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Abstract. Optimal stopping of stochastic processes having both absolutely continuous and singular behavior
(with respect to time) can be equivalently formulated as an infinite-dimensional linear program over a
collection of measures. These measures represent the occupation measures of the process (up to a stopping
time) with respect to “regular time” and “singular time” and the distribution of the process when it is
stopped. Such measures corresponding to the process and stopping time are characterized by an adjoint
equation involving the absolutely continuous and singular generators of the process. This general linear
programming formulation is shown to be numerically tractable through three examples, each of which seeks
to determine the stopping rule for a perpetual lookback put option using different dynamics for the asset price.
Exact solutions are determined in the cases that the asset price are given by a drifted Brownian motion and a
geometric Brownian motion. Numerical results for the more realistic model of a regime switching geometric
Brownian motion are also presented, demonstrating that the linear programming methodology is numerically
tractable for models whose theoretical solutions are very difficult to obtain.
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1 Introduction

Many processes of interest in applications (see, for example, the survey paper by Shreve [19])
can be modelled as solutions to a stochastic differential equation of the form

dX(t) = b(X(t), u(t))dt+ σ(X(t), u(t))dW (t) +m(X(t−), u(t−))dξ(t) (1)

where X is the state process with E = R
d, u is a control process with values in U0, ξ is a

nondecreasing process arising either from the boundary behavior of X (e.g., the local time
on the boundary for a reflecting diffusion) or from a singular control, and W is a Brownian
motion. Processes in which the set of times of increase of ξ has Lebesgue measure 0 are
called singular stochastic processes. This paper restricts its attention to optimal stopping
problems involving uncontrolled singular processes.

The purpose of the paper is to extend the equivalence given in [2] of a linear programming
formulation for optimal stopping problems for stochastic processes whose behavior occurs
absolutely continuously in time so that it applies to stochastic processes which also have
singular behavior in time. Key to the extension is the formulation of singular stochastic
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processes via a singular martingale problem for its generators and the existence of a solu-
tion to the martingale problem corresponding to measures which satisfy an adjoint relation
involving the generators applied to test functions.

The resulting linear programs are typically infinite-dimensional whose variables are the
occupation measures of the processes according to both regular time and singular time and
the distribution of the state at the stopping time. The paper also investigates the numerical
implementation of the LP formulation. Naturally, it is necessary to approximate the infinite-
dimensional LP by a finite-dimensional LP. This paper demonstrates one such approximation
approach and demonstrates that it provides accurate solutions.

The use of occupation measures to solve optimization problems began with Young [22]
in the context of calculus of variations. The present work is an outgrowth of linear program-
ming formulations for stochastic control that was initiated by Manne [15] in discrete time
and which has been developed for Markov decision problems (see e.g. [9, 10, 11]). Linear
programming for continuous time stochastic control has been established under very general
conditions in [1, 13, 20, 21].

The processes in this paper are not controlled. However, the results cited above are
applicable to these processes by taking the control space to consist of a single element.

To illustrate the accuracy of the numerics and to demonstrate the power of the method,
this paper considers an optimal stopping problem of the form

E
[
e−λτ (Y (τ) −X(τ))

]
(2)

in which the state process X denotes the price of an asset, Y denotes the running maximum
process of the asset price, λ > 0 gives the discount rate and τ denotes the option holder’s
exercise time. The quantity used for illustration is a perpetual lookback put option and the
goal is to determine an optimal stopping rule. This problem is very similar to the Russian
option studied by Shepp and Shiryaev [18], Graverson and Peskir [5] and Peskir [17].

The paper considers three models for the asset price X, each having starting value x0:
a drifted Brownian motion process with drift parameter a, the slightly more realistic model
of geometric Brownian motion and an extension of this model to include regime switching.
These models have been chosen since we are able to determine exact solutions to the optimal
stopping problem for the first two models, and therefore can evaluate the accuracy of the
numerical solutions, whereas the last example illustrates that linear programming provides a
viable solution technique for more complex models for which exact solutions are not known.

The next section formulates the singular martingale problem, establishes the key existence
result and demonstrates equivalence of the linear programming formulation with the original
stochastic process formulation for the optimal stopping problem. The following sections
provide the numerical illustrations.

2 Stochastic Formulation and LP Reformulation

2.1 Formulation of martingale problem

For a complete, separable, metric space S, we define M(S) to be the space of Borel mea-
surable functions on S, B(S) to be the space of bounded, measurable functions on S, C(S)
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to be the space of continuous functions on S, C(S) to be the space of bounded, continuous
functions on S, M(S) to be the space of finite Borel measures on S, and P(S) to be the
space of probability measures on S. M(S) and P(S) are topologized by weak convergence.

Let Lt(S) = M(S × [0, t]). We define L(S) to be the space of measures ξ on S × [0,∞)
such that ξ(S × [0, t]) < ∞, for each t, and topologized so that ξn → ξ if and only if∫
fdξn → ∫ fdξ, for every f ∈ C(S × [0,∞)) with supp(f) ⊂ S × [0, tf ] for some tf < ∞.

Let ξt ∈ Lt(S) denote the restriction of ξ to S × [0, t]. Note that a sequence {ξn} ⊂ L(S)
converges to a ξ ∈ L(S) if and only if there exists a sequence {tk}, with tk → ∞, such that,
for each tk, ξ

n
tk

converges weakly to ξtk , which in turn implies ξn
t converges weakly to ξt for

each t satisfying ξ(S × {t}) = 0. Finally, we define L(m)(S) ⊂ L(S) to be the set of ξ such
that ξ(S × [0, t]) = t for each t > 0.

Throughout, we will assume that the state space E is a complete, separable, metric space.
Let A,B : D ⊂ C(E) → C(E) and ν0 ∈ P(E). Let X be an E-valued process and Γ

be an L(E)-valued random variable. Let Γt denote the L(E)-random variable which, for
each realization, is defined by restricting Γ to E × [0, t]. Then (X,Γ) is a solution of the
singular martingale problem for (A,B, ν0) if there exists a filtration {Ft} such that (X,Γt)
is {Ft}-progressive, X(0) has distribution ν0, and for every f ∈ D,

f(X(t)) − f(X(0)) −
∫ t

0

Af(X(s)) ds−
∫

E×[0,t]

Bf(x)Γ(dx× ds) (3)

is an {Ft}-martingale.
Note we refer to A as being the absolutely continuous generator of X and B as the

singular generator. This is an intuitive labelling. Strictly speaking, the random measure Γ
may have an absolutely continuous part.

2.2 Conditions on A and B

We assume that the absolutely continuous generator A and the singular generator B have
the following properties.

Condition 2.1

i) A,B : D ⊂ C(E) → C(E), 1 ∈ D, and A1 = 0, B1 = 0.

ii) Defining (A0, B0) = {(f,Af,Bf) : f ∈ D}, (A0, B0) is separable in the sense that there
exists a countable collection {gk} ⊂ D such that (A0, B0) is contained in the bounded,
pointwise closure of the linear span of {(gk, Agk, Bgk)}.

iii) D is closed under multiplication and separates points.

Example 2.2 Reflecting diffusion processes.

The most familiar class of processes of the kind we consider are reflecting diffusion processes
satisfying equations of the form

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds+

∫ t

0

m(X(s))dξ(s),
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whereX is required to remain in the closure of a domainD (assumed smooth for the moment)
and ξ increases only when X is on the boundary of D. Then

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj

f(x) + b(x) · ∇f(x),

where a(x) = ((aij(x))) = σ(x)σ(x)T . In addition, under reasonable conditions ξ will be
continuous, so

Bf(x) = m(x) · ∇f(x).

Example 2.3 Diffusion with jumps away from the boundary.

Assume that D is an open domain and that for x ∈ ∂D, m(x) satisfies x+m(x) ∈ D. Also
assume that

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds+

∫ t

0

m(X(s−))dξ(s),

where ξ is required to be the counting process that “counts” the number of times that X
has hit the boundary of D, that is, assuming X(0) ∈ D, X diffuses until the first time τ1
that X hits the boundary (τ1 = inf{s > 0 : X(s−) ∈ ∂D}) and then jumps to X(τ1) =
X(τ1−) +m(X(τ1−)). The diffusion then continues until the next time τ2 that the process
hits the boundary, and so on. (In general, this model may not be well-defined since the {τk}
may have a finite limit point, but we will not consider that issue.) Then A is the ordinary
diffusion operator, Bf(x) = f(x+m(x)) − f(x), and Γ(H × [0, t]) =

∫ t

0
IH(X(s−))dξ(s).

Suppose that (X,Γ) is a solution of the singular martingale problem for (A,B, ν0) and
let τ be a stopping time satisfying the conditions of the optional sampling theorem (see
[3, Theorem 2.2.13]). It follows from (X,Γ) satisfying (3) that when we augment a time
component to the state space by considering the process (t,X),

γ(t)f(X(t)) − γ(0)f(X(0)) −
∫ t

0

[γ(s)Af(X(s)) + γ′(s)f(X(s))] ds (4)

−
∫

R+×E×[0,t]

γ(s)Bf(x)Γ(ds× dx× dr)

is also an {Ft}-martingale for γ ∈ Ĉ(R+) and f ∈ D. It then follows from the optional

sampling theorem that for each γ ∈ Ĉ(R+) and f ∈ D,

E

[
γ(τ)f(X(τ)) − γ(0)f(X(0)) −

∫ τ

0

Ã[γf ](s,X(s)) ds (5)

−
∫

E×[0,τ ]

B̃[γf ](s, x) Γ(ds× dx× dr)

]
= 0,

where Ã[γf ] = γAf + γ′f and B̃[γf ] = γBf . Let ντ denote the distribution of (τ,X(τ))
and define the expected “occupation measures” on R

+ × E by

μ0(G) = E

[∫ τ

0

IG(s,X(s)) ds

]
, ∀G ∈ B(R+ × E),

μ1(G) = E

[∫
R+×E×[0,τ ]

IG(s, x) Γ(ds× dx× dr)

]
, ∀G ∈ B(R+ × E).

4



Notice that μ0 is the occupation measure of the process according to “regular” time (Lebesgue
measure on R

+) and μ1 is the occupation measure of X according to the singular set of times
at which Γ increases. We refer to μ1 as the “singular” occupation measure. It then follows
immediately from (5) that the measures ντ , μ0 and μ1 satisfy

0 =

∫
γ(t)f(x) ντ (dx) − γ(0)

∫
f(x) ν0(dx) −

∫
Ã[γf ](r, x)μ0(dr × dx) (6)

−
∫
B̃[γf ](x)μ1(dr × dx), ∀f ∈ D.

Thus given any solution (X,Γ) to the singular martingale problem for (A,B) and any
sufficiently nice τ , the measures ντ , μ0 and μ1 will satisfy (6). The main theoretical result
is the converse, namely that any measures ντ , μ0 and μ1 satisfying (6) are related to some
solution (X,Γ) of the singular martingale problem and some stopping time τ . We use the
notation μ2 for ντ in the theorem since the existence of a stopping time τ corresponding to
the measure μ2 is part of the result and this choice of notation will not give the impression
that τ exists a priori.

Theorem 2.4 Suppose E is a complete, separable metric space and A and B satisfy Con-
ditions 2.1. Let ν0 ∈ P(E). Define D1 = {γf : γ ∈ Ĉ(R+), f ∈ D}. Suppose μ0, μ1 ∈
M(R+ × E) and μ2 ∈ P(R+ × E) satisfy∫

R+×E

Ã[γf ](s, x)μ0(ds× dx) +

∫
R+×E

B̃[γf ](s, x)μ1(ds× dx) (7)

+ γ(0)

∫
f dν0 −

∫
R+×E

γ(s)f(x)μ2(ds× dx) = 0, ∀γf ∈ D1.

Then there exist a process X adapted to a filtration {Ft}, a random measure Γ on R
+ ×E×

[0,∞) and an {Ft}-stopping time τ such that

γ(t ∧ τ)f(X(t ∧ τ)) −
∫ t∧τ

0

Ã[γf ](s,X(s)) ds−
∫

R+×E×[0,t∧τ)

B̃[γf ](s, x)Γ(ds× dx× dv)

is an {Ft}-martingale for every γf ∈ D1, and

E

[∫ τ

0

c0(s,X(s)) ds+

∫
E×[0,τ)

c1(s, x) Γ(ds× dx× dv) + c2(τ,X(τ))

]
(8)

=

∫
R+×E

c0(s, x)μ0(ds× dx) +

∫
R+×E

c1(s, x)μ1(ds× dx) +

∫
R+×E

c2(s, x)μ2(ds× dx)

for every c0, c1, c2 ∈M(R+ × E) that are bounded below.

Proof. Let r ∈ R
+ be an additional state component and let u ∈ U = {0, 1} be a control

variable. We wish to demonstrate the existence of a state process (R,S,X) such that S
measures regular time up to some stopping time, X gives the original dynamics up to this
stopping time and R is a new time process which starts at the stopping time, lasts for
an exponentially distributed length of time, and during this time (S,X) are fixed. At the
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occurance of the exponential time, S jumps to 0, X jumps to a new point according to the
initial distribution ν0 and R jumps to 0. The desired solution is then obtained using both a
time change and a change of measures.

Define the new generators A and B on the domain D2 = {ψγf : ψ ∈ Ĉ1(R+), γf ∈ D1}
such that

A[ψγf ](r, s, x, u) = uψ(r)[γ(s)Af(x) + γ′(s)f(x)]

+(1 − u)

[
ψ(0)γ(0)

∫
f dν0 − ψ(r)γ(s)f(x) + ψ′(r)γ(s)f(x)

]
B[ψγf ](r, s, x) = ψ(r)γ(s)Bf(x).

Observe that A is the generator of a controlled process with control variable u. Also define
the measures μ0 ∈ P(R+ × R

+ × E × U) and μ1 on M(R+ × R
+ × E) satisfying∫

h(r, s, x, u)μ0(dr × ds× dx× du) (9)

= K−1

(∫
R+×E

h(0, s, x, 1)μ0(ds× dx) +

∫
R+×E

∫ ∞

0

e−rh(r, s, x, 0) dr μ2(ds× dx)

)
∫
h(r, s, x)μ1(dr × ds× dx) = K−1

∫
R+×E

h(0, s, x)μ1(ds× dx) (10)

for each bounded, continuous h, where K = μ0(R
+ ×E) + 1 is a normalizing constant. Note

that the conditional distribution of u given (r, s, x) under μ0 is

η(r, s, x, du) = δ{1}(du)I{0}(r)
dμ0

dμ0

(s, x) + δ{0}(du)e−rI(0,∞)(r)
dμ2

dμ0

(s, x).

Since μ0, μ1 and μ2 satisfy (7), it immediately follows from integration by parts that for
ψγf ∈ D2 ∫

A[ψγf ] dμ0 +

∫
B[ψγf ] dμ1 = 0.

Since the control space U = {0, 1} is compact, the conditions of Theorem 1.7 of [14] are
satisfied by A, B, μ0 and μ1, which implies the existence of a stationary R

+×R
+×E-valued

process (R,S,X) and a random measure Γ having stationary increments such that

ψ(R(t))γ(S(t))f(X(t)) −
∫ t

0

∫
U

A[ψγf ]((R(s), S(s), X(s), u) η(R(s), S(s), X(s), du) ds

−
∫

R+×R+×E×[0,t)

B[ψγf ](r, s, x, v) Γ(dr × ds× dx× dv) (11)

is an {FR,S,X
t }-martingale for all ψγf ∈ D2, (R,S,X) has stationary distribution μ0(· × U)

and for each t, E[Γ(·×[0, t])] = tμ1. Without loss of generality, we may assume that (R,S,X)
is defined for all t ∈ R and that Γ is a measure on R

+ × R
+ × E × (−∞,∞). Observe that

η(r, s, x, ·) places full mass on u = 1 when r = 0 and full mass on u = 0 when r > 0.
For each t ≥ 0, define the random variable σt

0 = sup{r < t : S(r) = 0, R(r) = 0} as
the last time previous to t that the time components are both 0, and define the sequences
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of stopping times σt
1 = inf{r ≥ t : R(r) = 0}, τ t

1 =
∫ {r > σt

1 : R(r) > 0}, and σt
2 =

inf{r > τ t
k−1 : R(r) = 0}. Observe that σt

1 is the first time after t that the time component

R is 0, τ t
1 is the first time after σt

1 at which R begins to increase and σt
2 is the first time

after τ t
1 that R is again 0. Thus for s ∈ [σt

1, τ
t
1), Lemma 4.4 of [13] implies that S(s) =∫ s

σt
1
I{0}(R(r)) dr = s − σt

1. On the other hand, for s ∈ [τ t
1, σ

t
2), [13, Lemma 4.4] implies

R(s) =
∫ s

τ t
1
I(0,∞)(R(r)) dr = s − τ t

1 a.s. and conditional on Fτ t
1
, σt

2 − τ t
1 is exponentially

distributed with mean 1, and again by [13, Lemma 4.4] S(s) = S(τ t
1) +

∫ s

τ t
1
I{0}(R(r)) dr =

S(τ t
1) = τ t

1 −σt
1. Now observe that taking ψ(r) = e−αr, γ(s) = e−αs and f(x) ≡ 1 and letting

g(z) = e−αz, (11) implies

g(S(t) +R(t))

−
∫ t

0

[
g′(S(r) +R(r)) + (1 − u(R(r), S(r), X(r)))

{
g(0) − g(S(r) +R(r))

}]
dr (12)

is a martingale, where u(R(r), S(r), X(r)) =
∫
u η(R(r), S(r), X(r), du). In particular, notice

that since f ≡ 1, Bf = 0 eliminates the singular term in (11). Now approximating more
general g by linear combinations of the exponentials e−αz, we see that (12) holds for C1

functions with g and g′ bounded. Now letting σ̃t
2 = inf{r > τ t

1 : S(r)+R(r) = 0}, Lemma 4.4
of [13] implies

P

(∫ σt
2

τ t
1

(1 − u(R(r), S(r), X(r))) dr > x|FR,S,X
τ t
1

)

= e−x = P

(∫ σ̃t
2

τ t
1

(1 − u(R(r), S(r), X(r))) dr > x|FR,S,X
τ t
1

)
,

and since σt
2 ≤ σ̃t

2, we must have σt
2 = σ̃t

2 a.s.; in particular, S(σt
s) = 0 a.s.. Finally, defining

Z(r) = (R(τ t
1 + r), S(τ t

1 + r), X(τ t
1 + r)) for r < σt

2 − τ t
1, we can extend Z to be a solution of

the martingale problem for the generator C̃ defined by

C̃g(r, s, x) =

∫
g(0, 0, x) ν0(dy) − g(r, s, x) +

∂

∂r
g(r, s, x).

Since any solution of this martingale problem has the property that the final component is
constant except for jumps that occur when the first two components jump to 0, it follows
that X(r) = X(τ t

1) for τ t
1 ≤ r < σt

2.
Now let h be a fixed, bounded, continuous function and, for ε > 0, define

Hε(r) =

∫
U

e−ε(R(r)+S(r))h(R(r), S(r), X(r)) η(R(r), S(r), X(r), du).

As a process in t,

(σt
1 − σt

0)
−1

∫ σt
2

σt
1

Hε(r) dr

is stationary, and for each s ∈ [σt
0, σ

t
1)

(σs
1 − σs

0)
−1

∫ σs
2

σs
1

Hε(r) dr = (σt
1 − σt

0)
−1

∫ σt
2

σt
1

Hε(r) dr.
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Using stationarity, we have

E

[
(σt

1 − σt
0)

−1

∫ σt
2

σt
1

Hε(r) dr

]
= T−1

∫ T

0

E

[
(σt

1 − σt
0)

−1

∫ σt
2

σt
1

Hε(r) dr

]
dt. (13)

These expressions may be infinite but, in fact, the following argument shows that both terms
are finite and identifies their common value.

Let N(T ) denote the number of jumps of the process (R,S,X) in the interval [0, T ], and
let {σk : k = 1, . . . , N(T )} denote these jump times. Let σN(T )+1 denote the first jump time
after time T and σ0 denote the last jump before time t = 0. Then the right-hand side of
(13) equals

T−1E

⎡⎣N(T )+1∑
k=1

T ∧ σk − σk−1 ∨ 0

σk − σk−1

∫ σk+1

σk

Hε(r) dr

⎤⎦
= T−1E

[∫ T

0

Hε(r) dr

]
− T−1E

[(
1 − T ∧ σ1

σ1 − σ0

)∫ σ1∧T

0

Hε(r) dr

]
+ T−1E

[
I{N(T )=1}

(
σ1

σ1 − σ0

)∫ σ2

T

Hε(r) dr

]
+ T−1E

[
I{N(T )>1}

∫ σN(T )+1

T

Hε(r) dr

]
+ T−1E

[
I{N(T )>0}

(
T − σN(T )

σN(T )+1 − σN(T )

)∫ σN(T )+2

σN(T )+1

Hε(r) dr

]
.

Since μ0 is the stationary distribution of (R(t), S(t), X(t)), the first term is∫
e−ε(r+s)h(r, s, x, u)μ0(dr × ds× dx× du)

and the other terms are bounded above by 4||h||/(εT ). Letting T → ∞ implies that

E

[
(σt

1 − σt
0)

−1

∫ σt
2

σt
1

∫
U

e−ε(R(r)+S(r))h(R(r), S(r), X(r), u)η(R(r), S(r), X(r), du) dr

]

=

∫
e−ε(r+s)h(r, s, x, u)μ0(dr × ds× dx× du)

and hence letting ε→ 0,

E

[
(σt

1 − σt
0)

−1

∫ σt
2

σt
1

∫
U

h(R(r), S(r), X(r), u)η(R(r), S(r), X(r), du) dr

]

=

∫
h(r, s, x, u)μ0(dr × ds× dx× du) (14)
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for each bounded, continuous h and therefore for each bounded, measurable h.
Now setting h(r, s, x, u) = I{0}(u) in (14) yields

K−1 = E
[
(σt

1 − σt
0)

−1(σt
2 − τ t

1)
]

= E
[
(σt

1 − σt
0)

−1
]

(15)

in which the last equality follows from the facts that σt
1 and σt

0 are FR,S,X
τ t
1

-measurable and,

conditional on FR,S,X
τ t
1

, σt
2 − τ t

1 is a mean 1 exponential random variable.

We are now in a position to define the desired process that is a solution of the martingale
problem and the corresponding stopping time. Take t = 0 in the above and define the
process (R,S,X) by X(r) = X(σ0

1 + r), R(r) = R(σ0
1 + r), S(r) = S(σ0

1 + r), for r ≥ 0,

and set the filtration {Ft} to be Ft = FR,S,X
σ0+t for each t. Let τ = inf{r ≥ 0 : R(r) > 0}

and σ = inf{r > τ : R(r) = 0}. Note that X(r) = X(τ) for τ ≤ r < σ. Since σ0
1 and

σ0
0 are both F0-measurable, (15) allows us to define a new probability measure P̃ having

Radon-Nikodym derivative dP̃
dP

= K(σ0
1 − σ0

0)
−1. It then follows from (9), (14) and (15) that

for each bounded, measurable h,

EP̃

[∫ σ

0

∫
U

h(R(r), S(r), X(r), u) η(R(r), S(r), X(r), du) dr

]
=

∫
h(r, s, x, u)μ0(dr × ds× dx× du) /E[(σ0

1 − σ0
0)

−1]

=

∫
h(0, s, x, 1)μ0(ds× dx) (16)

+

∫ ∞

0

∫
e−rh(r, s, x, 0)μ2(ds× dx) dr.

Now taking h(r, s, x, u) = I{0}(r)I{0}(u) in (16), shows that η(R(r), S(r), X(r), ·) places
unit mass at {1} a.s. for 0 ≤ r < τ , and similarly, h(r, s, x, u) = I(0,∞)(r)I{1}(u) establishes
that η(R(r), S(r), X(r), ·) places unit mass at {0} a.s. for τ ≤ r < σ. Furthermore, for
G ∈ B(R+ × E) and h(r, s, x, u) = I(0,∞)×G×{0}(r, s, x, u), (16) implies

μ2(G) = EP̃

[∫ σ

τ

IG(S(r), X(r)) dr

]
= EP̃ [IG(τ,X(τ))(σ − τ)] = EP̃ [IG(τ,X(τ))].

Similarly, for G ∈ B(R+ × E) and h(r, s, x, u) = I{0}×G×{1}(r, s, x, u), (16) implies

μ0(G) = EP̃

[∫ τ

0

IG(r,X(r)) dr

]
.

It is necessary to determine the corresponding results related to the random measure Γ.
We adapt the argument that established (14). For bounded, continuous h on R

+ ×R
+ ×E,

(σt
1 − σt

0)
−1

∫
R+×R+×E×[σt

1,σt
2)

h(r, s, x) Γ(dr × ds× dx× dv)

9



is stationary in t. As a result,

E

[
(σt

1 − σt
0)

−1

∫
R+×R+×E×[σt

1,σt
2)

h(r, s, x) Γ(dr × ds× dx× dv)

]

= T−1

∫ T

0

E

[
(σt

1 − σt
0)

−1

∫
R+×R+×E×[σt

1,σt
2)

h(r, s, x) Γ(dr × ds× dx× dv)

]
dt

= T−1E

⎡⎣N(T )+1∑
k=1

T ∧ σk − σk−1 ∨ 0

σk − σk−1

∫
R+×R+×E×[σk,σk+1)

h(r, s, x) Γ(dr × ds× dx× dv)

⎤⎦
= T−1E

[∫
R+×R+×E×[0,T )

h(r, s, x) Γ(dr × ds× dx× dv)

]
− T−1E

[(
1 − T ∧ σ1

σ1 − σ0

)∫
R+×R+×E×[σ1∧T )

h(r, s, x) Γ(dr × ds× dx× dv)

]
+ T−1E

[
I{N(T )=1}

(
σ1

σ1 − σ0

)∫
R+×R+×E×[T,σ2)

h(r, s, x) Γ(dr × ds× dx× dv)

]
+ T−1E

[
I{N(T )>1}

∫
R+×R+×E×[T,σN(T )+1)

h(r, s, x) Γ(dr × ds× dx× dv)

]

+ T−1E

[
I{N(T )>0}

(
T − σN(T )

σN(T )+1 − σN(T )

)
·
∫

R+×R+×E×[σN(T )+1,σN(T )+2)

h(r, s, x) Γ(dr × ds× dx× dv)

]
.

Again, the first term equals
∫
h dμ1 and the other terms converge to 0 as T → ∞ and

therefore

E

[
(σt

1 − σt
0)

−1

∫
R+×R+×E×[σt

1,σt
2)

h(r, s, x) Γ(dr × ds× dx× dv)

]

=

∫
h(r, s, x)μ1(dr × ds× dx)

= K−1

∫
h(0, s, x)μ1(ds× dx) (17)

where the last equality follows from (10).
Define the L(R+ × R

+ × E)-valued random measure Γ such that for each s, t ≥ 0,
Γ(·× ·× ·× [s, t)) = Γ(·× ·× ·× [σ0

1 + s, σ0
1 + t)). Noting the fact that R(r) > 0 for r ∈ [τ, σ),

(17) implies first that Γ(· × [τ, σ)) ≡ 0 a.s. and secondly that

μ1(G) = EP̃

[∫
R+×E×[0,τ)

IG(s, x) Γ(ds× dx× dv)

]
.

10



Finally, taking ψ ≡ 1 in (11) and recalling that η(R(r), S(r), X(r), ·) = δ{0}(·) for r ∈
[0, τ), the optional sampling theorem implies that under P̃

γ(t ∧ τ)f(X(t ∧ τ)) −
∫ t∧τ

0

Ã[γf ](s,X(s)) ds−
∫

E×[0,t∧τ)

B̃[γf ](s, x)Γ(ds× dx× dv)

is a martingale with respect to the filtration {Ft}. �

The previous analysis focuses on the dynamics of the process and demonstrates the fact
that the identity (7) characterizes the solutions (X,Γ) of the martingale problem up to some
stopping time τ . We now use this characterization to rewrite the optimal stopping problem.

Let c0, c1, c2 ∈ M(R+ × E) be measurable and bounded below, and represent the time-
dependent running cost of the process according to regular time, the running cost according
to the singular time and the stopping cost, respectively. The goal of the decision maker is
to select a stopping rule τ so as to minimize the expect cost of the process up to time τ :

E

[∫ τ

0

c0(s,X(s)) ds+

∫
R+×E×[0,τ)

c1(s, x) Γ(ds× dx× dv) + c2(τ,X(τ))

]
. (18)

The discussion prior to Theorem 2.4 shows that for each solution (X,Γ) and stopping
time τ , the occupation measures μ0, μ1 and the distribution ντ of (τ,X(τ)) satisfy (7) and
moreover, the expected cost (18) is given by (8). Conversely, for each set of measures μ0, μ1

and μ2 satisfying (7), Theorem 2.4 shows the existence of a solution (X,Γ) and a stopping
time τ whose associated expected cost up to time τ is given by (8). The expected costs can
therefore be determined by the following infinite-dimensional linear program.

Theorem 2.5 The optimal stopping problem of selecting a stopping time τ ∗ so as to mini-
mize

E

[∫ τ

0

c0(X(s)) ds+

∫
E×[0,τ ]

c1(x) Γ(dx× ds) + c2(X(τ))

]
subject to (X,Γ) being a solution of the singular martingale problem for (A,B, ν0) is equiv-
alent to the infinite dimensional linear program

Min.

∫
c0 dμ0 +

∫
c1 dμ1 +

∫
c2 dντ

S.t. 0 =

∫
γf dντ − γ(0)

∫
f dν0 −

∫
Ã[γf ] dμ0 −

∫
B̃[γf ] dμ1, ∀γf ∈ D1(19)

ντ ∈ P(R+ × E),

μ0, μ1 ∈ M(R+ × E).

3 Drifted Brownian Motion

Let X be a drifted Brownian motion with drift rate −a starting from the point x0 and let Y
be its running maximum starting with an initial value of y0 for some value of y0 ≥ x0. Then
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the pair (X,Y ) satisfies

X(t) = x0 − at+ σW (t), (20)

Y (t) = y0 ∨ max
{0≤s≤t}

X(s).

Observe the paired process (X,Y ) evolves over the region H = {(x, y) : x ≤ y, y ≥ y0}. Let
{Ft} denote the filtration generated by X so Ft = σ(X(s) : 0 ≤ s ≤ t).

The goal is to select an {Ft}-stopping time τ so as to maximize (2).

3.1 The Exact Solution

In order to compare the numerical results from our linear programming formulation, we derive
the value function and identify both the continuation and stopping regions. It is instructive to
solve the two-dimensional problem in order to observe how the singular operator is handled in
the variational argument. We note that the boundary between the continuation and stopping
regions is the line y = x− b∗ with b∗ being the solution to a transcendental equation. Thus,
the exact solution must also be numerically computed.

We solve this problem by solving a variational inequality which includes the singular
operator. To do so, we first observe that the absolutely continuous generator of the two
dimensional process (x, y) is A : D → C(H) defined by

Af(x, y) =
1

2
σ2fxx(x, y) − afx(x, y) (21)

and the singular generator B : D → C(H) is

Bf(x, y) = fy(x, y) (22)

with D restricted to the test functions

D = {f ∈ C2,0(H) : fy(x, y) exists on y = x}. (23)

The notation C(i,j)(H) denotes the space of continuous functions on H having i continuous
derivatives in the first component and j continuous derivatives in the second component.
Note, in particular, that this singular formulation of the problem only requires f ∈ D to
have fy exist on the diagonal {(x, y) : x = y}. This contrasts with the typical absolutely
continuous formulation in which reflection is obtained by requiring fy(y, y) = 0.

We seek regions C and S and a function V satisfying the following conditions:

(i) C ∪ S = H, B = C ∩ S,

(ii) V ∈ DC ∩ C(1,0)(H) where DC is defined as in (23) but with H replaced by C,

(iii) for (x, y) ∈ S, V (x, y) = y − x, and

(iv) for (x, y) ∈ C, V (x, y) ≥ y − x,

(v) for (x, y) ∈ C, AV (x, y) − λV (x, y) = 0,

12



(vi) for (x, y) ∈ S\B, AV (x, y) − λV (x, y) ≤ 0,

(vii) for (x, y) on the line y = x, Vy(y, y) exists and Vy(y, y) = 0,

(viii) τS := inf{t ≥ 0 : (xt, yt) ∈ S} <∞ a.s. and the stochastic integral
∫ t∧τS

0
Vx(xs, ys) dws

is a martingale.

The region C denotes the continuation region and S denotes the stopping region. The
requirements (ii), (iii) and (iv) on the function V are known as “smooth pasting” since V
is defined differently on the regions C and S and is required to have continuous first partial
derivative in x across the boundary B.

We remark that there are two ways one may view condition (vii). It is the natural
requirement on the singular generator applied to V in the continuation region C, similar to
condition (v). Since the reflection occurs on the diagonal where y = x and the evaluation
of the objective function at these points is 0, these points cannot be in the stopping region.
It may also be viewed as requiring V to be in the domain of the generator for the drifted
Brownian motion reflected at the diagonal, which reduces the associated martingale to an
absolutely continuous martingale.

Let α1 = (−a − √
a2 + 2λσ2)/σ2 and α2 = (−a +

√
a2 + 2λσ2)/σ2 and observe that

α1 < 0 < α2 with α2 −α1 = 2
√
a2 + 2λσ2/σ2 and α1 ·α1 = −2λ/σ2. To find V , we begin by

observing that the general solution to the pde in (v) is given by

f(x, y) = c1(y)e
α1x + c2(y)e

α2x. (24)

We conjecture that C = {(x, y) : 0 ≤ y−x < b, y ≥ y0} and S = {(x, y) : y−x ≥ b, y ≥ y0}
so that the boundary is given by a line of the form y = x+b for some value of b. The principle
of smooth fit requires

b = (eα1x) c1(x+ b) + eα2xc2(x+ b)

−1 = (α1e
α1x) c1(x+ b) + (α2e

α2x) c2(x+ b)

which upon solving for c1(x + b) and c2(x + b) and making the substitution y = x + b, we
obtain

c1(y) =
α2b+ 1

α2 − α1

e−α1(y−b)

c2(y) = −α1b+ 1

α2 − α1

e−α2(y−b) .

The function V thus has the form

V (x, y) =
α2b+ 1

α2 − α1

eα1(x+b−y) − α1b+ 1

α2 − α1

eα2(x+b−y)

with the value of b still to be determined using condition (vii), namely Vy(y, y) = 0. Since

Vy(x, y) = −α1(α2b+ 1)

α2 − α1

eα1(x+b−y) +
α2(α1b+ 1)

α2 − α1

eα2(x+b−y),
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setting x = y yields the requirement that b satisfy

e(α2−α1)b =
α1(α2b+ 1)

α2(α1b+ 1)
=
b+ 1

α2

b+ 1
α1

. (25)

Analyzing the graphs of the left hand side and the right hand side of (25) indicates that
there are two solutions with one being positive and the other negative. The positive solution
b∗ is required in order for the process to be able to reach B and hence for condition (viii) to
be satisfied. In addition, the drift rate −a must be nonpositive for the stopping time τS to
be finite a.s., again as required by condition (viii), implying a ≥ 0.

Finally, elementary calculations again show that V satisfies condition (iv) and condition
(vi) is satisfied since on S\B, y − x > b > 0 and

0 ≥ AV − λV = −a− λ(y − x).

Summarizing, the function V which satisfies the smooth pasting conditions is

V (x, y) =

⎧⎪⎪⎨⎪⎪⎩
α2b

∗ + 1

α2 − α1

e−α1(y−x−b∗) − α1b
∗ + 1

α2 − α1

e−α2(y−x−b∗) for (x, y) ∈ C,

y − x for (x, y) ∈ S,
(26)

where b∗ is the positive solution of (25), C = {(x, y) : 0 ≤ y − x < b∗ ≤ y, y ≥ y0} is the
continuation region and S = {(x, y) : b∗ ≤ y − x, y ≥ y0} is the stopping region.

Theorem 3.1 The function V given in (26) with b∗ specified as the positive solution of (25)
is the value function for the optimal stopping problem specified by the dynamics (20) and the
objective (2). Moreover, τS = inf{t ≥ 0 : (xt, yt) ∈ S} is an optimal stopping rule.

In the case when there is no drift (a = 0), the formula for the value function and
the transcendental equation simplify. We display the simpler expressions in the following
corollary.

Corollary 3.2 The value function for the optimal stopping problem specified by (2) and (20)
when a = 0 is

V (x, y) =

{
b∗ cosh

(√
2λ
σ

(y − x− b∗)
)

+ σ√
2λ

sinh
(√

2λ
σ

(y − x− b∗)
)
, (x, y) ∈ C

y − x, (x, y) ∈ S,
where b∗ is the unique positive solution to the transcendental equation

√
2λ

σ
b = coth

(√
2λ

σ
b

)
,

the continuation region is C = {(x, y) : 0 ≤ y − x < b∗ ≤ y, y ≥ y0} and the stopping region
is S = {(x, y) : b∗ ≤ y − x, y ≥ y0}.

An optimal stopping rule is to stop at τS = inf{t ≥ 0 : (xt, yt) ∈ S}.
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Proof. Observe that on the set {τS > t},

|V (X(t), Y (t))| =

∣∣∣∣α2b
∗ + 1

α2 − α1

e−α1(Y (t)−X(t)−b∗) − α1b
∗ + 1

α2 − α1

e−α2(Y (t)−X(t)−b∗)

∣∣∣∣
≤ α2b

∗ + 1

α2 − α1

+
|α1b

∗ + 1|
α2 − α1

eα2b∗

since τS > t implies 0 ≤ Y (t)−X(t) < b∗. A similar analysis shows that on the set {τS > t},
|Vx(X(t), Y (t))| ≤ |α1|(α2b∗+1)

α2−α1
+ α2|α1b∗+1|

α2−α1
eα2b∗ and hence

∫ t∧τS
0

Vx(X(s), Y (s)) dW (s) is a
martingale. Using condition (ii), Itô’s formula implies that

e−λ(t∧τS)V (X(t ∧ τS), Y (t ∧ τS)) −
∫ t∧τS

0

e−λs(AV (X(s), Y (s)) − λV (X(s), Y (s))) ds

is an {Ft}-martingale. Thus

V (x0, y0) = E
[
e−λ(t∧τS)V (X(t ∧ τS), Y (t ∧ τS))

−
∫ t∧τS

0

e−λs(AV (X(s), Y (s)) − λV (X(s), Y (s))) ds

]
= E

[
e−λ(t∧τS)V (X(t ∧ τS), Y (t ∧ τS))

]
since AV − λV = 0 on C. Now observe that

E
[
e−λ(t∧τS)V (X(t ∧ τS), Y (t ∧ τS))

]
= E

[
e−λτSV (X(τS), Y (τS))I{τS≤t}

]
(27)

+E
[
e−λtV (X(t), Y (t))I{τS>t}

]
.

Hence recalling that V (X(t), Y (t)) is bounded on the set {τS > t}, the second term in (27)
converges to 0 as t → ∞. Using the bounded convergence theorem on the first term, we
have

V (x0, y0) = E
[
e−λτS (Y (τS) −X(τS))

]
.

It still remains to show that τS is optimal. To do so, we employ a mollification argument.
Let τ be any stopping time. We first observe that the law of the iterated logarithm (see

[12, Theorem 2.9.23]) implies that on the set {τ = ∞}, e−λt dominates (Y (t) − X(t)) and
hence limt→∞E[e−λt(Y (t)−X(t))I{τ=∞}] = 0. Thus we may, without loss of generalization,
assume that τ <∞ a.s.. In fact, the objective improves by setting τ finite.

Next observe that E
[∫∞

0
IB(X(t), Y (t)) dt

]
=
∫∞

0
P ((X(t), Y (t)) ∈ B) dt = 0 so the set

of times at which the process (X,Y ) is on B has Lebesgue measure 0.
By Theorem D.1 of Øksendal [16], there exists a sequence {Vj}∞j=1 of functions Vj ∈ C2(H)

such that

• Vj → V uniformly on compact subsets of H as j → ∞,

• AVj → AV uniformly on compact subsets of H\B, as j → ∞, and

• {AVj}∞j=1 is locally bounded on H.
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(For example, let φ(x) = e−1/(1−x2) and define Vj(x, y) =
∫
ε−1
j V (x, y)φ(x/εj)dx, where

εj ↘ 0 as j → ∞.) Itô’s formula then implies that

Vj(x0, y0) = E[e−λ(t∧τ)Vj(X(t ∧ τ), Y (t ∧ τ))]
−E
[∫ t∧τ

0

e−λs[AVj − λVj](X(s), Y (s)) ds

]
−E
[∫ t∧τ

0

e−λsBVj(X(s), Y (s)) dY (s)

]
.

Letting j → ∞ and using the uniform convergence along with the fact that the set of times
(X,Y ) is on B has measure 0, Fatou’s Lemma implies

V (x0, y0) ≥ E[e−λ(t∧τ)V (X(t ∧ τ), Y (t ∧ τ))]
−E
[∫ t∧τ

0

e−λs[AV − λV ](X(s), Y (s)) ds

]
−E
[∫ t∧τ

0

e−λsBV (X(s), Y (s)) dY (s)

]
≥ E

[
e−λ(t∧τ)[Y (t ∧ τ) −X(t ∧ τ)]] .

Finally, letting t→ ∞, employing Fatou’s Lemma again yields

V (x0, y0) ≥ E
[
e−λτ (Y (τ) −X(τ))

]
establishing the result.

�

3.2 Dimension Reduction and LP Formulation

Observe that the objective of the decision maker is to maximize the expected discounted
value of Y (τ) −X(τ). Thus it is only necessary to track the process Z(t) = Y (t) −X(t) to
be able to know the value. The process Z which starts at z0 = y0 − x0 ≥ 0 has the same
distribution as a (drifted) Brownian motion process that is reflected at {0} (see [12]). We
can therefore change the stopping problem to one of maximizing

E
[
e−λτZ(τ)

]
(28)

where Z has absolutely continuous and singular generators

Af(z) = −af ′(z) + (σ2/2)f ′′(z), and

Bf(z) = f ′(z).

Theorem 2.4 is stated with μ0, μ1 and μ2 being measures on R
+ × E since the proof

required a time component in order to identify the stopping time σ0
1 when the solution (X,Γ)

needs to be started to obtain the desired solution (X,Γ). The only time dependence in the
specific problem under consideration, however, is through discounting. We can simplify the
formulation of the LP in the following manner.
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For a solution (Z,Γ) of the singular martingale problem for (A,B, ν0), it follows from
taking γ(t) = e−λt that

e−λtf(Z(t)) − f(z0) −
∫ t

0

e−λs(Af − λf)(Z(s)) ds−
∫

R+×R+×[0,t]

e−λsBf(z) Γ(ds× dz × dr)

is a martingale. Now define the “discounted” measures on Borel sets G by

μ0(G) = E

[∫ τ

0

e−λsIG(Z(s)) ds

]
,

μ1(G) = E

[∫
R+×R+×[0,τ ]

e−λsIG(z) Γ(ds× dz × dr)

]
,

ντ (G) = E
[
e−λτIG(Z(τ))

]
.

It then follows from the martingale property and the optional sampling theorem that μ0,
μ1 and ντ satisfy the conditions of Theorem 2.4. Note in particular that the discounting is
incorporated into the measures, which also implies that ντ is a sub-probability measure.

Applying Theorem 2.5, this optimal stopping problem is equivalent to the infinite-dimensional
linear program

Max. 〈z, ντ 〉 (29)

S.t. f(z0) = 〈f, ντ 〉 − 〈Af − λf, μ0〉 − 〈Bf, μ1〉, ∀f ∈ D (30)

0 ≤ 〈1, ντ 〉 ≤ 1,

〈1, μ0〉 ≥ 0,

〈1, μ1〉 ≥ 0,

where for a measurable function g and measure μ, the notation 〈g, μ〉 =
∫
g dμ. Notice

that the linear program determines the optimal value corresponding to the initial position
Z(0) = z0. Denote this optimal value by Ṽ (z0) and observe that, in principle, the value
function is obtained from the linear program by varying the initial value z0.

First observe that the measure μ1 captures the expected local time of z at {0} and thus
is a point mass p0 at {0}.

Now consider the distribution ντ of Z(τ). In general, ντ can be any distribution on
[0,∞). Often, as in this example, ντ has bounded support and the LP formulation can
be used to obtain more information about this support. Helmes [7] employs the following
procedure. Assume ντ has its support on an interval [0,M ] for some M > 0. Next, partition
the interval into three segments [0,M1], [M1,M2] and [M2,M ], break the measure ντ into
separate measures ν1

τ , ν
2
τ and ν3

τ on each subinterval and run the LP (29)-(30) using the three
measures. Typically, only one of these measures has mass indicating that ντ has its support
on the smaller subinterval. Now break this subinterval into three further subintervals and
repeat the LP. (Note that the choices of M and M2 should be large enough that ν3

τ has zero
mass. When ν3

τ has positive mass, one should begin anew with different values of M and
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M2.) In this manner, the support of ντ can be determined to be in a very small interval and
thus is likely to be at a single value b.

For clarity of exposition, we assume the optimal stopping rule will be one of stopping at
the first time the process Z attains some level b. Considering for a moment the process under
this stopping rule, it is clear that Z will always be in the interval [0, b] and the stopping
rule is enforced when Z exits the interval [0, b). Thus the optimal stopping problem can be
thought of as a family of exit problems, with the optimal stopping rule determined from the
choice of b∗ which maximizes the value (29). A search technique can be used to determine
the value of b∗.

Notice that the measure μ1 is also a point mass pb on {b}. The above linear program,
therefore, has a measure μ0 on [0, b] and point masses p0 and pb as its variables.

We seek to yet again rephrase the linear program in terms of a new set of variables which
more readily lead to computable (finite dimensional) linear programs. With this in mind,
use the function f(z) = zn, with n ≥ 0, in (30) to obtain

zn
0 =

∫
zn ντ (dz) −

∫ (
n(n− 1)

2
zn−2 − azn−1 − λzn

)
μ0(dz) −

∫
nzn−1 μ1(dz)

= bnpb − n(n− 1)

2
m0(n− 2) + am0(n− 1) − λm0(n) − n0n−1p0, (31)

where m0(n) denotes the nth moment of the measure μ0 and 00 is defined to equal 1. The
objective function and other constraints can also be expressed in terms of the moments of
μ0 and the point masses.

At this point, care must be taken to ensure that the variables {m0(n) : n = 0, 1, 2, . . .}
are not just any sequences but are the moments of μ0. Necessary and sufficient conditions
for a sequence to be the moments of a measure on [0, 1] are derived by Hausdorff [6] (see
also Feller [4] for a probabilistic proof). The minor extension to the interval [0, b] (using a
change of variable) arises from using linearity in the identities

0 ≤
∫
zi(b− z)kμ(dz) =

k∑
j=0

(
k
j

)
(−1)jbk−jm0(i+ j), ∀i, k ≥ 0. (32)

To be computable, the infinite collection of conditions in (31) must be reduced to a finite
number of conditions. We accomplish this by truncating the number of moments to the set
M0 = {m0(n) : n ≤ M} and dropping those constraints using moments that are not in M0.
This truncation introduces an approximation to the original stopping time problem since the
set of (finite-dimensional) feasible points now includes values that do not arise as moments
of some measures. Note carefully however that all initial terms of moments sequences are
elements of the feasible set. The feasible set being larger therefore implies that the optimal
value of the finite LP will provide an upper bound on the value for the original optimal
stopping problem.

Now consider the geometry of the feasible set. The set is determined in part by the
Hausdorff moment conditions, each of which specifies a half-space in the appropriate dimen-
sion. The intersection of these half-spaces is therefore a convex set having a finite number of
extreme points. Helmes and Röhl [8] determine the precise coordinates of these points. As a
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LP-results NEV

λ b∗ Ṽ (0) b∗ V (0, 0)
0.100 2.13753483 1.27860034 2.13753 1.2786
0.200 1.60558283 0.94111933 1.60558 0.941119
0.300 1.34854165 0.78280418 1.34854 0.782804
0.400 1.18827618 0.68562758 1.18828 0.685628
0.500 1.07568729 0.61805321 1.07569 0.618053
0.600 0.99083011 0.56749719 0.99083 0.567497
0.700 0.92382189 0.52780051 0.923822 0.527801
0.800 0.86911883 0.49553996 0.869119 0.49554
0.900 0.82333255 0.46863857 0.823333 0.468639
1.000 0.78425732 0.44575236 0.784257 0.445752

Table 1: Optimal stopping points and optimal values as functions of the discount factor λ
for the case BM with drift; other parameters are σ = 1, a = 0.2, x0 = y0 = z0 = 0 and
M = 40.

result, the Hausdorff moment conditions can be enforced by replacing the inequalities (32) by
convex combinations of the corner points of the Hausdorff polytope. This substitution once
again changes the variables in the LP, now to the coefficients of the convex combinations of
the extreme points.

Table 1 compares the results of using the linear programming formulation (29)-(30) to
compute the value function Ṽ (0) at z0 = 0 with “exact values” numerically evaluated (NEV)
using Mathematica. Similar levels of accuracy are obtained when the values of σ and z0 are
varied while holding the other parameters fixed.

4 Geometric Brownian Motion

The drifted Brownian motion does not provide a reasonable model for the price of an asset.
Rather, a model that is often used in the mathematical finance literature is that of geometric
Brownian motion, also called the Black-Scholes model since it is the model for which the
celebrated Black-Scholes option pricing formula was determined.

Consider the pair of processes (X,Y ) satisfying

X(t) = x0 +

∫ t

0

μX(s) ds+

∫ t

0

σX(s) dW (s)

Y (t) = y0 ∨ max
0≤s≤t

X(s) (33)

with the goal of maximizing (2). It is well-known that the geometric Brownian motion
process X can be expressed as

X(t) = x0 exp

{(
μ− σ2

2

)
t+ σW (t)

}
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and thus, assuming that the initial value x0 > 0, the process X only takes values in (0,∞).
Therefore, for this section we redefine the set H as

H = {(x, y) : 0 < x ≤ y, y ≥ y0}. (34)

The generators for (X,Y ) are

Af(x, y) =
σ2

2
x2fxx(x, y) + μxfx(x, y) and (35)

Bf(x, y) = fy(x, y),

with domain D specified in (23).

4.1 The Exact Solution

As before we seek regions S, C, boundary B and a function V satisfying conditions (i) - (viii).

Theorem 4.1 Let 0 ≤ μ < λ. Define β1 = 1
2
− μ

σ2 −
√(

μ
σ2 − 1

2

)2
+ 2λ

σ2 and β2 = 1
2
− μ

σ2 +√(
μ
σ2 − 1

2

)2
+ 2λ

σ2 . Then the value function to the problem of finding a stopping time so as

to maximize (2) with dynamics given by (33) is

V (x, y) =

⎧⎨⎩
β2k∗+(1−β2)

β2−β1
xβ1
(

y
k∗
)1−β1 − β1k∗+(1−β1)

β2−β1
xβ2
(

y
k∗
)1−β2 , (x, y) ∈ C,

y − x, (x, y) ∈ S,
(36)

where k∗ is the positive solution (greater than 1) of

β2(k − 1) + 1

β1(k − 1) + 1
=

(1 − β2)

(1 − β1)
kβ2−β1 . (37)

The continuation region is C = {(x, y) : y
k∗ < x ≤ y, y ≥ y0}; the stopping region is

S = {(x, y) : x ≤ y
k∗ , y ≥ y0}, with boundary B being the line y = k∗x. An optimal stopping

rule is τS = inf{t ≥ 0 : (xt, yt) ∈ S}.

Proof. The construction of V is obtained similarly to the case of a drifted Brownian motion
in the previous section. Conditions (i), (ii), (iii), (v) and (vii) are used to construct V so are
straightforward to verify. It is still necessary to verify the other conditions.

First, we remark that the model requires k ≥ 1 to make sense. Next observe that the
left hand side of (37) can be written as

β2

β1

k + 1−β2

β2

k + 1−β1

β1

which indicates that its graph has a horizontal asymptote at β2

β1
and a vertical asymptote at

−1−β1

β1
= 1−β1

−β1
> 1. The left hand expression in (37) is an increasing function so increases
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from −∞ to β2

β1
as k increases from −1−β1

β1
. Since λ > μ, the coefficient in the right hand side

of (37) is negative, indicating that the right hand expression will decrease from 1−β2

1−β1
when

k = 1 to −∞. Hence there is a unique solution k∗ > 1 of (37).
Turning to condition (vi), on the set S\B, we have

AV (x, y) − λV (x, y) = −μx− λ(y − x) ≤ −[λ(k∗ − 1) + μ]x ≤ 0,

which requires μ ≥ −λ(k∗ − 1). This inequality is satisfied since we assume μ to be non-
negative, requiring that the asset price will trend higher. (In fact, for μ slightly negative
(−λ(k∗ − 1) ≤ μ < 0) the result still holds.) In the case μ < −λ(k∗ − 1), we suspect the
optimal stopping rule will be to stop immediately!

For the verification of (iv), first observe that Vy(x, kx) = 1; that is, V ∈ C1,1(H). For
x < y < k∗x, two applications of the intermediate value theorem (expanding about the point
(x, k∗x)) yield for some y ≤ η, ξ < k∗x,

Vy(x, y) =
(1 − β1)[β2(k

∗ − 1) + 1]

k∗(β2 − β1)

(
1 +
(
β1η

β1−1
)(k∗x

y
− 1

))
−(1 − β2)[β1(k

∗ − 1) + 1]

k(β2 − β1)

(
1 +
(
β2ξ

β2−1
)(k∗x

y
− 1

))
= 1 + β1 ·

{
(1 − β1)[β2(k

∗ − 1) + 1]

k∗(β2 − β1)
· ηβ1−1

(
k∗x
y

− 1

)}
−(1 − β2)[β1(k

∗ − 1) + 1]

{
β2

k(β2 − β1)
· ξβ2−1

(
k∗x
y

− 1

)}
.

Observe the factors inside each brace are positive. Note also that β1, 1−β2 and β1(k
∗−1)+1

are negative (rewrite (37) to obtain the last observation). Hence Vy(x, y) < 1 for all x ≤ y <
k∗x, implying condition (iv).

The final condition to be verified is (viii). Let α = − β1β2(k∗)β1+β2

λ(β2(k∗)β2−β1(k∗)β1 )
and define the

function

f(x, y) =
1

λ
+
α

β1

(
x

y

)β1

− α

β2

(
x

y

)β2

.

The function f is constructed to solve⎧⎨⎩
Af − λf = −1 on C,

f = 0 on B,
Bf = 0 on the diagonal y = x.

Itô’s formula in conjunction with the optional sampling theorem implies

f(x0, y0) = E

[
f(X(t ∧ τS), Y (t ∧ τS)) −

∫ t∧τS

0

(Af − λf)(X(s), Y (s)) ds

−
∫ t∧τS

0

Bf(X(s), Y (s)) dys

]
= E[τSI{τS≤t}] + E

[
(f(X(t), Y (t)) + t)I{τs>t}

]
. (38)

Since f is bounded on C, the equation (38) implies that P (τS > t) → 0 as t → ∞. The
verification that

∫ t∧τS
0

Vx(X(s), Y (s)) dW (s) is a martingale follows as in Theorem 3.1. The
proof of optimality of τS now follows as in the proof of Theorem 3.1. �
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4.2 Dimension Reduction and LP Formulation

We begin this section on the numerical solution of the optimal stopping problem by reducing
the problem from two dimensions to one dimension.

Proposition 4.2 The optimal stopping problem for the perpetual lookback put option spec-
ified by maximizing (2) over stopping times τ when the process dynamics are given by (33)
is equivalent to the stopping problem of maximizing

x0Ẽ

[
e−λ̃τ

(
Yμ(τ)

Xμ(τ)
− 1

)]
where Z := Y

X
:=
{

Yμ(t)

Xμ(t)
: t ≥ 0

}
is a geometric Brownian motion process having drift −μ

that is reflected at 1.

Proof. Since X is a geometric Brownian motion process it can be expressed in the form
X(t) = x0e

(μ−σ2/2)t+σW (t). As a result,

E
[
e−λτ (Y (τ) −X(τ))

]
= E

[
e−λτX(τ)

(
Y (τ)

X(τ)
− 1

)]
= E

[
e−λτ · x0e

(μ−σ2/2)τ+σW (τ)

(
Y (τ)

X(τ)
− 1

)]
= x0 · Ẽ

[
e−(λ−μ)τ

(
Y (τ)

X(τ)
− 1

)]
where Ẽ represents the expectation under the measure P̃ having Radon-Nikodym derivative
dP̃
dP

= eσWτ−(σ2/2)τ on Fτ .
The characterization of the process Y

X
as a reflected geometric Brownian motion is due

to Shepp and Shiryaev [18]. �
Note that the discount factor λ̃ for the one-dimensional problem is λ̃ = λ − μ so there

will only be a finite value when μ < λ; that is, the discount rate must dominate the mean
growth rate of the stock.

The stopping problem can therefore be expressed as a problem of finding a stopping time
τ so as to maximize

Ẽ
[
e−λ̃τ (Z(τ) − 1)

]
(39)

where Z has generators

Af(z) = −μzf ′(z) + (σ2/2)z2f ′′(z),

Bf(z) = f ′(z).

The LP formulation of the problem is

Max. 〈z − 1, ντ 〉
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S.t. f(z0) = 〈f, ντ 〉 − 〈Af − λ̃f, μ0〉 − 〈Bf, μ1〉, ∀f ∈ D1 (40)

〈1, ντ 〉 ≤ 1,

〈1, μ0〉 <∞,

〈1, μ1〉 <∞.

As in the drifted Brownian motion example, the process Z is reflected, this time at {1}
so the measure μ1 is a point mass p1 at {1}. In addition, the stopping rule will take the
form of a first hitting time of some level k so μτ will also be a point mass pk at {k}. Thus
the optimal stopping problem becomes one of finding an optimal stopping level {k∗} and
determining the value from a corresponding exit problem of the process Z from the bounded
interval [1, k∗], with reflection occurring at {1}. A search procedure can again be employed
to determine the level k∗ by iteration.

Using λ − μ = λ̃ and f(z) = zn, n = 0, 1, 2, . . . as the test functions, the LP takes the
form

Max. (k − 1)pk

S.t. zn
0 = knpk + [nμ− n(n− 1)σ2/2 + (λ− μ)]m0(n) − np1, n = 0, 1, 2, . . . ,

0 ≤ pk ≤ 1,

p1 ≥ 0,

m0(n) ≥ 0, n = 0, 1, 2, . . . ,

{m0(n) : n = 0, 1, 2, . . .} satisfy the Hausdorff moment conditions.

The variables {m0(n)} are the moments of the measure μ0 on the bounded interval [1, k].
As with the drifted Brownian motion model, we truncate the number of moments to

obtain a finite dimensional LP and use the representation of the pseudo-moments as convex
combinations of the extreme points in the resulting Hausdorff polytope. Table 2 compares the
numerical results obtained using the linear programming formulation with values computed
from the exact formulas. Since k∗ satisfies the transcendental equation (37), the exact
formula must be numerically estimated. Figure 1 displays the two-dimensional value function
V obtained from the LP formulation, whereas Figure 2 graphs the one-dimensional section
of the value function with x = 1 fixed.

5 Geometric Brownian Motion with Regime Switches

The previous two sections have demonstrated the accuracy of the LP approach on examples
for which the theoretical solution is known. This section extends the example of the pre-
vious sections to include regime switches in order to demonstrate that the LP method can
successfully solve stopping problems having complex dynamics.

Consider the pair of processes (X,Y ) satisfying

X(t) = x0 +

∫ t

0

μ(ε(s))X(s) ds+

∫ t

0

σ(ε(s))X(s) dW (s)

Y (t) = y0 ∨ max
0≤s≤t

X(s) (41)
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LP-results NEV
λ k∗ V (1, 1) k∗ V (1, 1)

0.100 3.398180 0.998403 3.397804 0.998390
0.200 2.247672 0.571501 2.248057 0.571497
0.300 1.911591 0.433497 1.911461 0.433497
0.400 1.742510 0.360870 1.742503 0.360870
0.500 1.638242 0.314702 1.638239 0.314702
0.600 1.566217 0.282189 1.566334 0.282188
0.700 1.513171 0.257763 1.513165 0.257762
0.800 1.471929 0.238578 1.471926 0.238578
0.900 1.438808 0.223011 1.438805 0.223011
1.000 1.411494 0.210062 1.411491 0.210062

Table 2: Optimal stopping points and optimal values as functions of the discount factor λ;
the other parameters are σ = 0.4, μ = 0.03, x0 = y0 = 1. Number of moments used is
M = 70. The N(umerically) EV(aluated) numbers are based on formulae (36) and (37).
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Figure 1: The value function V (x, y), cf. (36), for the case λ = 0.1, σ = 0.4 and μ = 0.03.
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Figure 2: The value function y �→ V (1, y). The parameters are the same as in Figure 1.
Note, V (1, 1) =̇ 0.998, cf. Table 2.

in which ε is a finite state, continuous-time Markov chain having states M = {ε1, . . . , εm}
and generator Qg(εi) =

∑
j∈M(g(εj) − g(εi))qij defined on functions g on M, where qij > 0

gives the rate of change of the Markov chain from state εi to state εj, i �= j. The goal is to
find an optimal stopping time so as to maximize (2).

As in the case of simple geometric Brownian motion, the dimension can be reduced.

Proposition 5.1 The optimal stopping problem for the perpetual lookback put option spec-
ified by maximizing (2) over stopping times τ when the process dynamics are given by (41)
is equivalent to the stopping problem of maximizing

x0Ẽ
[
e−

R τ
0 (λ−μ(ε(t))) dt (Z(τ) − 1)

]
(42)

where Z is a regime switching geometric Brownian motion process with reflection satisfying

dZ(t) = Z(t)
[
−μ(ε(t)) dt+ σ(ε(t)) dW̃ (t)

]
+ dξ(t),

in which ξ is a monotone increasing process which increases only when Z(t) = 1.

Proof. The proof follows exactly as in Proposition 4.2. Note in particular that the char-
acterization of the process Y

X
extends to the regime switching case with the proof being a

minor modification of the argument given in [18]. �
Notice that the discount rate in (42) is now random and like the drift and diffusion

coefficients depend on the state of the regime. It is therefore necessary to account for
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changes to the infinitesimal generator due to a switch in the regime. The generators of the
pair process (Z, ε) are defined for f ∈ D and bounded, measurable functions g on M by

A[fg](z, εi) =
[−μ(εi)zf

′(z) + (1/2)σ2(εi)z
2f ′′(z)

]
g(εi) + f(z)Qg(εi),

B[fg](z, εi) = f ′(z)g(εi).

Let D3 = {fg : f ∈ D, g bounded, measurable} denote the domain of the generators. Also,
assume Z(0) = z0 and ε(0) = ε0, where ε0 ∈ M is given.

We now identify the LP formulation. It follows that for fg ∈ D3,

e−
R t
0 (λ−μ(ε(s))) dsf(Z(t))g(ε(t)) − f(z0)g(ε0)

−
∫ t

0

e−
R s
0 (λ−μ(ε(r))) dr (A[fg] − (λ− μ(ε(s)))fg) (Z(s), ε(s)) ds

−
∫ t

0

e−
R s
0 (λ−μ(ε(r))) drB[fg](Z(s−), ε(s−)) dξ(s)

is a martingale. Letting τ be a stopping time such that the optional sampling theorem
applies, we have

0 = Ẽ
[
e−

R τ
0 (λ−μ(ε(s))) dsf(Z(τ))g(ε(τ)) − f(z0)g(ε0)

]
−Ẽ
[∫ τ

0

e−
R s
0 (λ−μ(ε(r))) dr (A[fg] − (λ− μ(ε(s)))fg) (Z(s), ε(s)) ds

]
(43)

−Ẽ
[∫ τ

0

e−
R s
0 (λ−μ(ε(r))) drB[fg](Z(s−), ε(s−)) dξ(s)

]
.

Defining the discounted distribution at time τ and the discounted occupation measures by

ντ (G) = Ẽ
[
e−

R τ
0 (λ−μ(ε(s))) dsIG(Z(τ), ε(τ))

]
,

μ0(G) = Ẽ

[∫ τ

0

e−
R s
0 (λ−μ(ε(r))) drIG(Z(s), ε(s)) ds

]
,

μ1(G) = Ẽ

[∫ τ

0

e−
R s
0 (λ−μ(ε(r))) drIG(Z(s−), ε(s−)) dξ(s)

]
,

the identity (43) becomes

f(z0)g(ε0) =

∫
fg dντ −

∫
(A[fg] − (λ− μ)fg) dμ0 −

∫
B[fg] dμ1, ∀fg ∈ D3.

Note that μ in the above identity is a function of ε. The LP formulation of the problem is

Max. 〈z − 1, ντ 〉

S.t. f(z0)g(ε0) = 〈fg, ντ 〉 − 〈A[fg] − (λ− μ)fg, μ0〉 − 〈B[fg], μ1〉, ∀fg ∈ D2 (44)

〈1, ντ 〉 ≤ 1,

〈1, μ0〉 <∞,

〈1, μ1〉 <∞.
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switching rates LP-value
(q12, q21) k∗1 k∗2 for (31)

(1, 1) 1.91 2.38 0.508862

(1.5, 1) 1.99 2.42 0.547346
(2, 1) 2.06 2.49 0.580254

(2.5, 1) 2.11 2.55 0.608618
(3, 1) 2.17 2.58 0.633340

(1, 1.5) 1.86 2.26 0.471539
(1, 2) 1.84 2.14 0.449419

(1, 2.5) 1.82 2.10 0.434750
(1, 3) 1.81 2.04 0.424254

Table 3: Optimal stopping threshholds (to 2 decimals) and the value function for geometric
BM with regime switching as functions of pairs of switching rates; other parameters are
λ1 = 0.4, λ2 = 0.1, σ1 = σ2 = 0.4, μ1 = μ2 = 0.03, x0 = y0 = 1 and M = 70.

Another rephrasing of the LP problem is beneficial. In place of the measures ντ , μ0 and
μ1 on [1,∞)×M, we break each of these measures into m (the number of regimes) measures
ντi, μ0i and μ1i on [1,∞) × {εi}, respectively, by conditioning on the state of ε(t). This
change combines with selecting f(z) = zn and g(ε) = I{εj}(ε) to express (44) in terms of the
new measures.

Note first that each μ1i is still a point mass at {1} since μ1 measures the expected local
time of Z at {1}. But in contrast to the case of geometric Brownian motion, the stopping
measures ντi no longer have support at a single point ki because the process (Z, ε) could enter
the interior of the stopping region due to a switch in regime. We must therefore continue to
use the moments of ντi in the LP formulation.

This last observation means that care must be taken in correctly formulating the LP. It
is still reasonable to expect that for each regime, there will be a level ki at or beyond which
one would stop the process. The implication is that the measure ντi may have its support
beyond {ki}. However, letting kmax = max0≤i≤m ki, it follows that each of the measures
will have support on the set [ki, kmax]. Thus Hausdorff moment conditions (32) need to be
suitably adjusted to the new intervals. This formulation now enables search procedures to
be used to find the optimal levels for k∗i , i = 1, . . . ,m.

For illustrative purposes, we use m = 2 regimes. Table 3 displays the optimal stopping
threshholds k∗1 and k∗2 for a variety of switching rates between regimes. The optimal stopping
levels for each of the regimes when there is a single regime are k∗ = 1.7425 when λ = 0.4,
and k∗ = 3.3978 when λ = 0.1. Thus the optimal stopping levels are affected by the
regime switching dynamics. Figure 3 displays the LP objective function as a function of
the two switch points (k1, k2); the grid points are {(k1, k2) = (1.74 + ih, 2.20 + jh) : i, j =
−5,−4, ..., 4, 5} with h = 0.01.

A careful explanation is helpful to understand the numerical results. As observed before,
the infinite-dimensional LP problem that uses all the moments will have exactly one feasible
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Figure 3: LP values as a function of (k1, k2) for geometric Brownian motion with regime
switching for the case q12 = 1 and q21 = 3; all other parameters are as given in Table 3. Each
square indicates a point on the grid {(k1, k2) = (1.74 + ih, 2.20 + jh) : i, j = −5,−4, ..., 4, 5}
with h = 0.01.

solution. When the number of variables is truncated at some level M , the feasible set
becomes the Hausdorff polytope which includes the truncated moment sequence. Bounds on
the value of the exit problem for specific k1 and k2 are obtained by solving a minimization
and maximization problem for the objective function. The numerical results displayed in
Table 3 and Figure 3 employ the search technique to find values k∗1, k

∗
2 so as to maximize the

lower bound on the value. This level of precision is only mentioned for the regime switching
example since the search method for the stopping levels in the single regime case resulted in
essentially the same values when maximizing the lower bound and the upper bound. In this
example having regime switching, the results are not as numerically stable. We therefore
choose to report the more conservative results associated with the lower bounds on the true
optimal value.
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