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1 Introduction and model description

In the third generation mobile networks (UMTS) which base on IP protocols,
real time services like speech and moving pictures are important applica-
tions. For ensuring an appropriate quality of service for such services, there
is an admission control necessary, rejecting service requests of users if their
acceptance probably would imply an overload congestion for the network.
Several models for packet streams, data handling systems and admission
control strategies have been investigated. In particular, the superposition
of many on-off sources, leading to bursty packet streams, is often modeled
and approximated by certain stochastic processes, in particular by Markov-
modulated rate processes (fluid approximation), cf. e.g. [AMS], [SE], [K],
[BB], [EM], [R] and the references therein. Admission control strategies of-
ten base on monitoring the actual packet arrival rate at the system: if too
”many” packets arrive, then a control mechanism regulates the arrival rate.
Token bucket algorithms are used for preventing overload for the processors
handling the packets. Various kinds of stochastic processes and queueing
models including fluid models are extensively used for modeling and ana-
lyzing packet handling mechanisms, cf. e.g. [IKKM], [ADRS], [AR], [ARK],
[AS], [BBS], [EM], [LP], [PVL] and the references therein.

In this paper we consider a node with a processor where arriving requests
are rejected if the actual packet arrival rate exceeds a certain level, and
overload for the processor is prevented by a token bucket algorithm. The

∗This work was partially supported by a grant from the Siemens AG.
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model is as follows: At a node of a network there arrives a Poisson process
of requests (session activation requests) of intensity λ from outside. Each
request accepted by the node – the admission strategy will be described
below – generates a geometrically with parameter q ∈ [0, 1) distributed
positive number C of on-off cycles, cf. Figure 1.1. The on and off periods are
exponentially distributed with mean 1/α and 1/β, respectively. A request
generates in mean 1/(1 − q) on periods, and during the on periods packets
are generated at constant rate r. The cumulative packet arrival process,
generated by the requests which are in an on period, i.e. active, has to be
served by a processor.

� on - � on - � on -� off - � off - �off-

Figure 1.1: Packet stream generated by a request consisting of C = 3 on-off
cycles, i.e., the request induces three on periods.

Since the on and off periods of accepted requests change dynamically
in time and independent of each other the actual packet arrival rate varies
considerably, and hence it may induce congestion of the system. For pre-
venting session breakdowns – due to limited capacity – the following easy
to implement admission control strategy for the requests is considered: An
arriving new request (session activation request) is accepted iff the actual
packet arrival rate, generated by the accepted requests which are in an on
period, i.e. active, is not larger than a given threshold r∗. However, although
a reasonable choice of r∗ will limit overflow in some sense, the admission con-
trol based on the number of active requests cannot prevent overload for the
system. Note that the number of active requests is dynamically, and it may
happen that new requests are accepted because only few requests are active,
but some times later more requests in the node may become active leading
to a packet rate exceeding the system capacity. The following token bucket
algorithm for the packets, cf. Figure 1.2, prevents overload of the system: At
constant rate µ tokens arrive at a token bucket of capacity b. Arriving tokens
which find the bucket full get lost. An arriving packet is paired with a token
from the token bucket – if there is any – and then served by the system. An
arriving packet which cannot be paired with a token is discarded, i.e. gets
lost. For this system the probability that an arriving new request will not
be accepted by the node, the mean rate of packets generated by requests
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accepted by the node and the packet loss probability due to an empty token
bucket are of interest.
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Figure 1.2: Node with processor: the requests are controlled by a peak rate
mechanism and the packets by a token bucket algorithm.

Remark 1.1 The last off period generated by a request does not affect the
dynamics of the system and hence can be neglected. In other words, an ac-
cepted request is equivalently characterized by a geometrically with parameter
q distributed positive number C of on periods and C − 1 off periods, where
the requests start and end with an on period, cf. Figure 1.3. In particular,
a request is determined by the number and durations of the on periods and
the durations of the off periods between the on periods.

� on - � on - � on -� off - � off -

Figure 1.3: Packet stream generated by a request consisting of C = 3 on
periods and C − 1 = 2 off periods.

The paper is organized as follows. For obtaining approximations of rea-
sonable complexity for the performance measures of interest we introduce
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the fluid flow approximation in Section 2.1. The fluid flow source is mod-
eled via two different two-node networks with state-dependent arrival rate,
but for the parameters of interest the balance equations for the stationary
occupancy distribution in these networks cannot be solved numerically due
to their complexity. Thus in Section 2.2 we consider some limiting cases,
which are the basis for an approximation of the dynamics of active requests
by a birth-death process constructed in Section 3. Theorem 3.1 tells us that
the induced approximation for the stationary distribution of the number
of active requests is exact in these limiting cases. Within the birth-death
process approximation the request loss probability, the mean packet arrival
rate and the packet loss probability in case of b = 0 can be computed ef-
ficiently. In Section 4.1 we propose E[(A − b)+]/EF as an approximation
for the packet loss probability in the general case, where A is the amount of
arriving fluid during two successive time instants where the packet arrival
rate hits µ from below, which has to be paired from the token buffer, and
F is the total amount of arriving fluid in this time interval. For applying
this approximation it remains to evaluate E[min(A, b)]. In Section 4.2 we
approximate E[min(A, b)] by linear combinations of the LST A∗(s) of A at
some s ∈ R+, and A∗(s) is given as a continued fraction in Section 4.3.

2 Approximation of the packet arrival stream in
the fluid flow model

2.1 Fluid flow sources: modeling via two-node networks

According to the fluid flow approximation, arriving packets during an on
period are approximated by a fluid with rate r, i.e., the discrete nature of
the packets is ignored. There are several reasons for the attraction of fluid
models, cf. [IKKM] p. 87: the small and uniform packet size; the constant
inter-arrival time between packets in an on period (burst) fits naturally in
the fluid framework, and it is difficult to handle in the queueing context; the
complexity of numerically solving and of simulating fluid models is consider-
ably less than for similar queueing models. Further, the fluid approximation
presumes separation of time scales – note that the inter-arrival time of pack-
ets is small with respect to on periods (bursts). For comparing performance
measures of packet models obtained by simulation and solution of fluid mod-
els, cf. e.g. [EM].

Let N1(t) and N2(t) be the number of requests in the system at time t+0
and which are in an on and in an off period, respectively. The admission
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control strategy for the requests in the fluid flow model approximation then
reads as: an arriving new request at time t is accepted iff N1(t − 0) ≤ n∗,
where n∗ := br∗/rc. In view of the Poisson arrival assumption for new
requests, the exponentially distributed on and off times, the geometrically
distributed number of on periods and the independence assumptions, the
process (N1(t),N2(t)), t ∈ R, is a Markov process with state space Z

2
+. The

dynamics of (N1(t),N2(t)) correspond to the dynamics of a two-node net-
work with state-dependent arrival rate at the first node, given in Figure 2.1.

-1I{N1(t)≤n∗}λ
α��

��Node 1: N1(t)

- β��
��Node 2: N2(t)

-1−q
q

6

Figure 2.1: Markov-modulated fluid flow source as a two-node network with
state-dependent arrival rate.

The two nodes in Figure 2.1 are infinite server systems with exponential
service times with parameter α in the first and parameter β in the second
node. The service times represent the durations of the on and off periods,
respectively. At Node 1 requests arrive from outside according to the state-
dependent arrival intensity 1I{n ≤ n∗}λ if there are n requests in Node 1,
modeling the admission control strategy for arriving new requests. After
leaving the second node, with probability q the request is transferred to the
first node again and with probability 1− q it leaves the network. The mean
sojourn time EV of an accepted request in this two-node network is

EV =
α+β

αβ(1−q) . (2.1)

The fluid arrival rate R(t) := rN1(t) approximates the actual packet arrival
rate of the system. Note that R(t) corresponds to a Markov-modulated fluid
flow source. The two-node network is of non-product type. Hence numerical
algorithms and approximations for relevant performance measures will be
developed in the following.

The assumptions of the model imply that (N1(t),N2(t)) is an irreducible
Markov process with state space Z

2
+ whose stationary distribution

p(n1, n2) := lim
t→∞P (N1(t)=n1,N2(t)=n2) , (n1, n2) ∈ Z

2
+ ,
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exists for an arbitrary set of parameters λ, α, β > 0, q ∈ [0, 1) and n∗ ∈ Z+.
In the following we assume that (N1(t),N2(t)) is a stationary process. The
balance equations for p(n1, n2) read

(1I{n1 ≤ n∗}λ+ n1α+ n2β)p(n1, n2)

= 1I{n1−1 ≤ n∗}λp(n1−1, n2) + (n1+1)αp(n1+1, n2−1)

+ (n2+1)βqp(n1−1, n2+1) + (n2+1)β(1−q)p(n1, n2+1) ,

(n1, n2) ∈ Z
2
+ , (2.2)

where p(n1, n2) := 0 for (n1, n2) ∈ Z
2 \Z

2
+. The normalizing condition reads

∑
(n1,n2)∈Z

2
+

p(n1, n2) = 1 . (2.3)

In the limiting case of n∗ = ∞, i.e., if there is no admission control for
arriving new requests, the resulting two-node network has the product form
solution

p(n1, n2) = p1(n1) p2(n2) , (n1, n2) ∈ Z
2
+ , (2.4)

where

pi(n) := e−%i
%n

i

n!
, n ∈ Z+ , i ∈ {1, 2} , (2.5)

%1 := EN1(t) =
λ

α(1−q) , %2 := EN2(t) =
λ

β(1−q) . (2.6)

Note that %i can be interpreted as the offered traffic intensity for the i-th
node. Eqs. (2.4), (2.5) imply that N1(t) and N2(t) are stochastically inde-
pendent and Poisson-distributed with parameters %1 and %2, respectively.

Denote by

p(n) := P (N1(t)=n) =
∞∑

n2=0

p(n, n2) , n ∈ Z+ , (2.7)

the distribution of the number N1(t) of active requests, i.e., which are in an
on period. Taking into account the PASTA property, the probability p`,r

that an arriving new request will not be accepted, i.e. gets lost, is given by

p`,r =
∞∑

n=n∗+1

p(n) . (2.8)
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The conservation principle applied to Node 1 yields immediately

λ(1−p`,r)
1−q = αEN1(t) , (2.9)

where we used the fact that the mean number of on periods of a request is
1/(1 − q). Thus the mean rate ER := rEN1(t) of packets generated by the
requests accepted by the system is

ER = r

∞∑
n=1

np(n) =
rλ(1−p`,r)
α(1−q) . (2.10)

The conservation principle applied to {N1(t) = n} and to the flow between
Node 1 and Node 2 yields the following two identities

(1I{n ≤ n∗}λ+ βqE[N2(t) |N1(t) = n])p(n) = (n+1)αp(n+1) ,

n ∈ Z+ , (2.11)

αEN1(t) = βEN2(t) . (2.12)

Note that (2.9) and (2.12) provide

λ(1−p`,r) = β(1−q)EN2(t) , (2.13)

which is the conservation law that the intensity of requests accepted by the
system is equal to the intensity of requests leaving the system.

In the fluid model, in case of b > 0, the buffer content of the token bucket
is a continuous random variable governed by the Markov-modulated process
N1(t), cf. Section 4 for details. In general it is a very difficult task – analyt-
ically as well as numerically – to determine the buffer content distribution
and hence the packet loss probability, cf. e.g. [AS], [IKKM], [DS]. However,
in case of b = 0, i.e., if there is no buffer for the tokens, in the fluid model
the probability p`,p that an arriving packet gets lost is the fraction of fluid
which exceeds µ and the total arriving fluid∗, i.e.,

p`,p = lim
t→∞

t∫
0

(rN1(t′)−µ)+ dt′

t∫
0

rN1(t′) dt′
.

∗In the fluid model the arriving tokens are modeled as a fluid with rate µ.
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Dividing the numerator and denominator by t and applying the individual
ergodic theorem it follows

p`,p =
E[(rN1(t)−µ)+]

E[rN1(t)]
=
E[(N1(t)−τ)+]

EN1(t)
, (2.14)

where

τ := µ/r . (2.15)

From (2.9) and (2.14) we obtain

p`,p =
α(1−q)
λ(1−p`,r)

E[(N1(t)−τ)+] . (2.16)

The following theorem gives monotonicity results for the request loss
probability and for the mean packet rate.

Theorem 2.1 The request loss probability p`,r is a monotonically decreasing
function, the mean packet rate ER a monotonically increasing function of
the admission control parameter r∗.

Proof. Note that n∗ is a monotonically increasing function of r∗. We con-
sider the two-node network given in Figure 2.1 and the modified model where
n∗ is replaced with n∗+ (> n∗) and correspondingly p`,r with p+

`,r, ER with
ER+ and (N1(t),N2(t)) with (N+

1 (t),N+
2 (t)). Moreover, we consider the

modified model with the following modified admission and service discipline
as well as with marked and non marked requests: Let Ñ1(t) and Ñ2(t) be
the number of non marked requests in Node 1 and Node 2 as well as Ñ+

1 (t)
and Ñ+

2 (t) be the number of all requests in Node 1 and Node 2 of the latter
model at time t+0, respectively. A request arriving from outside at time t in
this model will be accepted and remains non marked iff Ñ1(t− 0) ≤ n∗, but
in case of Ñ+

1 (t−0) > n∗+ a chosen at random marked request from Node 1
leaves the system immediately while the service of the request arrived from
outside at Node 1 starts (preemptive priority for the non marked requests).
A request arriving from outside at time t will be accepted and marked iff
Ñ1(t− 0) > n∗ and Ñ+

1 (t− 0) ≤ n∗+.
In view of this admission and service discipline, the system dynamics

of the non marked requests are the same as in the original model of Fig-
ure 2.1 and not influenced by the numbers of marked requests in Node 1 and
Node 2. Thus the distribution of (Ñ1(t), Ñ2(t)) is equal to the distribution
of (N1(t),N2(t)). Moreover, due to the exponential service time in Node 1
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and the Bernoulli feedback, the distribution of (Ñ+
1 (t), Ñ+

2 (t)) is equal to
the distribution of (N+

1 (t),N+
2 (t)). Therefore it follows

N+
1 (t) D= Ñ+

1 (t)
D≥ Ñ1(t)

D= N1(t) , (2.17)

and we obtain ER+ ≥ ER. Because of

λ(1−p+
`,r) = α(1−q)EN+

1 (t) ≥ α(1−q)EN1(t) = λ(1−p`,r) ,

cf. (2.9) and (2.17), we find p+
`,r ≤ p`,r.

Taking into account Remark 1.1, the modified two-node network given
in Figure 2.2, cf. also Figure 1.3, describes the dynamics of requests con-
sisting of a positive number (geometrically distributed with parameter q)
of on periods (exponentially distributed with parameter α) and off periods
(exponentially distributed with parameter β) between them.

-1I{N ′
1(t)≤n∗}λ α��

��Node 1: N ′
1(t)

β��
��

Node 2: N ′
2(t)

-1−q
6

q

Figure 2.2: Modified two-node network, where the requests start and end
with an on period and N ′

1(t) = N1(t).

Denoting by N ′
1(t) and N ′

2(t) the number of requests in the first and second
node at time t+ 0, respectively, it holds

N ′
1(t) = N1(t) . † (2.18)

The stationary distribution p′(n1, n2), (n1, n2) ∈ Z
2
+, of the modified net-

work, which is uniquely determined for λ, α, β > 0, q ∈ [0, 1), n∗ ∈ Z+,

†The corresponding processes can be constructed appropriately.
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satisfies the balance equations

(1I{n1 ≤ n∗}λ+ n1α+ n2β)p′(n1, n2)

= 1I{n1−1 ≤ n∗}λp′(n1−1, n2) + (n1+1)αqp′(n1+1, n2−1)

+ (n1+1)α(1−q)p′(n1+1, n2) + (n2+1)βp′(n1−1, n2+1) ,

(n1, n2) ∈ Z
2
+ , (2.19)

where p′(n1, n2) := 0 for (n1, n2) ∈ Z
2 \ Z

2
+, and the normalizing condition

∑
(n1,n2)∈Z

2
+

p′(n1, n2) = 1 . (2.20)

In view of (2.18), (2.7), it holds

p(n) =
∞∑

n2=0

p′(n, n2) , n ∈ Z+ . (2.21)

The advantage of the modified network is that the solution of (2.19), (2.20)
can be computed a bit more efficiently than that of (2.2), (2.3), and hence
the performance measures p`,r and ER, too, cf. (2.8), (2.10) and (2.21).

Having in mind real life applications where p(n1, n2) and p′(n1, n2) would
be concentrated mainly on n1, n2 ≤ 104, a linear system of equations with
approximately 108 variables has to be solved, which is too huge. Thus we
are interested in approximations for p(n) which can be computed much more
efficiently. The proposed approximations base on limiting cases, which will
be considered in the next section.

2.2 Limiting cases

In this section we use the two-node network given in Figure 2.1.

Limiting case q → 1: Binomial model

Let λ, α(1 − q), β(1 − q) and n∗ ∈ Z+ be fixed. In case of q → 1 (or
equivalently α → ∞ or β → ∞, respectively) each of the requests in the
two-node network will be – when looking at an arbitrary time instant at the
system – with probability

p =
β(1−q)

α(1−q) + β(1−q) (2.22)
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in Node 1, i.e. active, and with probability 1 − p in Node 2, i.e. passive.
Further, for the Laplace-Stieltjes transform of the sojourn time V of an
accepted request in the system we obtain

Ee−sV = E
[
E

[
e−sV

∣∣∣C]]
= E

[( α

α+s
β

β+s

)C ]

=
αβ (1−q)

(α+s)(β+s)−qαβ −→ γ

γ+s

as q → 1, where

γ := 1/EV =
α(1−q)β(1−q)
α(1−q) + β(1−q) (2.23)

is fixed. In the limiting case q → 1 hence the sojourn times are exponentially
distributed with parameter γ. Thus for q → 1 the dynamics of the number
J(t) := N1(t) +N2(t) of requests in the system correspond to a birth-death
process with birth rates

λ
(1)
j := λ

n∗∑
n=0

(
j

n

)
pn(1−p)j−n , j ∈ Z+ , (2.24)

and death rates jγ, j ∈ N := Z+ \ {0}. Therefore its stationary distribution
π(1)(j) := P (J(t) = j) is given by

π(1)(j) = π(1)(0)
j∏

`=1

λ
(1)
`−1

`γ
, j ∈ Z+ , (2.25)

π(1)(0) =
( ∞∑

j=0

j∏
`=1

λ
(1)
`−1

`γ

)−1

. (2.26)

For the stationary distribution of the number of active requests we find

p(1)(n) =
∞∑

`=n

π(1)(`)
(
`

n

)
pn(1−p)`−n , n ∈ Z+ , (2.27)

cf. (2.22). Thus taking into account (2.8), (2.10), we obtain

p`,r =
∞∑

n=n∗+1

p(1)(n) , ER = r
∞∑

n=1

np(1)(n) =
rλ(1−p`,r)
α(1−q) . (2.28)

In view of (2.22), (2.24) and (2.27), for a given number J(t) = j of requests
in the system the number of active requests is binomially distributed with
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parameters j and p. We refer to the birth-death model (2.22)–(2.26) and
the binomial sampling (2.27) of on periods as the binomial model of the
distribution of the number N1(t) of on periods. Although the distribution
p(1)(n), n ∈ Z+, in the binomial model corresponds to the distribution of
N1(t) in the limiting case q → 1 where α(1 − q) and β(1− q) are fixed, the
binomial model is well defined for the general model, too. In Section 3 we
will use the binomial model as a first approximation for the general model.
In the binomial model a conservation law analogous to (2.9) holds.

Lemma 2.1 For given λ, α(1 − q), β(1− q) and n∗ in the binomial model
it holds the conservation law

λ

n∗∑
n=0

p(1)(n) = α(1−q)
∞∑

n=1

np(1)(n) . (2.29)

Proof. From (2.22)–(2.27) we obtain

α(1−q)
∞∑

n=1

np(1)(n) =
γ

p

∞∑
n=1

n
∞∑

`=n

π(1)(`)
(
`

n

)
pn(1−p)`−n

=
∞∑

n=1

∞∑
`=n

λ
(1)
`−1 π

(1)(`−1)
(
`−1
n−1

)
pn−1(1−p)`−n

= λ

n∗∑
m=0

∞∑
`=0

(
`

m

)
pm(1−p)`−m π(1)(`)

∑̀
n=0

(
`

n

)
pn(1−p)`−n

= λ

n∗∑
m=0

∞∑
`=m

(
`

m

)
pm(1−p)`−m π(1)(`) = λ

n∗∑
m=0

p(1)(m) .

Limiting case q → 0: M/M/n∗ + 1/0 system

Let λ, α, β, n∗ be fixed. For q → 0 the dynamics of the two-node network
converge to the dynamics of a two-node series network, cf. Figure 2.3.

-1I{N1(t)≤n∗}λ
α��

��N1(t)

- β��
��N2(t)

-

Figure 2.3: Limiting case q → 0: Two-node series network.
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The dynamics of N1(t) correspond to the dynamics of a M/M/n∗ + 1/0
system with arrival rate λ and service rate α. The stationary distribution
p(n) = P (N1(t) = n) is given by

p(n) = p(0)
1
n!

(λ
α

)n
, n = 0, . . . , n∗+1 , (2.30)

p(0) =
( n∗+1∑

n=0

1
n!

(λ
α

)n)−1
, (2.31)

and it holds

p`,r = p(n∗+1) . (2.32)

Limiting case β → 0: Single-node model with two arrival streams
Let λ, α, q, n∗ be fixed. In case of β → 0 the dynamics of active requests
converge to the dynamics of a single-node with two arrival streams, cf. Fig-
ure 2.4.

-
1I{N1(t)≤n∗}λ

-

λ′ = λ(1−p`,r)
q

1−q

α��
��N1(t)

-

Figure 2.4: Limiting case β → 0: Single-node model with two ar-
rival streams. The first stream has the state-dependent arrival intensity
1I{N1(t) ≤ n∗}λ, and the second one is a Poisson process of intensity
λ′ = λ (1− p`,r) q/(1 − q).

The first one is, as in the two-node model, the process of accepted new
requests from outside and hence has the state-dependent arrival intensity
1I{N1(t) ≤ n∗}λ. As for β → 0 the sojourn times in Node 2 of Figure 2.1
converge to infinity and since they are independent of each other, the pro-
cess of requests routed from Node 2 to Node 1 in Figure 2.1 converges –
heuristically – to a Poisson process of some intensity λ′. Since the mean
number of revisits of Node 1 by an accepted request is EC − 1 = q/(1− q),
cf. Section 1, and the intensity of the point process of accepted requests from
outside is λ(1− p`,r), we have

λ′ = λ(1−p`,r)
q

1−q , (2.33)
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where the probability p`,r that an arriving request from outside gets lost is
given by

p`,r =
∞∑

n=n∗+1

p(n) (2.34)

and p(n) = P (N1(t) = n), n ∈ Z+, denotes the stationary distribution of
the number N1(t) of requests in the single-node model given in Figure 2.4.
Since N1(t) is a birth-death process with birth rates 1I{n ≤ n∗}λ + λ′ and
death rates nα the p(n) are given by

p(n) = p(0)
1
n!

(λ(1−q p`,r)
α(1−q)

)min(n,n∗+1)(λ(1−p`,r)q
α(1−q)

)(n−n∗−1)+
,

n ∈ Z+ , (2.35)

p(0) =
( ∞∑

n=0

1
n!

(λ(1−q p`,r)
α(1−q)

)min(n,n∗+1)(λ(1−p`,r)q
α(1−q)

)(n−n∗−1)+)−1
.

(2.36)

Note that (2.34)–(2.36) yield a fixed point equation for p`,r.

Limiting case β →∞: M/M/n∗ + 1/0 system

Let λ, α, q, n∗ be fixed. In case of β →∞ the requests leaving Node 1 are
fed back with probability q immediately to Node 1, and with probability
1− q they leave the system. The limiting model, cf. Figure 2.5, is a single-
node feedback model with state-dependent arrival intensity 1I{N1(t) ≤ n∗}λ
of arriving new requests.

-1I{N1(t)≤n∗}λ
α��

��N1(t)

-1−q
6

q

Figure 2.5: Limiting case β → ∞: Single-node feedback model with state-
dependent arrival intensity 1I{N1(t) ≤ n∗}λ.

14



The number N1(t) of requests in the node is a birth-death process with birth
rates 1I{n ≤ n∗}λ and death rates nα(1 − q). The stationary distribution
p(n), n ∈ Z+, of N1(t) is given by

p(n) = p(0)
1
n!

( λ

α(1−q)
)n
, n = 0, . . . , n∗+1 , (2.37)

p(0) =
( n∗+1∑

n=0

1
n!

( λ

α(1−q)
)n)−1

, (2.38)

and it holds

p`,r = p(n∗+1) . (2.39)

Note that the dynamics correspond to the dynamics of a M/M/n∗ + 1/0
system with arrival rate λ and service rate α(1 − q).

The time scaling t⇒ (1−q)t provides the birth-death process N̂1(t) with
birth rates 1I{n ≤ n∗}λ/(1−q) and death rates nα. Note that the stationary
occupancy distribution is invariant with respect to time scaling. Further,
since the superposition of two independent Poisson processes of intensities λ
and λq/(1− q), respectively, is a Poisson process of intensity λ/(1− q), the
dynamics of N̂1(t) are equivalent to the dynamics of the single-node model
with two state-dependent arrival streams given in Figure 2.6. The splitting
into two streams will be used later.

-
1I{N̂1(t)≤n∗}λ 1

1−q α��
��N̂1(t)

-
-

1I{N̂1(t)≤n∗}λ

-

1I{N̂1(t)≤n∗}λ q
1−q

α��
��N̂1(t)

-

Figure 2.6: Limiting case β →∞: Single-node model after the time scaling
t⇒ (1− q)t. The two systems are equivalent.

Limiting case n∗ →∞: M/M/∞ system
In this case from the product form solution (2.4)–(2.6) for the stationary
distribution p(n) = P (N1(t) = n) we obtain

p(n) = e
− λ

α(1−q)
1
n!

( λ

α(1−q)
)n
, n ∈ Z+ . (2.40)

Note that N1(t) is a birth-death process with rates λ/(1 − q) and nα, re-
spectively. The corresponding node is given in Figure 2.7, where the same
superposition result is used as in case of β →∞.
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-
λ 1

1−q α��
��N1(t)

-
-

λ

-

λ q
1−q

α��
��N1(t)

-

Figure 2.7: Limiting case n∗ →∞: Two equivalent systems.

3 Approximation of the dynamics of the number
of on periods by a birth-death process

Remember, the dynamics of the number N1(t) of on periods, i.e. of the
number of active requests, in the two-node networks given in Figure 2.1 and
Figure 2.2 are Markov-modulated processes. The corresponding underlying
Markov processes are two-dimensional and numerically intractable for pa-
rameter regions where we are interested in, cf. the end of Section 2.1. In this
section we derive an approximation for the dynamics of N1(t) by a birth-
death process, which can be computed efficiently. We proceed in two steps.
In the following let λ, α, β > 0, q ∈ [0, 1) and n∗ ∈ Z+ be fixed.

Step 1: Fitting of a birth-death process to the binomial approxi-
mate model

First let us approximate the stationary distribution p(n), n ∈ Z+, of the
number N1(t) of on periods, i.e. of active requests, by the binomial model
obtained via the limiting case q → 1: The distribution p(1)(n), n ∈ Z+,
defined by (2.22)–(2.27) is – in some sense – an approximation of p(n),
n ∈ Z+, which we call the binomial approximate model. Note that for q → 1,
if λ, α(1 − q), β(1 − q) and n∗ are fixed, the distribution p(n), n ∈ Z+, in
the original model converges to the distribution p(1)(n), n ∈ Z+.

Next we define a birth-death process N∗
1 (t) with birth rates λ∗n, which

have to be determined, and death rates µn := nα ‡ such that the stationary
distribution p∗(n), n ∈ Z+, of N∗

1 (t) fits p(1)(n), n ∈ Z+, i.e.,

p∗(n) = p(1)(n) , n ∈ Z+ . (3.1)

From

p∗(n) = p∗(0)
n∏

`=1

λ∗`−1

`α
, n ∈ Z+ , p∗(0) =

( ∞∑
n=0

n∏
`=1

λ∗`−1

`α

)−1

‡If n requests are active then nα is the rate that an on period will end.
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and (3.1) it follows

λ∗n = (n+1)α
p∗(n+1)
p∗(n)

= (n+1)α
p(1)(n+1)
p(1)(n)

, n ∈ Z+ , (3.2)

and thus taking into account (2.27), (2.25), (2.23), (2.22), we obtain

λ∗n = (n+1)α

∞∑
`=n+1

( ∏̀
j=1

λ
(1)
j−1

jγ

)( `
n+1

)
pn+1(1−p)`−n−1

∞∑
`=n

( ∏̀
j=1

λ
(1)
j−1

jγ

)(`
n

)
pn(1−p)`−n

=
λ

1−q

∞∑
`=0

( `+n∏
j=0

λ
(1)
j

λ

)
1
`!

(
λ

β(1−q)

)`

∞∑
`=0

( `+n−1∏
j=0

λ
(1)
j

λ

)
1
`!

(
λ

β(1−q)

)`
, n ∈ Z+ . (3.3)

Moreover, shifting the index in the numerator on the r.h.s. of (3.3) provides
the representation

λ∗n =

∞∑
`=0

β`
( `+n−1∏

j=0

λ
(1)
j

λ

)
1
`!

(
λ

β(1−q)

)`

∞∑
`=0

( `+n−1∏
j=0

λ
(1)
j

λ

)
1
`!

(
λ

β(1−q)

)`
, n ∈ Z+ , (3.4)

where, cf. (2.24), (2.22),

λ
(1)
j

λ
=

n∗∑
n=0

(
j

n

)
pn(1−p)j−n , j ∈ Z+ , p =

β

α+β
. (3.5)

From (3.5) it follows 0 < λ
(1)
j /λ ≤ 1, j ∈ Z+, and in view of (3.3) hence it

holds

0 < λ∗n ≤ λ/(1−q) , n ∈ Z+ . (3.6)

Step 2: Modification of the birth-death process N∗
1 (t)

Note that the birth-death process N∗
1 (t) only depends on the parameters

λ/(1 − q), α, β and n∗ while the Markov-modulated process N1(t) addi-
tionally depends on q. Thus modifying the birth rates λ∗n of N∗

1 (t) by an
additional parameter could improve the approximation. In the limiting cases
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β → 0 and β → ∞ the distribution of N1(t) corresponds to the distribu-
tion of the number of requests in an infinite server system with two arrival
streams, cf. Figure 2.4 and Figure 2.6, where the first arrival stream in both
cases is a state-dependent arrival process of intensity 1I{n ≤ n∗}λ and the
second process is a Poisson process of intensity λ (1 − p`,r)q/(1 − q) and a
state-dependent arrival process of intensity 1I{n ≤ n∗}λq/(1 − q), respec-
tively. These observations suggest to replace the birth rates λ∗n of N∗

1 (t)
with

λn := 1I{n ≤ n∗}λ+ cλ∗n , n ∈ Z+ , (3.7)

where c ∈ R+ is a parameter which has to be determined. Let X(t) be
the corresponding stationary birth-death process with birth rates (3.7) and
death rates µn = nα. Its distribution p(a)(n) := P (X(t) = n), n ∈ Z+, is
given by

p(a)(n) = p(a)(0)
n∏

`=1

λ`−1

`α
, n ∈ Z+ , p(a)(0) =

( ∞∑
n=0

n∏
`=1

λ`−1

`α

)−1
.

(3.8)

Since also for an approximation of N1(t) the rate of accepted requests should
be equal to the rate of requests leaving the system, cf. the conservation law
(2.9), we claim for X(t)

λ

n∗∑
n=0

p(a)(n) = α(1−q)
∞∑

n=1

np(a)(n) , (3.9)

which determines the unknown parameter c ∈ R+ in (3.7) uniquely.

Lemma 3.1 Let λ, α, β > 0, q ∈ [0, 1) and n∗ ∈ Z+ be given. Then (3.9)
has a uniquely determined solution c ∈ R+.

Proof. 1. Using (3.8), (3.7), it follows easily that (3.9) is equivalent to

λ

1−q
n∗∑

n=0

1
n!αn

n−1∏
j=0

(λ+cλ∗j ) =
∞∑

n=0

1
n!αn

n∏
j=0

(1I{j≤n∗}λ+cλ∗j ) . (3.10)

For fixed λ, α > 0, q ∈ [0, 1) and λ∗j , j ∈ Z+, where the λ∗j are bounded
because of (3.6), with respect to c ∈ R+ the l.h.s. and r.h.s. of (3.10) defines
a continuous function f(c) and g(c), respectively, and (3.10) is equivalent to
f(c) = g(c). For c = 0 we find

f(0) =
λ

1−q
n∗∑

n=0

λn

n!αn
≥

n∗∑
n=0

λn+1

n!αn
= g(0) . (3.11)
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On the other hand, in view of λ∗n > 0 for n ∈ Z+, if c is sufficiently large
such that λ/(1 − q) ≤ λ+ cλ∗n for 0 ≤ n ≤ n∗ then it holds f(c) ≤ g(c). In
view of the continuity of f(c) and g(c), thus there exists c∗ ∈ R+ such that
f(c∗) = g(c∗), i.e., c∗ is a solution of (3.9).

2. In the following it will be shown that g(c)/f(c) is strictly monotonically
increasing for c ∈ R+, which provides the uniqueness. It holds

λ

1−q
g(c)
f(c)

= α

n∗∑
n=0

n
n! αn

n−1∏
j=0

(λ+cλ∗j )

n∗∑
n=0

1
n! αn

n−1∏
j=0

(λ+cλ∗j )
+

∞∑
n=n∗

1
n! αn

n∏
j=n∗+1

(cλ∗j )

n∗∑
n=0

1
n! αn

n∗∏
j=n

(λ+cλ∗j )−1

.

As the second summand on the r.h.s. obviously is strictly monotonically
increasing in c ∈ R+, it is sufficient to prove that the derivative of

h(c) :=

n∗∑
n=0

n
n! αn

n−1∏
j=0

(λ+cλ∗j )

n∗∑
n=0

1
n! αn

n−1∏
j=0

(λ+cλ∗j )
, c ∈ R+ ,

is nonnegative. Using the abbreviation ξj := λ+ cλ∗j , it follows

h′(c)
( n∗∑

n=0

1
n!αn

n−1∏
j=0

ξj

)2

=
( n∗∑

n=0

n

n!αn

( n−1∏
j=0

ξj

)( n−1∑
j=0

λ∗j
ξj

))( n∗∑
m=0

1
m!αm

( m−1∏
j=0

ξj

))

−
( n∗∑

n=0

n

n!αn

( n−1∏
j=0

ξj

))( n∗∑
m=0

1
m!αm

( m−1∏
j=0

ξj

)( m−1∑
j=0

λ∗j
ξj

))

=
n∗∑

n,m=0

n

n!αnm!αm

( n−1∏
j=0

ξj

)( m−1∏
j=0

ξj

)( n−1∑
j=0

λ∗j
ξj
−

m−1∑
j=0

λ∗j
ξj

)

=
∑

0≤m<n≤n∗

1
n!αnm!αm

( n−1∏
j=0

ξj

)( m−1∏
j=0

ξj

)
(n−m)

( n−1∑
j=m

λ∗j
ξj

)
≥ 0 .

Summarizing the results up to now, for given λ, α, β > 0, q ∈ [0, 1)
and n∗ ∈ Z+ we propose to approximate the stationary Markov-modulated
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process N1(t) of the number of active requests by a stationary birth-death
process X(t) with birth rates λn given by (3.7), death rates µn = nα, and
where c has to be determined by solving (3.9) or (3.10). The parameters λ∗n
are given by (3.3)–(3.5). Note that the birth rates λn are bounded, cf. (3.6),
(3.7), and that EX(t) is finite, cf. (3.9).

Having in mind (2.8), (2.10), we suggest to approximate p`,r and ER by
p
(a)
`,r := P (X(t) ≥ n∗ + 1) and ER(a) := rEX(t), respectively:

p`,r ≈ p
(a)
`,r =

∞∑
n=n∗+1

p(a)(n) , (3.12)

ER ≈ ER(a) =
rλ(1−p(a)

`,r )

α(1−q) , (3.13)

where we used the conservation law (3.9) and (3.12) in (3.13). In case of
b = 0, i.e., if there is no buffer for the tokens, analogously to (2.14)–(2.16)
we suggest to approximate p`,p by p(a)

`,p := E[(X(t) − τ)+]/EX(t):

p`,p ≈ p
(a)
`,p =

α(1−q)
λ(1−p(a)

`,r )

∞∑
n=dτe

(n−τ) p(a)(n) , (3.14)

where τ = µ/r and p(a)
`,r is given by (3.12).

The following theorem tells us that in several limiting cases the proposed
approximation p(a)(n), n ∈ Z+, of p(n), n ∈ Z+, is exact. This gives some
evidence that p(a)(n), n ∈ Z+, p(a)

`,r and ER(a) will provide good approxima-
tions for p(n), n ∈ Z+, p`,r and ER, respectively.

Theorem 3.1 In the limiting cases

(i) q → 1, where λ, α(1− q), β(1− q) and n∗ are fixed;

(ii) q → 0; (iii) β → 0; (iv) β →∞; (v) n∗ →∞
it holds

p(n) = p(a)(n) , n ∈ Z+ , p`,r = p
(a)
`,r , ER = ER(a) . (3.15)
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Proof. (i) Remember that for given λ, α, β > 0, q ∈ [0, 1) and n∗ ∈ Z+

the stationary distribution p(1)(n), n ∈ Z+, of the binomial model given in
Section 2.2 is well defined. In case of q → 1, where α(1 − q) and β(1 − q)
are fixed, it follows α→∞, and thus using (3.7), (3.2) we obtain

lim
α→∞

n∏
`=1

λ`−1

`α
= lim

α→∞

n∏
`=1

(1I{`−1≤n∗}λ
`α

+ c
p(1)(`)

p(1)(`−1)

)

= lim
α→∞

n∏
`=1

c
p(1)(`)

p(1)(`−1)
= cn

p(1)(n)
p(1)(0)

, n ∈ Z+ . (3.16)

From (3.8) we conclude that the conservation law (3.9) is equivalent to

λ
n∗∑

n=0

n∏
`=1

λ`−1

`α
= α(1−q)

∞∑
n=1

n
n∏

`=1

λ`−1

`α
.

For q → 1 and fixed α(1− q), β(1− q) thus from (3.16) we obtain

λ
n∗∑

n=0

cnp(1)(n) = α(1−q)
∞∑

n=1

ncnp(1)(n) . (3.17)

From Lemma 2.1 we find that c = 1 is a solution of (3.17). Analogously to
the second part of the proof of Lemma 3.1 it follows that c = 1 is the only
nonnegative solution of (3.17). Thus from (3.16) we obtain

p(1)(n)
p(1)(0)

= lim
α→∞

n∏
`=1

λ`−1

`α
, n ∈ Z+ . (3.18)

Summing up the r.h.s. of (3.18) over n ∈ Z+ and (3.8) yield p(a)(0) = p(1)(0)
and hence

p(a)(n) = p(1)(n) = p(n) , n ∈ Z+ ,

as q → 1 where α(1 − q), β(1 − q) are fixed. In view of (2.8), (2.10), (3.12)
and (3.13), thus it holds (3.15).

(ii) In case of q → 0 using (3.8) and (3.7) from the conservation equation
(3.9) we obtain

λ
n∗∑

n=0

p(a)(n) = α
∞∑

n=0

np(a)(n) =
∞∑

n=0

(1I{n≤n∗}λ+cλ∗n)p(a)(n)

= λ

n∗∑
n=0

p(a)(n) + c

∞∑
n=0

λ∗n p
(a)(n) ,
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yielding c = 0. Hence it holds λn = 1I{n ≤ n∗}λ, n ∈ Z+, and thus in
case of q → 0 the dynamics correspond to those of the original model, cf.
Figure 2.3, in this case.

(iii) Let `(β) be the largest ` ∈ Z+ such that β` ≤ λ
(1)
` /(1 − q). In case of

β → 0 from (3.5) it follows that β`(β) converges to the uniquely determined
positive solution λ∗ of the fixed point equation

x =
λ

1−q e
− x

α

n∗∑
n=0

1
n!

(x
α

)n
.

As for any ε > 0 and any fixed n ∈ Z+ the summands of both series on the
r.h.s. of (3.4) become maximal in Uε(β) := Z+ ∩ ((1 − ε)`(β), (1 + ε)`(β))
and the portion of the sum over Uε(β) is larger than 1 − ε for both series
if β > 0 is sufficiently small, it follows that λ∗n converges to λ∗ in case of
β → 0 for any fixed n ∈ Z+. Hence (3.7) reads λn = 1I{n ≤ n∗}λ + cλ∗

in case of β → 0, and we obtain the single-node model given in Figure 2.4
where λ′ is replaced with cλ∗. As c ∈ R+ is uniquely determined by the
conservation law (3.9), cf. the second part of the proof of Lemma 3.1, it
follows c = λ′/λ∗, and thus in case of β → 0 the dynamics of the proposed
approximation correspond to the dynamics of the original model given in
Figure 2.4.

(iv) In case of β → ∞ from (3.5) we find p = 1 and λ
(1)
n = 1I{n ≤ n∗}λ.

Hence (3.3) provides λ∗n = 1I{n ≤ n∗}λ/(1 − q), and thus from (3.7) it
follows λn = 1I{n ≤ n∗}λ(1 + c/(1 − q)). From (3.8) and (3.9) we obtain
c = q and hence λn = 1I{n ≤ n∗}λ/(1 − q). Thus in case of β → ∞ the
dynamics of the proposed approximation correspond to the dynamics of the
time-scaled original system, cf. Figure 2.6, and as the stationary distribution
p(n), n ∈ Z+, is invariant with respect to time scaling it holds (3.15).

(v) In case of n∗ → ∞ from (3.5) it follows λ(1)
n = λ. Hence (3.3) provides

λ∗n = λ/(1− q), and thus from (3.7) we obtain λn = λ(1 + c/(1− q)). From
(3.8) and (3.9) we find c = q and hence λn = λ/(1 − q). Thus in case of
n∗ → ∞ the dynamics of the proposed approximation correspond to the
dynamics of the original model given in Figure 2.7.
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4 Approximation of the packet loss probability for
finite token buckets

In accordance to the fluid flow model for the packet arrival stream described
in Section 2.1, we model the tokens arriving with rate µ at the token bucket
as fluid, too. Remember that the case of a token bucket with capacity
b = 0 has already been discussed in Section 2.1 and Section 3. Thus in this
section we consider a token bucket of capacity b, where b is a given positive
real number, cf. Figure 1.2. The buffer content B0(t) of the tokens at time t
corresponds to the amount of fluid at time t in a reservoir of capacity b where
at rate µ fluid is filled in the reservoir and depleted at rate R(t) = rN1(t).
The process B0(t) is driven by (N1(t),N2(t)), t ∈ R, such that

dB0(t)
dt

=




max(r(N1(t),N2(t)), 0) , B0(t) = 0 ,
r(N1(t),N2(t)) , 0 < B0(t) < b ,

min(r(N1(t),N2(t)), 0) , B0(t) = b ,

where the input rates are given by

r(n1, n2) := µ−rn1 , (n1, n2) ∈ Z
2
+ .

The three-dimensional Markov process (N1(t),N2(t), B0(t)), t ∈ R, is the
fluid flow model approximation of the token bucket model. There is a lot
of references in the literature dealing with analytical as well as numerical
aspects for solving fluid flow models, cf. e.g. [AS], [IKKM], [DS], [FV] and the
references therein. However, there seems not to be an appropriate solution
technique available which is of reasonable complexity and stability for our
parameters of interest.

Since the dynamics of B0(t) are driven only by the numberN1(t) of active
requests, we propose to approximate the process N1(t) by the birth-death
process X(t) constructed in Section 3. Denoting the resulting buffer con-
tent of the fluid reservoir by B(t), the Markov process (X(t), B(t)), t ∈ R,
is a birth-death fluid queue. Birth-death fluid queues with infinite buffer
capacity were studied and surveyed in [DS] Section 5. Having in mind that
the birth rates λn, n ∈ Z+, for X(t), cf. (3.7), are of a complex structure,
analytical methods of moderate complexity for the zeros of the characteris-
tic polynomial seem not to be available. A numerical computation of them
would lead to stability problems in view of complexity. Furthermore, a lin-
ear system of equations has to be solved for determining coefficients related
to boundary conditions. There is a lot of stability problems in a numerical
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solution of this type of equations, too, cf. e.g. [FV]. In view of these dif-
ficulties, which arise already in case of an infinite buffer, and since in case
of a finite buffer the analysis would become yet more complicated, we are
interested in an approximation for the packet loss probability p`,p in case of
a finite positive buffer size b.

4.1 Approximation of the packet loss probability

Consider the stationary birth-death process X(t), t ∈ R, with rates λn and
µn = nα, cf. Section 3, approximating the number of active requests. Let
τ ∈ R+ \ {0} be fixed and X(τ)(t), t ∈ R, be the birth-death process with
distribution P (X(t) ∈ (·) |X(0 − 0) = dτe − 1,X(0) = dτe), i.e., X(τ)(t),
t ∈ R, has the Palm distribution of P (X(t) ∈ (·)) with respect to the
jump epochs from dτe − 1 to dτe. Further let T (τ)

` , ` ∈ Z, be the epochs
where X(τ)(t) jumps from dτe − 1 to dτe, i.e. X(τ)(T (τ)

` − 0) = dτe − 1,
X(τ)(T (τ)

` ) = dτe, and assume . . . < T
(τ)
−1 < T

(τ)
0 = 0 < T

(τ)
1 < . . .. Note

that T (τ)
` are the hitting times of τ from below. The intensity λ(τ) of jumps

of X(t) from dτe − 1 to dτe, i.e. the intensity of the time stationary version
of the point process {T (τ)

` }∞`=−∞, is given by

λ(τ) = λdτe−1p
(a)(dτe−1) = dτeαp(a)(dτe) , (4.1)

cf. (3.8). Since X(τ)(t), t ∈ R, is a Markov process, it is a regenerative
process with respect to the embedded regeneration points T (τ)

` , ` ∈ Z, too.
Because of T (τ)

0 = 0, the process X(τ)(t), t ∈ [0, T (τ)
1 ), is a regeneration cycle

of the process X(τ)(t), t ∈ R. Let

D := min{t ∈ R+ : X(τ)(t) < τ} , (4.2)

i.e., X(τ)(t) ≥ τ for t ∈ [0,D) and X(τ)(t) < τ for t ∈ [D,T (τ)
1 ) in view

of the fact that a birth-death process jumps only by values ±1. Note that
during the interval [0,D) the content of the token buffer will be constant or
emptied since the rate of new arriving fluid of packets is greater or equal to
rτ = µ, cf. (2.15). Hence

A :=

D∫
0

r(X(τ)(t)−τ) dt =

T
(τ)
1∫

0

r(X(τ)(t)−τ)+ dt (4.3)

is the random amount of arriving fluid during [0, T (τ)
1 ) which has to be paired

from the token buffer, cf. Figure 4.1.
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Figure 4.1: Sample path of the r.v. A (hatched area) in case of r = 1 and
τ = 2, τ = 1.5, respectively.

From (4.3), using the cycle formula for regenerative processes with respect
to r(X(τ)(t)− τ)+, cf. e.g. [A] p. 126, we obtain that

EA = E T
(τ)
1 E[r(X(t)−τ)+] , (4.4)

where

E T
(τ)
1 =

1
λ(τ)

=
1

dτeαp(a)(dτe) , (4.5)

cf. (4.1). From (4.4) and (4.5) it follows

EA =
r

dτeαp(a)(dτe)
∞∑

n=dτe
(n−τ)p(a)(n) . (4.6)

Let B be the random buffer content at T (τ)
0 = 0. Then E[(A − B)+] is

the mean amount of packet fluid during [0, T (τ)
1 ) which gets lost. The mean

total fluid EF of arriving packets during [0, T (τ)
1 ) is given by

EF = E

[ T
(τ)
1∫

0

rX(τ)(t) dt
]

= E T
(τ)
1 E[rX(t)] , (4.7)

where the last equation follows from the cycle formula for regenerative pro-
cesses again, and it holds

E[rX(t)] = r

∞∑
n=1

np(a)(n) =
rλ(1−p(a)

`,r )

α(1−q) (4.8)
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in view of (3.13). The fraction E[(A−B)+]/EF is the packet loss probability
p`,p within the birth-death process approximation of the fluid flow model.
Assuming that at the beginning of the cycle at T (τ)

0 = 0 the buffer is full,
we obtain the approximation p

(a)
`,p := E[(A − b)+]/EF for the packet loss

probability p`,p in case of a finite positive buffer size b:

p`,p ≈ p
(a)
`,p =

α(1−q)
rλ(1−p(a)

`,r )
dτeαp(a)(dτe)E[(A−b)+]

=
α(1−q)
λ(1−p(a)

`,r )

∞∑
n=dτe

(n−τ)p(a)(n)

− α(1−q)
rλ(1−p(a)

`,r )
dτeαp(a)(dτe)E[min(A, b)] (4.9)

because of (4.5)–(4.8) and (x− b)+ = x−min(x, b).

Remark 4.1 (i) From (4.9) it follows

lim
b↓0

p
(a)
`,p =

α(1−q)
λ(1−p(a)

`,r )

∞∑
n=dτe

(n−τ) p(a)(n) .

Comparing this with (3.14) we find that p(a)
`,p is continuous at b = 0, and

(4.9) is valid in case of b = 0, too.
(ii) Note that within the birth-death process approximation it holds

p
(a)
`,p ≤ p`,p ≤ p

(a)
`,p

∣∣∣
b=0

.

In case of b = 0 the approximation p
(a)
`,p can be computed directly from

the stationary distribution p(a)(n) via (3.14), (3.12). In case of b > 0 the ap-
proximation depends also on the dynamics of the birth-death process X(t),
t ∈ R, and we have to compute additionally E[min(A, b)]. In the next two
sections we will derive an efficient algorithm for computing this quantity
approximately. First in Section 4.2 we show that E[min(A, b)] can be ap-
proximated – in principle with arbitrary accuracy – by linear combinations
of the LST A∗(s) = E[e−sA] of A at s = k/b for some k ∈ Z+. In Section 4.3
we derive a representation of A∗(s), s ∈ R+, as a fast convergent continued
fraction.
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4.2 Approximation of E[min(A, b)] by means of the LST A∗(s)

First we will derive polynomial approximations of the function (ln(y)+1)+,
y ∈ (0, 1], which will yield approximations of E[min(A, b)] later. Consider
the polynomials

ϕn(y) := yn
∞∑

j=n

(
j−1
n−1

)(
1−

j−1∑
i=n

1
i

)
+

(1−y)j−n , n ∈ N . (4.10)

Note that the ϕn(y) are positive on (0, 1]. Defining

m(n) := min
{
j ∈ {n, n+1, n+2, . . .} :

j∑
i=n

1
i
≥ 1

}
(4.11)

it follows that ϕn(y) is a polynomial of degree m(n) and that

ϕn(y) = yn

m(n)∑
j=n

(
j−1
n−1

)(
1−

j−1∑
i=n

1
i

)
(1−y)j−n , n ∈ N . (4.12)

Hence there is a representation

ϕn(y) =
m(n)∑
k=n

c
(n)
k yk , n ∈ N . (4.13)

Note that m(n) < en, n ∈ N, because of

1 >
m(n)−1∑

i=n

1
i
≥

m(n)−1∑
i=n

(ln(i+1)−ln(i)) = ln(m(n))−ln(n) .

From (4.12) we find

ϕn(y) = yn

m(n)∑
j=n

(
j−1
n−1

)(
1−

j−1∑
i=n

1
i

) j−n∑
k=0

(
j−n
k

)
(−y)k

= yn

m(n)−n∑
k=0

(−y)k
m(n)∑

j=n+k

(
j−n
k

)(
j−1
n−1

)(
1−

j−1∑
i=n

1
i

)

= yn

m(n)−n∑
k=0

(−y)k
m(n)∑

j=n+k

(
n+k−1
n−1

)(
j−1

n+k−1

)(
1−

j−1∑
i=n

1
i

)

=
m(n)∑
k=n

(−1)k−n

(
k−1
n−1

) m(n)∑
j=k

(
j−1
k−1

)(
1−

j−1∑
i=n

1
i

)
yk . (4.14)
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Thus for the coefficients c(n)
k of the polynomial ϕn(y), cf. (4.13), we obtain

c
(n)
k = (−1)k−n

(
k−1
n−1

) m(n)∑
j=k

(
j−1
k−1

)(
1−

j−1∑
i=n

1
i

)
,

k = n, . . . ,m(n) , n ∈ N . (4.15)

Lemma 4.1 For the polynomials ϕn(y) defined by (4.10) it holds

0 ≤ ϕn(y)− (ln(y)+1)+ <
0.4√
n−0.5

, y ∈ (0, 1] , n ∈ N . (4.16)

Proof. 1. For the proof we need some elementary preliminaries: For
y ∈ (0, 1] it follows

yn
∞∑

j=n

(
j−1
n−1

)
(1−y)j−n

= yn
∞∑

j=0

(−n
j

)
(y−1)j = yn (1+(y−1))−n = 1 , (4.17)

yn
∞∑

j=n

(
j−1
n−1

)( j−1∑
i=n

1
i

)
(1−y)j−n

= −yn
∞∑

j=0

(−n
j

)(
−

n+j−1∑
i=n

1
i

)
(y−1)j

= −yn lim
ε→0

d
dε

∞∑
j=0

(−n+ε
j

)
(y−1)j

= −yn lim
ε→0

d
dε

(1+(y−1))−n+ε = − ln(y) , (4.18)

yn
∞∑

j=n

(
j−1
n−1

)(( j−1∑
i=n

1
i

)2

−
j−1∑
i=n

1
i2

)
(1−y)j−n

= yn
∞∑

j=0

(−n
j

)(( n+j−1∑
i=n

1
i

)2

−
n+j−1∑

i=n

1
i2

)
(y−1)j

= yn lim
ε→0

d2

dε2

∞∑
j=0

(−n+ε
j

)
(y−1)j

= yn lim
ε→0

d2

dε2
(1+(y−1))−n+ε = (ln(y))2 . (4.19)
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2. Now let us prove the inequality on the l.h.s. of (4.16). For y ∈ (0, 1] from
(4.10), x+ = x+ (−x)+, (4.17) and (4.18) we obtain that

ϕn(y) = yn
∞∑

j=n

(
j−1
n−1

)(
1−

j−1∑
i=n

1
i

)
(1−y)j−n

+ yn
∞∑

j=n

(
j−1
n−1

)( j−1∑
i=n

1
i
− 1

)
+

(1−y)j−n

= (ln(y)+1) + yn
∞∑

j=n

(
j−1
n−1

)( j−1∑
i=n

1
i
− 1

)
+

(1−y)j−n , (4.20)

which implies immediately ϕn(y) ≥ ln(y)+1 for y ∈ (0, 1]. Remembering
ϕn(y) > 0 for y ∈ (0, 1], cf. (4.10), we conclude that

ϕn(y) ≥ (ln(y)+1)+ , y ∈ (0, 1] .

3. Now we prove the r.h.s. inequality in (4.16). Using for ϕn(y)−(ln(y)+1)
the expression given by (4.20) and for ϕn(y) the r.h.s. of (4.10) by taking
into account x+ + (−x)+ = |x| we obtain that

2ϕn(y)− (ln(y)+1) = yn
∞∑

j=n

(
j−1
n−1

)∣∣∣∣
j−1∑
i=n

1
i
− 1

∣∣∣∣ (1−y)j−n

for y ∈ (0, 1]. The Cauchy-Schwarz inequality provides

(2ϕn(y)− (ln(y)+1))2 ≤
(
yn

∞∑
j=n

(
j−1
n−1

)
(1−y)j−n

)

×
(
yn

∞∑
j=n

(
j−1
n−1

)( j−1∑
i=n

1
i
− 1

)2

(1−y)j−n

)
,

and in view of (4.17)–(4.19) it follows

(2ϕn(y)− (ln(y)+1))2

≤ (ln(y)+1)2 + yn
∞∑

j=n+1

(
j−1
n−1

)( j−1∑
i=n

1
i2

)
(1−y)j−n . (4.21)

Since for n ∈ N and j = n+ 1, n+ 2, . . . it holds

j−1∑
i=n

1
i2
<

j−1∑
i=n

(
2

2i−1
− 2

2i+1

)
=

2
2n−1

− 2
2j−1

<
2

2n−1
j−n
j−1

,
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from (4.21), (4.17) we conclude

(2ϕn(y)− (ln(y)+1))2 ≤ (ln(y)+1)2 +
2(1−y)
2n−1

, y ∈ (0, 1] ,

which implies

2ϕn(y)− (ln(y)+1) ≤ | ln(y)+1|+
√

2(1−y)
2n−1

, y ∈ (0, 1] .

In view of x+ |x| = 2x+ hence it holds

ϕn(y)− (ln(y)+1)+ ≤
√

1−y
4n−2

, y ∈ (0, 1] . (4.22)

From (4.12) and m(n) < en for y ∈ (0, e−1] it follows

ϕ′n(y) = yn−1

m(n)∑
j=n

(
j−1
n−1

)(
1−

j−1∑
i=n

1
i

)
(n−jy)(1−y)j−n−1 > 0 ,

and hence ϕn(y) − (ln(y)+1)+ is monotonically increasing for y ∈ (0, e−1].
Thus from (4.22) we obtain

ϕn(y)− (ln(y)+1)+ ≤
√

1−e−1

4n−2
<

0.4√
n−0.5

, y ∈ (0, 1] .

Remark 4.2 (i) Lemma 4.1 implies that the sequence of polynomials ϕn(y),
n ∈ N, converges uniformly on (0, 1] to the function (ln(y)+1)+ from above.
(ii) By tedious asymptotic analysis one can show that

lim
n→∞

√
n max

y∈(0,1]
(ϕn(y)− (ln(y)+1)+) =

√
1−e−1

2π
≈ 0.3172 .

(iii) Note that

ϕn(y)− (ln(y) + 1)+ = O(yn(1− y)m(n)+1−n)

for any y ∈ (0, 1] but fixed n ∈ N because of (4.10), (4.11), (4.20) and that
ϕn(y) is the only polynomial of degree at most m(n) having this property.
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Example 4.1 From (4.11), (4.13), (4.15) by elementary algebra one finds

ϕ1(y) = y , 2ϕ2(y) = 5 y2− 4 y3+ y4

and by computer algebra the more interesting representation

27 720ϕ8(y) = 419 436 855 y8− 3 956 676 320 y9 + 17536 973 256 y10

− 48 063 232 800 y11 + 90400 696 650 y12− 122 605 306 560 y13

+ 122 692 101 840 y14− 91 129 997 376 y15 + 49795 472 925 y16

− 19 500 386 400 y17 + 5190 375 080 y18− 842 447 520 y19

+ 63018 090 y20 . (4.23)

Inequality (4.16) provides

0 ≤ ϕ8(y)− (ln(y)+1)+ < 0.15 , y ∈ (0, 1] .

In view of min(x, 1) = 1 − (1 − x)+, choosing y = e−x in Lemma 4.1
yields an approximation for the function min(x, 1).

Corollary 4.1 For n ∈ N it holds

0 ≤ min(x, 1)− (1−ϕn(e−x)) <
0.4√
n−0.5

, x ∈ R+ ,

where the ϕn(y) are defined by (4.10).

Now we are capable of giving the announced approximation for E[min(A, b)]
in terms of the LST A∗(s) = E[e−sA] of A.

Theorem 4.1 Let A be defined by (4.3) and b ∈ R+ \ {0}. Then for n ∈ N

it holds

0 ≤ E[min(A, b)] − b

(
1−

m(n)∑
k=n

c
(n)
k A∗(k/b)

)
<

0.4√
n−0.5

b , (4.24)

where m(n) and the coefficients c(n)
k are given by (4.11), (4.15), respectively.

Proof. From Corollary 4.1 for x = A/b and (4.13) we obtain

0 ≤ min(A/b, 1) −
(

1−
m(n)∑
k=n

c
(n)
k e−kA/b

)
<

0.4√
n−0.5

a.s.

for n ∈ N. Multiplying by b and taking expectation yields the assertion
(4.24) in view of E[e−kA/b] = A∗(k/b).
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4.3 Representation of A∗(s) as continued fraction

As in Section 4.1 let τ ∈ R+ \ {0} be fixed and consider the station-
ary birth-death process X(t), t ∈ R, with birth rates λn and death rates
µn, cf. Section 3, approximating the number of active requests. For fixed
i ∈ {dτe, dτe + 1, . . .} let X(i)(t), t ∈ R, be the birth-death process with
distribution P (X(t) ∈ (·) |X(0 − 0) = i − 1,X(0) = i), i.e., X(i)(t), t ∈ R,
has the Palm distribution of P (X(t) ∈ (·)) with respect to the jump epochs
from i− 1 to i. Further let

Di := min{t ∈ R+ : X(i)(t) < τ} , i ≥dτe , (4.25)

which is the first hitting time of state dτe − 1 after time zero. The integrals

Ai :=

Di∫
0

r(X(i)(t)−τ) dt , i ≥dτe , (4.26)

correspond to the random amount of arriving fluid during [0,Di) which has
to be paired from the token buffer. Note that Ddτe = D, Adτe = A, cf. (4.2),
(4.3). Let Adτe−1 := 0 for notational convenience and

Ai(x) := P (Ai ≤ x) , x ∈ R , i ≥dτe − 1 ,

be the distribution function of Ai. Applying the law of total probability with
respect to the first jump epoch of X(i)(t) after time zero and the properties
of birth-death processes provide the renewal type equation

Ai(x) =
∫

R+

(
λi

λi+µi
Ai+1 (x−(i−τ)rt) +

µi

λi+µi
Ai−1 (x−(i−τ)rt)

)

(λi+µi) e−(λi+µi)tdt , x ∈ R , i ≥dτe . (4.27)

From (4.27) for the LST A∗i (s) = E[e−sAi ] we obtain

A∗i (s) =
∫

R+

(
λi

λi+µi
A∗i+1(s) +

µi

λi+µi
A∗i−1(s)

)

(λi+µi) e−(λi+µi)t e−s(i−τ)rtdt

=
λi

λi+µi+(i−τ)rs A
∗
i+1(s) +

µi

λi+µi+(i−τ)rs A
∗
i−1(s) ,

s ∈ R+ , i ≥dτe , (4.28)

and Adτe−1(x) = 1I{x ≥ 0} yields

A∗dτe−1(s) = 1 , s ∈ R+ . (4.29)
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Remark 4.3 From (4.28), (4.29) one can derive explicit formulae for EAi

and EA2
i , respectively.

In the following let τ ∈ R+ \ {0}, s ∈ R+ be fixed and

xi :=
A∗i (s)
A∗i−1(s)

, i ≥dτe . (4.30)

Since Ai, i ≥ dτe − 1, is a stochastically monotonically increasing sequence
of r.v.’s and s ∈ R+, it follows that E[e−sAi ] is a decreasing sequence of
positive real numbers, and hence it holds

0 < xi ≤ 1 , i ≥dτe . (4.31)

Moreover, (4.30), (4.29) provide

xdτe = A∗dτe(s) = A∗(s) . (4.32)

Replacing in (4.28) A∗i+1(s) and A∗i−1(s) with A∗i (s)xi+1 and A∗i (s)/xi, re-
spectively, cf. (4.30), we obtain

xi =
µi

µi+(i−τ)rs+λi(1−xi+1)
, i ≥dτe . (4.33)

Thus the sequence {xi}i≥dτe satisfies a continued fraction equation, and
A∗(s) is represented as a continued fraction because of (4.32). Since the
birth rates λi are bounded, cf. (3.6), (3.7), in view of µi = iα, i ∈ N, and
(4.31), from (4.33) it follows

lim
i→∞

xi =
α

α+rs
. (4.34)

Let

ϕi(x) :=
µi

µi+(i−τ)rs+λi(1−x) , x ∈ [0, 1] , i ≥dτe . (4.35)

Note that x ∈ [0, 1] implies ϕi(x) ∈ [0, 1],

0 < ϕ′i(x) ≤
λi

µi
, x ∈ [0, 1] , i ≥dτe , (4.36)

and

ϕi(xi+1) = xi , i ≥dτe , (4.37)
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cf. (4.33). Further let

ψn(x) := ϕdτe(ϕdτe+1(ϕdτe+2(. . . (ϕn−1(ϕn(x))) . . .))) ,

x ∈ [0, 1] , n ≥dτe . (4.38)

In view of µi = iα, i ∈ N, and (3.8), from (4.38), (4.36) we obtain

0 < ψ′n(x) ≤
n∏

i=dτe

λi

µi
=
µn+1

µdτe

n+1∏
i=dτe+1

λi−1

µi
=

(n+1)p(a)(n+1)
dτep(a)(dτe) ,

x ∈ [0, 1] , n ≥dτe , (4.39)

and (4.32), (4.37), (4.38) provide

ψn(xn+1) = A∗(s) , n ≥dτe . (4.40)

From (4.31), (4.39), (4.40) it follows

ψn(0) < A∗(s) ≤ ψn(1) , n ≥dτe , (4.41)

as well as

|ψn(x)−A∗(s)| = |ψn(x)−ψn(xn+1)| ≤ (n+1)p(a)(n+1)
dτep(a)(dτe) |x−xn+1|

≤ (n+1)p(a)(n+1)
dτep(a)(dτe) , x ∈ [0, 1] , n ≥dτe . (4.42)

As EX(t) is finite, cf. (3.9), from (4.42) we obtain

A∗(s) = lim
n→∞ψn(x) , x ∈ [0, 1] . (4.43)

Note that the bound on the r.h.s. of (4.42) does not depend on s ∈ R+. In
view of (4.42) and (4.34), in particular ψn(α/(α+ rs)) should converge fast
to A∗(s) for n→∞.

Remark 4.4 A continued fraction approach in the context of M/M/1 driv-
en fluid queues has been used in [PVL] for corresponding Laplace transforms.
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