These models are derived from a general LP approach to optimal
stopping. This approach is based on a characterization of a stopped
Markov process through a family of equations which relate the gen-
erator of the process to a pair of measures representing the expected
occupation of the process and the distribution of the state when the
process is stopped. The computational analysis of the detection prob-
lem with exponential delay-penalty leads to bounds on the minimal
risk and to a range for the optimal stopping threshold. In the case of
no constraints the accuracy of the numerical results will be illustrated
by comparing the numerical values with the known analytical ones.
While we shall prove that each constrained problem is equivalent to a
particular unconstrained detection problem this correspondence does
not lead to an analytical characterization of the optimal stopping rule
of such problems. We shall thus computationally analyze the con-
strained detection problems using the aforementioned LP technique
and compute optimal values and optimal stopping thresholds.

1 Introduction.

In Beibel (2000) the quickest detection problem of Shiryayev (1975, chapter
4) is analyzed for the case of an exponential delay-penalty and for data which
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arrive continuously in time. The case of discrete time observations had been
analyzed by Poor (1998). But the characterization of the optimal stopping
rule and the optimal value are less explicit for the discrete case than for the
case of continuous time data. In this paper we shall numerically solve the
continuous time optimal stopping problem using linear programming (LP)
techniques. Specifically, we will apply the golden section rule to a family of
exit time problems whose values are sandwiched between the maximum- and
the minimum-solution values of appropriately defined LP-problems. These
LP-problems capture the dynamics of a two-dimensional degenerate diffusion
which is associated with the detection problem with exponential penalty, see
below. We shall describe the diffusion and the associated optimal stopping
time problem adopting the notation used by Beibel.

Let B = (Bt)t≥0 denote a standard Wiener process, let θ be a fixed, known
real number and let τ be a nonnegative random variable. We assume that τ is
independent of B and is exponentially distributed, i. e. P [τ > t] = exp{−λt}
for all t > 0, where λ > 0 is known. The model assumes the data W =
(Wt)t≥0 to be sequentially observed and to be defined as, 0 ≤ t < ∞,

Wt = Bt + θ(t − τ)+; (1)

let Ft = σ(Ws : 0 ≤ s ≤ t). The detection problem consists of detecting τ as
soon as possible, striking a balance between “false alarms”, i. e. announcing
the onset of the drift term before it happens, and long delays after the event
has occured. Specifically, the objective is to find a stopping time T which
has finite expectation, is adapted to (Ft)t≥0 and minimizes the risk

R(T ) = P [T < τ ] + cE
[
eα(T−τ)+ − 1

]
, (2)

where c > 0 and α > 0 are given parameters.

The following two theorems which will be exploited in Section 2 summarize
the main results of Beibel (2000).

Theorem 1.1 The stochastic processes π = (πt)t≥0, πt = P [τ ≤ t | Ft],

and Ψ̃ = (Ψ̃t)t≥0, Ψ̃t = (1 − πt)
−1E

[
eα(t−τ)+ | Ft

]
− 1, satisfy the stochastic

differential equations

dπt = λ(1 − πt)dt + θπt(1 − πt)dW̄t, π0 = 0, (3)

dΨ̃t =
[
(λ + α + θ2πt)Ψ̃t + λ

]
dt + θΨ̃tdW̄t, Ψ̃0 = 0, (4)

2



where W̄t := Wt −
∫ t

0
πsds. Moreover, for every stopping time T such that

R(T ) < ∞ the following representation of R(T ) holds:

R(T ) = E
[
(1 − πT )

(
1 + c

(
1 + Ψ̃T

))]
− c. (5)

To formulate the second result the following abbreviations will be used, see
Beibel (2000) for additional details.

Let ᾱ = 2α/θ2, λ̄ = 2λ/θ2 and, for x ≥ 0, let

g(x) =

∫ ∞
0

e−uuγ1−1(λ̄ + xu)γ2−1du

(λ̄)γ2−1Γ(γ1)
, (6)

where Γ(z) =
∫ ∞

0
e−uuz−1du,

γ1 =
1

2
(λ̄ + ᾱ − 1) +

√
1

4
(λ̄ + ᾱ − 1)2 + λ̄ (7)

and

γ2 = 1 − 1

2
(λ̄ + ᾱ − 1) +

√
1

4
(λ̄ + ᾱ − 1)2 + λ̄. (8)

Put f(x) = [1 + c(1 + x)]/g(x), x ≥ 0, and let v∗ ∈ (0,∞) be the unique
minimizer of f , i. e.

f(v∗) = min
0≤v<∞

f(v) > 0.

Define Sv∗ = inf{t ≥ 0 | Ψ̃t ≥ v∗} the first time the process Ψ̃ hits the
threshold v∗.

Theorem 1.2 For all stopping times T which are adapted to (Ft)t≥0,

R(T ) ≥ R(Sv∗) = f(v∗) − c =: R∗ , (9)

i.e. Sv∗ is the optimal stopping time determined by the threshold value v∗,
and the righthand side of (9) equals the minimal objective value, cf. (2).

3



Remark 1.3 For further use we shall collect some helpful facts about the
function g which were also used by Beibel (2000, pp. 1698). The proof of
these facts is straightforward.
Fact 1: For all x > 0, g′(x) > 0 and g′′(x) < 0 .

Fact 2: g(x) = (x)γ2−1 Γ(γ1+γ2−1)

(λ̄)γ2−1Γ(γ1)
(1 + o(1)) as x → ∞

Fact 3: limx→∞ g(x) = ∞ .
Fact 4: limx→∞ g(x)/x = 0 .

This paper is organized as follows. Section 2 presents two numerical methods
for analyzing Beibel’s detection problem and illustrates the accuracy of the
numerical results. Method I uses the information, cf. Theorem 1.2, that the
optimal stopping time of Beibel’s problem is characterized by a stopping line
in the (πt, Ψ̃t)-space which runs parallel to the π-axis. For each such stopping
line we formulate finite dimensional linear programs which yield upper and
lower bounds for the corresponding value of the objective value. We then
apply line search techniques, e.g. the golden section rule, to find the optimal
line. Together with Method I we give a brief survey of the relevant litera-
ture. A novel feature compared to previous numerical work on Shiryayev’s
detection problem by Helmes (2002a) is the use of corner point formulas of
special polytopes to speed up computing time and to enhance numerical ac-
curacy. Method II does not require prior information about the structure of
the optimal stopping time but allows to deduce structural properties from
the numerical results. In Section 3 we report on our computational analysis
of the constrained detection problems that can be associated with Beibel’s
problem. Using Method II one finds that the optimal stopping time for any
constrained problem is again specified by a threshold value. A careful anal-
ysis of the numerical results suggests a one-to-one correspondence between
constrained and unconstrained problems. The formulation and proofs of the
characterization theorems are given in Section 3 as well.

2 The LP method and first numerical results

Different numerical methods based on infinite dimensional linear programs
for solving optimal stopping problems of Markov processes have been pro-
posed by Cho (2001) and Röhl (2001). These methods build on the LP-
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techniques proposed by Helmes et al. (2000) for analyzing exit time prob-
lems of Markov processes; for related work see Cho and Stockbridge (2001),
Helmes and Stockbridge (1999, 2000) and, more recently, Lasserre and Rumeau
(2003). Modifications of Röhl’s method using linear and nonlinear optimiza-
tion techniques have been given by Helmes (2002a). The power of these meth-
ods for solving 1-dimensional stopping time problems were demonstrated by
numerically analyzing Shiryayev’s quickest detection problem and the pric-
ing of perpetual Russian options, see Helmes (2002a,2002b). Here we apply
these techniques to a 2-dimensional problem, cf. Section 1. The following
theorem, Theorem 2.1 below, which is a special case of more general results
which were proved by Cho and Röhl provides the analytical underpinning
of our computational analysis. To formulate the theorem we introduce the
following shorthand notation related to Beibel’s problem, cf. Section 1:

• The generator A associated with the 2-dimensional diffusion (πt, Ψ̃t) is
given by, f a twice differentiable function on (0, 1) × (0,∞),

Af(π, Ψ̃) = λ(1 − π)fπ + [(λ + α + θ2π)Ψ̃ + λ]fΨ̃

+1/2 · (θπ(1 − π))2fππ + θ2Ψ̃π(1 − π)fπΨ̃ + 1/2 · (θΨ̃)2fΨ̃Ψ̃ ;

the domain of the operator will be denoted by D(A) or D. Note, A
maps polynomial functions onto polynomial functions.

• G := (0, 1)× (0, K), where K > 0 is some fixed number; the closure of
G will be denoted by Ḡ.

• For measures ν with support in Ḡ and integrable functions f defined
on Ḡ

〈f, ν〉 :=

∫∫
f(π, Ψ̃) dν(π, Ψ̃) .

• 1l denotes the function on Ḡ which is identical to 1.

• L = (1− π)(1 + c(1 + Ψ̃))− c, and x0 = (0, 0); note, L is a polynomial
function.

• T := {T | T is a feasible stopping time, cf. Theorem 1.1}

• M := {ν | ν is a finite measure on Ḡ}

• For v > 0, Sv := inf{t ≥ 0 | Ψ̃t ≥ v}, cf. Section 1

5



Theorem 2.1 The optimal stopping problem defined in Section 1 is equiva-
lent to the following infinite dimensional linear program:

inf
T∈T

R(T ) = inf
µ,µT ∈M

{
〈µT , L〉

∣∣ 〈µT , 1〉 = 1,

∀f ∈ D, 〈f, µT 〉 − f(x0) − 〈Af, µ〉 = 0
}

.

It follows from the extension of Hausdorff’s characterization theorem of mea-
sures, e.g. Shohat and Tamarkin (1943), that any finite measure ν on Ḡ is
uniqely determined by its moment sequence, 0 ≤ i, j < ∞,

mij =

∫∫
Ḡ

xiyj dν(x, y) .

Moreover, see Röhl (2001), the finite subsequence (mij)0≤i,j≤M , M ∈ N fixed,
of any moment sequence (mij)0≤i,j<∞ of a probability measure on the unit
square in R

2 is an element of the convex hull of the set {	ekl}0≤k,l≤M ⊂ R
M+1×

R
M+1, where the (i, j)-th coordinate of 	ekl is given by

	ekl(i, j) =

{(
M−i
k−i

)(
M−j
l−j

)/(
M
k

)(
M
l

)
, k ≥ i, l ≥ j ,

0 , else .
(10)

We shall call the convex hull HM,2 the 2-dimensional Hausdorff polytope of
order M . This characterization of HM,2 is equivalent to the one based on dif-
ference sequences which has previously been exploited by Helmes(2002a,2002b).
The characterization of HM,2 by its corner points is a generalization of the
anlogous result for probability measures on the unit interval on R which had
been proved by Karlin and Shapley (1953). The corner points 	fk, 0 ≤ k ≤ M ,
of the 1-dimensional Hausdorff polytope HM,1 are given by

	fk(i) =

{(
M−i
k−i

)/(
M
k

)
, 0 ≤ i ≤ k ,

0 , else .
(11)

We have experienced that using the explicit formulas for the corner points of
HM,2 speeds up computing time and allows us to use larger values of M for
the approximating finite dimensional LPs than would otherwise be possible.

Moment sequences of measures on bounded intervals in R
2 other than the

unit square, e.g. on Ḡ or subintervals of Ḡ, are but scaled and garbled
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sequences corresponding to probability measures on [0, 1]×[0, 1]; the detailed
transformations will be exhibited below.

To numerically analyze Beibel’s detection problem and the associated re-
stricted versions we have used the following two different methods to ap-
proximately solve the corresponding optimal stopping problems, cf. Theorem
2.1:

2.1 Method I: The exit time approach

In case one has a-priori information about the structure of the optimal stop-
ping policy, for instance, the process (πt, Ψ̃t)t should be stopped the first
time the second component hits a particular value v∗, this information can
be exploited as follows:

For every v ∈ (0, K), K sufficiently large, consider the exit time problem of
(πt, Ψ̃t)t from the domain (0, 1) × (0, v), and compute

R(Sv) = E[L(πSv , Ψ̃Sv)] . (12)

The main benefit of the linear programming approach is that the associated
finite dimensional LP problems, see below, provide upper and lower bounds
for the value (12). To formulate the finite dimensional LP programs we define
transformations Λv, Ωv resp., on H̃M,2, the cone generated by HM,2, and on
HM,1 resp., as follows:
For any given v > 0, h ∈ H̃M,2, g ∈ HM,1, and 0 ≤ i, j ≤ M , let

Λvh(i, j) := vjh(i, j) , (13)

and
Ωvg(j) := vjg(j) . (14)

The image of H̃M,2 under Λv, HM,1 under Ωv resp., includes all truncated
moment sequences of measures on (0, 1) × (0, v), (0, v) resp. If we only
choose monomials (up to order M) as test functions f , Theorem 2.1 suggests
to consider the following set of feasible points (note the definition of the
generator A):

SM,v :=

{
(	µ, 	µT ) ∈ (RM+1 × R

M+1) × R
M+1

∣∣
	µ ∈ Λv(H̃M,2) , 	µT ∈ HM,1 satisfy (*) below

}
;
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for all 0 ≤ i, j ≤ M − 2,

0i0j = vj	µT (i)−
[
iλ	µ(i − 1, j) + jλ	µ(i, j − 1)

+
([

i(i − 1)/2 + ij + j(j − 1)/2
]
θ2 + j(λ + α) − iλ

)
	µ(i, j)

(∗)

+
(
j − i(i − 1) − ij

)
θ2	µ(i + 1, j) + i(i − 1)θ2/2	µ(i + 2, j)

]
.

Next, we consider the two LP problems (note the definition of the pay-off
function and recall that the distribution of the stopping location is concen-
trated on [0, 1] × {v}):

L(v) := min
(�µ,�µT )∈SM,v

{
(1 + cv)	µT (0) − (1 + c(1 + v))	µT (1)

}
(15)

and
L(v) := max

(�µ,�µT )∈SM,v

{
(1 + cv)	µT (0) − (1 + c(1 + v))	µT (1)

}
. (16)

By construction, the following two inequalities hold:

inf
v>0

L(v) ≤ inf
µ,µT

〈µT , L〉 ≤ inf
v>0

L(v) .

Assuming L and L to be unimodal functions we can use a line search tech-
nique, e.g. the golden section rule, to find bounds for infµ,µT 〈µT , L〉 as well
as ε-optimal stopping times. If, up to numerical accuracy,

inf
v>0

L(v)
.
= L(v∗)

.
= L(v∗)

.
= inf

v>0
L(v) ,

then, for all practical purposes, we have actually identified the optimal
threshold.

In Table 1, see subsection 2.3 , column ”Method I” displays some values of
infv>0 L(v) together with estimates of v∗ for some parameter constellations.
Note the excellent agreement of the LP bounds with the values of R(Sv∗)
derived from Beibel’s analytical results.
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2.2 Method II: The refinement technique

While Method 1 exploits prior knowledge about the structure of the optimal
stopping time, Method 2 provides this structural information. To be able to
extraxt information from the numerical results we shall not only approximate
the 2-dimensional occupation measures µ by transformed elements of H̃M,2,
but we shall also approximate the distributions µT this way. Furthermore, we
shall exploit a one-to-one correspondence between the corner points 	ekl, 0 ≤
k, l ≤ M , and the Dirac-measures δ(k/M,l/M)(·, ·) to obtain information about
the support of the optimal exit distribution µT from the solution of the finite-
dimensional LPs defined below. Moreover, we will represent any measure µT

on Ḡ as
µT = µT

|I1 + µT
|I2 + µT

|I3 ,

where, 0 = v1 < v2 < v3 < v4 = K, Ii, i = 1, 2, 3, are the indicator functions

Ii(π, Ψ̃) := I[0,1]×[vi,vi+1](π, Ψ̃) .

The truncated moment sequences of measures defined on intervals like [0, 1]×
[v2, v3], are elements of the image of H̃M,2 under a generalization of the
transformation Λv. For general 0 ≤ a < b < ∞, h ∈ H̃M,2 we define, 0 ≤
i, j ≤ M ,

Λa,bh(i, j) :=

j∑
r=0

(
j

r

)
(b − a)raj−rh(i, r) ;

note, Λ0,v = Λv. In case of Method II the following set of feasible points will
be considered,

SII
M,{vs} :=

{
(	µ, 	µT )

∣∣ 	µ ∈ ΛK(H̃M,2), 	µT
s ∈ Λvs,vs+1(H̃M,2), 1 ≤ s ≤ 3, 	µT =

∑3
s=1 	µT

s ,

	µT (0, 0) = 1, and (	µ, 	µT ) satisfy (**) below

}
;

for all 0 ≤ i, j ≤ M − 2,

0i0j = 	µT (i, j)−
[
iλ	µ(i − 1, j) + jλ	µ(i, j − 1)

+
([

i(i − 1)/2 + ij + j(j − 1)/2
]
θ2 + j(λ + α) − iλ

)
	µ(i, j)

(∗∗)

+
(
j − i(i − 1) − ij

)
θ2	µ(i + 1, j) + [i(i − 1)θ2/2]	µ(i + 2, j)

]
.
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Figure 1: Partitioning of Ḡ = I1 ∪ I2 ∪ I3
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I2 =“the rectangle of interest”

I3 = [0, 1] × [v3, K]

I1 = [0, 1] × [0, v2]

v2

v3

K = v4

0 = v1

With the notation introduced above the LP-problems that will be solved for
every refinement {vs}1≤s≤4, 0 = v1 < v2 < v3 < v4 = K, K sufficiently large,
will look very much like problems (15) and (16) although these are actually
very different problems. To be specific, we shall consider for a given M ≥ 1
and refinement {vs},

LII
M({vs}) := min

(�µ,�µT )∈SII
M,{vs}

{
1− (1+ c)	µT (1, 0)+ c	µT (0, 1)− c	µT (1, 1)

}
. (17)

By construction, the following inequality holds:

LII
M({vs}) ≤ inf

µ,µT
〈µT , L〉 . (18)

Note, Method II will only provide (good) lower bounds for the minimization
problem. A trivial upper bound, which will typically not be very tight, is
given by any feasible pair of measures (µ, µT ), cf. Theorem 2.1.

The final ingredience of Method II is the way refinements are chosen. To this
end, we define one further transformation on H̃M,2, viz. for h ∈ H̃M,2, 0 ≤
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i, j ≤ M ,

ΞMh(i, j) :=

(
M

i

)(
M

j

)
(−1)M−i(−1)M−j∆M−j

2 ∆M−i
1 h(i, j) ,

where ∆r
z, 0 ≤ r ≤ M, z = 1, 2, denotes the r-th difference operator applied

to the z-th component of 2-dimensional arrays, e.g.

∆2
1h(i, j) = ∆1(∆1h)(i, j) and ∆1h(i, j) = h(i + 1, j) − h(i, j), etc.

As in the 1-dimensional case, cf. Feller (1965, pp 222), it follows by straight-
forward but somewhat lengthy computation that

ΞM	ek,l(·, ·) = δ(k/M),(l/M)(·, ·) ,

where δ(x,y)(·, ·) denotes the Dirac measure for a point (x, y) of the unit
square. Thus, when applied to Beibel’s problem, Method II can be summa-
rized as follows:

Step 1. Solve LII
M where v1 = 0, v2 = v3 = v4 = K; apply ΞM to the optimal

program 	µT,∗. Typically, {(i/M, Kj/M)|ΞM	µT,∗(i, j) > δ1}, δ1 ≈
10−3, is a narrow strip parallel to the π-axis in Ḡ, cf. Figures 1 and
5; the choice of the tuning parameter δ somewhat depends on the
parameters of the problem.

Step 2. Choose v1 = 0, v4 = K and v2 < v3 such that I2 covers the strip
identified by Step 1. Apply ΞM to all 	µT,∗

s , 1 ≤ s ≤ 3; typically
ΞM	µT,∗

1 ≡ ΞM	µT,∗
3 ≡ 0, and {(i/M, v2 + j(v3−v2)/M)|ΞM	µT,∗

2 (i, j) >
δ1} is a narrow strip in [0, 1] × [v2, v3].

Step 3. Repeat Step 2, but increase v2 and decrease v3 to just cover the strip
found in Step 2, cf. Figure 1. Stop if the total “mass” of ΞM	µT,∗

cannot be captured within a strip of size v3 − v2 < δ2 or less; typi-
cally, δ2 ≈ 10−2.
For “large” M , i.e. M ≈ 14, it will turn out that very often the
optimal threshold v∗ is close to the midpoint of v3 and v2.
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Table 1: Approximate values of the optimal stopping point v∗ and the optimal
value R∗ based on Method I and repeated iterations of Method II for different
parameters.
c α analytical Method I - - - - - M e t h o d II - - - - -
λ θ solution Step 1 1st refin. 2nd refin. 3rd refin.

1 1 v∗ 1.17553 1.165697 1.08552 1.16659 1.17431 1.17598
1 1 R∗ 0.70954 0.709694 0.70829 0.70919 0.70911 0.70918
3 1 v∗ 0.36737 0.367652 0.337643 0.36666 0.367668 0.367389
1 1 R∗ 0.86552 0.865522 0.86316 0.8654 0.86551 0.86551
1 3 v∗ 0.35787 0.356857 0.336934 0.358333 0.358 0.357842
1 1 R∗ 0.88288 0.88289 0.88074 0.8827 0.88279 0.88279
1 1 v∗ 3.30573 3.361972 3.02402 3.2554 3.30619 3.298
3 1 R∗ 0.47876 0.479021 0.47642 0.47794 0.477995 0.47796
1 1 v∗ 3.1309 2.747672 no reasonable/reliable numerical solution found
1 3 R∗ 0.55263 0.549324
6 1 v∗ 0.17718 0.178098 0.169664 0.178333 0.177167 0.177166
1 1 R∗ 0.92542 0.925418 0.92346 0.92533 0.92541 0.92542

2.3 Numerical results

Table 1 summarizes numerical results for several combinations of parameters.
One can observe that for most parameters the numerical values are very close
to the analytical ones, especially for repeated application of the refinement
method. It is, however, obvious that at least for one parameter constellation
the LP method failed to yield resasonable approximations.

We also investigated the behaviour of the stopping level and objective value
with respect to variations of c; a graphical representation of the dependence
can be found in Figure 2. The left-hand graph shows the stopping level v∗

as a function of c for the analytical solution (bold line), the results of a line
search technique applied to L (dotted line) and the search-method applied
to L (dashed line). The right-hand graph shows the same graphs for the
value R∗ as a function of c. For a large range of parameters c, numerical
results are very close to the values derived from the analytical expressions,
cf. Section 1. If, however, c becomes small (c ≤ 0.5), the numerical results
deviate and display an irregular behaviour indicating that for such c-values
the LP method cannot be relied upon.
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Figure 2: The optimal stopping point v∗ and the optimal value R∗ as func-
tions of c (α = λ = θ = 1). The bold line depicts the analytical solution.
The dashed lines show the argmin and the optimal value (L) of problem
(15) while the dotted lines show the argmax and the optimal value (L) of
problem (16).
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It is also interesting to see, cf. Lemmata 3.5 and 3.6 in Section 3, how the
objective function value divides into its components “error probability” and
“expected exponential delay” (reduced by one and multiplied by c). Figure 3
shows for c-values between 0.5 and 4 the error probability (dashed line), the
exponential delay reduced by one and multiplied by c (dotted line), and the
objective function value as the sum of the two components (bold line).

3 Constrained Problems

In this section we consider two modifications of Beibel’s problem which we
both analyse numerically using Method II. Method II is employed since we
have no prior information on the optimal stopping region of the constrained
problems. The numerical results suggest characterization theorems which
will be proven afterwards. The following problem is a straightforward modi-
fication of the original problem:

R̂(β) := min
T

E
[
eα(T−τ)+ − 1

]
subject to P [T < τ ] ≤ β , (P̂β)

i.e. find a stopping T that minimizes the expected exponential delay (reduced
by 1 according to the statement of the original problem) while the error
probability must not exceed a prespecified level β.
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Figure 3: The optimal value R∗ (bold line), error probability P [Sv∗ < τ ]
(dashed line) and expected exponential delay (dotted line) of Sv∗ as functions
of c (α = λ = θ = 1).
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This modification can be easily accomodated in the original LP formulation
by modifying the objective function and by adding the linear constraint 1−
µT [1, 0] ≤ β. Plots of the optimal value R̂(β) and the optimal stopping level
v∗(β) are depicted in Figure 4. The graphs suggest a reciprocal dependence
of values R̂(β) and v∗(β) on β.

A second straightforward modification of the original problem is to minimize
the error probability while the expected exponential delay (reduced by 1)

Figure 4: The optimal value R̂ and the optimal stopping point v∗as functions
of β (α = λ = θ = 1).
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Figure 5: The grey-scale representation of the values ΞM	µT,∗(i, j) after Step
1 of Method II applied to P̂β , for M = 10, β = 0.8, K = 0.4, α = λ = θ = 1;
i is marked on the horizontal axis, j is marked on the vertical axis; larger
values are associsted with darker squares.
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must not exceed a prespecified level γ:

R̃(γ) := min
T

P [T < τ ] subject to E
[
eα(T−τ)+ − 1

]
≤ γ . (P̃γ)

Again, by adding the appropriate linear constraint and by changing the ob-
jective function the LP method will provide estimates of the optimal value
and the optimal stopping time. In both cases, Method II suggests that the
optimal stopping time for a constrained problem is again determined by a
stopping line parallel to the π-axis, see Table 2 and Figure 5.

Figure 6 shows the graph of the optimal value R̃(γ) and the stopping level as
functions of γ. Moreover, a closer look at the numerical results suggests that
for the same α, λ and θ-values there is a one-to-one correspondence between
constrained problems and unconstrained ones.

To formulate this correspondence we shall use the following notation which

15



Table 2: The values ΞM	µT,∗(i, j) after Step 1 of Method II applied to P̂β, for
M = 10, β = 0.8, K = 0.4, α = λ = θ = 1. The alignment of the numbers
corresponds to the representation in Figure 5; ΞM	µT,∗(0, 0) is in the lower
left corner of the Table.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0.012 0.0193 0.0313 0.0168 0.0096 0.0008 0.0009 0. 0. 0. 0.
0.1007 0.1538 0.227 0.2017 0.0656 0.0421 0. 0.0027 0. 0. 0.

0. 0.1157 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

Figure 6: The optimal value R̃ and the optimal stopping point v∗ as functions
of γ (α = λ = θ = 1).
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will be used throughout Section 3:

v∗
c ... the optimal stopping level of the process Ψ̃t in Beibel’s

original problem with parameter c
Tc ... the optimal stopping time for Beibel’s original problem

with parameter c, i.e. Tc = Sv∗c , cf. Theorem 1.2
Rc ... the optimal value of the original problem, i.e. Rc =

R(Tc) = R(Sv∗c )
EPc ... the error probability corresponding to Tc, i.e. P [Tc < τ ]
EXc ... the expected exponential delay reduced by 1 corre-

sponding to Tc, i.e. E
[
eα(Tc−τ)+ − 1

]
The following identity is an immediate consequence of these definitions:

Rc = EPc + c · EXc . (19)

The following characterization theorem precisely formulates the correspon-
dence between the constrained problem P̂β and Beibel’s unconstrained prob-
lem.

Theorem 3.1 Let α, λ and θ be given. For each β ∈ (0, 1) there is a number
c = c(β) > 0 such that

(i) Tc is an optimal stopping time of P̂β ,

(ii) EXc = R̂(β) and EPc = β; Rc = β + cR̂(β).

The proof of the theorem is based on several lemmas.

Lemma 3.2 c �→ v∗
c (the optimal stoping level) is a continuous function in

c.

Proof The optimal stopping level v∗
c is the solution of the equation (see

Beibel, p. 1699)

h(x) :=
g(x)

g′(x)
− x − 1 =

1

c
. (20)

Since

h′(x) =

(
g(x)

g′(x)
− x − 1

)′
= −g(x)g′′(x)

[g′(x)]2
�= 0 , (21)

17



h has a differentiable inverse, and thus c �→ v∗
c is well defined and continuous.

�

Lemma 3.3 c �→ Rc is a concave function on [0,∞), and is continuous on
(0,∞).

Proof Let 0 < λ < 1 and c1, c2 ∈ [0,∞) be given, put c12 := λc1 + (1− λ)c2.
By definition,

Rc12 = Rλc1+(1−λ)c2

= EPc12 + (λc1 + (1 − λ)c2)EXc12

= λEPc12 + (1 − λ)EPc12 + λc1EXc12 + (1 − λ)c2EXc12

= λ[EPc12 + c1EXc12 ] + (1 − λ)[EPc12 + c2EXc12 ]

≥ λ[EPc1 + c1EXc1] + (1 − λ)[EPc2 + c2EXc2]

= λRc1 + (1 − λ)Rc2 .

Since c �→ Rc is concave, the function is continuous in the interior of its
domain. �

Remark 3.4 An alternative proof of Lemma 3.3 runs as follows: The op-
timal stopping time for Beibel’s problem with parameter c, when used for a
problem with parameter ĉ, has the objective value EPc + ĉEXc. The optimal
value Rĉ for parameter ĉ will be at least as good as, or even better (smaller),
than this sum,

Rĉ ≤ EPc + ĉEXc = Rc + (ĉ − c)EXc ,

i.e. (for fixed c) Rc + (ĉ − c)EXc is a linear function of ĉ which lies above
the value function and is equal to the value function at point c. Such linear
functions exist for every c. Hence the value function Rc is concave, and
therefore continuous in the interior.

Lemma 3.5 c �→ EPc and c �→ EXc are continuous functions in c.

Proof The process Ψ̃t has been defined as the quotient of the expected
exponential delay conditioned on information up to time t and the probability
of false alarm at time t, minus 1:

Ψ̃t =
E

[
eα(t−τ)+ | Ft

]
1 − πt

− 1 .

18



By definition, the process Ψ̃t equals v∗
c when it hits the stopping level v∗

c .

Therefore, no matter what the individual values of (1− πt) and E
[
eα(t−τ)+ |

Ft

]
might be, we know that at time Tc the ratio of these two values equals

(for almost all ω ∈ Ω)

v∗
c + 1 = Ψ̃Tc + 1 =

E
[
eα(Tc−τ)+ | FTc

]
1 − πTc

;

this identity is equivalent to

E
[
eα(Tc−τ)+ | FTc

]
= (1 + v∗

c )(1 − πTc) .

Taking expectations on both sides we obtain

EXc + 1 = (1 + v∗
c )EPc . (22)

Equation (22), which relates EPc, EXc and v∗
c , together with the definition

of Rc imply

Rc = EPc + c
(
(1 + v∗

c )EPc − 1
)

⇔ EPc =
c + Rc

1 + c(1 + v∗
c )

, (23)

and

Rc = (1 + v∗
c )

−1(EXc + 1) + cEXc ⇔ EXc =
(1 + v∗

c )Rc − 1

1 + c(1 + v∗
c )

. (24)

Since both, c �→ v∗
c and c �→ Rc, are continuous functions in c, Lemma 3.5

follows. �

Lemma 3.6 (i) limc↘0 EPc = 0 and (ii) limc→∞ EPc = 1 .

Proof (i) The asymptotic expansion, cf. Beibel (2000, p. 1699),

v∗
c =

1

c

γ2 − 1

2 − γ2

(1 + o(1)) as c → 0 , (25)

which follows from the definition of v∗
c , cf. (20), and the integral representa-

tion of g, cf. (6), implies v∗
c → ∞ as c → 0.
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Moreover, see Theorem 1.2, the value function Rc equals f(v∗
c ) − c and, by

definition of g, this expression can be written as

Rc =
1 + c(v∗

c + 1)

g(v∗
c )

− c . (26)

Equations (23) and (26) together imply

EPc = 1/g(v∗
c ) . (27)

While the numerator of the fraction is a constant, the denominator grows
to infinity as c tends to 0 since v∗

c grows to infinity,,see above, and so does
g(v∗

c ), cf. Remark 1.3, Fact 3. Thus EPc → 0 as c → 0.

(ii) v∗
c is the solution of the equation, cf. (20), h(x) = g(x)/g′(x)−x−1 = 1/c.

Since g(0) = 1 and g′(0) = 1 it follows that h(0) = 0. We have shown in
the proof of Lemma 3.2 that h′(x) �= 0 for x > 0. Hence h has a continuous
inverse with h−1(0) = 0. If c → ∞, i.e. 1/c → 0, the continuity of h−1

implies
v∗

c = h−1(1/c) → 0 as c → ∞ ;

this convergence property, together with g(0) = 1 and the identity EPc =
1/g(v∗

c ), implies limc→∞ EPc = 1.

Now we are able to complete the proof of Theorem 3.1.

Proof The two Lemmata 3.5 and 3.6, combined with the intermediate value
theorem imply that for each β ∈ (0, 1) there exists a value c := c(β) such
that EPc = β. Use this particular value c in the original problem; thus
Rc = β +c ·EXc. Let Tc = Tc(β) be the corresponding optimal stopping time.
By construction, Tc is a feasible stopping time for the modified problem
P̂ (β) which yields the value EXc(β). Now let us assume T̂β were a better

stopping time for the modified problem P̂ (β) than Tc, i.e. T̂β satisfies the

constraint P [T̂β < τ ] ≤ β and R̂(β) < EXc(β). Then R(T̂β) < Rc, i.e. T̂β

would also yield a smaller value in the original problem, which contradicts
the assumption that Tc(β) is an optimal stopping time in Beibel’s problem.
This concludes the proof of Theorem 3.1. �

The next result, which complements Theorem 3.1, is the characterization
theorem for P̃γ .
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Theorem 3.7 Let α, λ and θ be given. For each γ ∈ (0,∞) there is a
number c = c(γ) > 0 such that:

(i) Tc is an optimal stopping time of P̃γ ,

(ii) EPc = R̃(γ) and EXc = γ; Rc = R̃(γ) + cγ.

Besides Lemma 3.5 the proof of Theorem 3.7 requires the following addition
to Lemma 3.6.

Lemma 3.8 (i) limc↘0 EXc = ∞ and (ii) limc→∞ EXc = 0

Proof (i) Equation (26), cf. proof of Lemma 3.6, together with equation
(24) imply

EXc =
1

g(v∗
c )

+
v∗

c

g(v∗
c )

− 1. (28)

We know, cf. proof of Lemma 3.6, that v∗
c → ∞ as c → 0. Moreover,

cf. Remark 1.3, Fact 4, g(.) grows more slowly than the identity. Hence,
limv→∞ v/g(v) = ∞, which implies EXc → ∞ as c → 0.

(ii) The value function Rc is bounded from above by 1 since immediate stop-
ping is always a feasible policy; this particular policy has error probability 1
and no delay. The identity Rc = EPc + c · EXc is equivalent to

EXc = 1/c · (Rc − EPc) . (29)

Since limc→∞ EPc = 1 (see Lemma 3.6) and Rc ≤ 1, for all c ≥ 0, it follows
from equation (29) that limc→∞ EXc = 0. �

Remark 3.9 The following argument shows that the function c �→ EXc is
actually non-increasing on (0,∞).

Proof We first show that the value function Rc is a non-decreasing function
of c. Let c, δ > 0; by definition,

Rc = EPc + cEXc

≤ EPc+δ + cEXc+δ (30)

= Rc+δ − δEXc+δ ;
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actually, since EXc+δ > 0, the strict inequality Rc < Rc+δ holds. By the
same argument we have:

Rc+δ = EPc+δ + (c + δ)EXc+δ

≤ EPc + (c + δ)EXc (31)

= Rc + δEXc .

Combining the last inequality with inequality (30) we obtain:

Rc+δ ≤ Rc+δ − δEXc+δ + δEXc

⇒ EXc+δ ≤ EXc . �

Remark 3.10 Unless EXc = EXc+δ = 0, the inequality in the last line of
the proof will be strict.

Now we are able to prove Theorem 3.7.

Proof We are going to use the same kind of arguments as in the proof of
Theorem 3.1. Lemmas 3.5 and 3.8 together with the intermediate value
theorem imply that for each γ ∈ (0,∞) there exists c := c(γ) such that
EXc = γ. Use this particular value c in the original problem, thus Rc =
EPc + c · γ. Let Tc := Tc(γ) be the corresponding optimal stopping time.

By construction, Tc is a feasible stopping time for problem P̃ (γ) with value
EPc(γ). Assume T̃γ were a better stopping than Tc time for problem P̃ (γ),

i.e. T̃γ satisfies the constraint E
[
eα(T−τ)+ − 1

]
≤ γ and R̃(γ) < P [Tc ≤ τ ].

Then R(T̃γ) < Rc, i.e. T̃γ would also yield a smaller value in the original
problem, which contradicts the assumption that Tc is an optimal stopping
time in Beibel’s problem. �
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