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Abstract. A new approach to the solution of optimal stopping problems for one-dimensional

diffusions is developed. It arises by imbedding the stochastic problem in a linear programming

problem over a space of measures. Optimizing over a smaller class of stopping rules provides a

lower bound on the value of the original problem. Then using an auxiliary linear program, the

weak duality of a restricted form of the dual linear program provides an upper bound on the value.

An explicit formula for the reward earned using a two-point hitting time stopping rule allows one

to prove strong duality between these problems and therefore allows one to either optimize over

these simpler stopping rules or to solve the restricted dual program. Each optimization problem is

parameterized by the initial value of the diffusion and thus one is able to construct the value function

by solving the family of optimization problems. This methodology requires little regularity of the

terminal reward function. When the reward function is smooth, the optimal stopping locations

are shown to satisfy the smooth pasting principle. The procedure is illustrated on a number of

examples.
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1 Introduction

This paper develops a new approach to the solution of optimal stopping problems for
one-dimensional diffusions. By imbedding the optimal stopping problem in an infinite-
dimensional linear program (LP) and examining an auxiliary LP along with its dual, a
non-linear optimization problem and a semi-infinite linear program are derived from which
the value function is able to be constructed for a wide class of reward functions.

Let xl and xr be constants with −∞ ≤ xl < xr ≤ ∞. We consider the one-dimensional
diffusion X which satisfies the stochastic differential equation

dX(t) = µ(X(t)) dt+ σ(X(t)) dW (t), X(0) = x ∈ [xl, xr], (1.1)

when X(t) ∈ [xl, xr]. (In the case xl = −∞, the interval [xl, xr] is to be understood to
be (−∞, xr], and similarly when xr = ∞.) We assume that all processes are defined on a
probability space (Ω,F , P ) and denote by {Ft} the filtration generated by W . The generator
A of X, given by

Af(y) = µ(y)f ′(y) +
σ2(y)

2
f ′′(y),
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plays a central role in determining the solution.
We emphasize that throughout this paper, x is reserved to be the initial value of the

diffusion. It will never be used as a dummy variable in any expression.
The objective is to select an {Ft}-stopping time τ so as to maximize

J(τ ;x) := E

[∫ τ

0

e−αsr(X(s)) ds+ e−ατg(X(τ))

]
. (1.2)

In this expression, α > 0 denotes a discount rate, r is a running reward function and g
represents the reward obtained at the terminal time. The need for a discount factor arises
when the time frame for stopping is such that alternative investment possibilities affect the
value of the reward earned. This, for example, will be the case for many perpetual options
and for many applied problems such as the harvesting of renewable resources. For example,
in forest harvesting, r might represent the amenity value or carbon credit of the forest while
g would give the value derived from harvesting. We will impose further technical conditions
in Sections 3 and 4 that will guarantee finiteness of the discounted reward and existence of
optimal stopping rules.

Our definition of {Ft}-stopping time follows that of Ethier and Kurtz [6, p. 51] and allows
stopping times to take value ∞. Peskir and Shiryaev [13] refer to these random variables as
Markov times and reserve the term stopping time to be those Markov times which are finite
almost surely. We allow the stopping times to be infinite on a set of positive probability, in
which case the decision is not to stop and receive any terminal reward. Clearly this decision
should not be, and is not, rewarded when there is no running reward and the terminal reward
is positive.

Each of the boundary points xl and xr can be classified as a natural, an entrance or an
exit boundary point depending on the characteristics of the drift coefficient µ(·) and diffusion
coefficient σ(·) ([2, II.10, p. 14-19] or [9, p. 128-131]). When a point is both an exit and an
entrance boundary point, the point is called non-singular and the diffusion is not determined
uniquely. We therefore assume that the boundary points are singular. When xl is a natural
boundary point and x > xl, the process X will not hit xl in finite time (a.s.). The point xl is
thus not part of the state space for X. When xl is an entrance-not-exit boundary point and
x ≥ xl, X(t) ∈ (xl, xr] (a.s.) for all t > 0, so when x = xl, the process immediately enters
the interval (xl, xr) and never exits at xl. When xl is an exit-not-entrance boundary point,
there is a positive probability that X hits xl in finite time after which time X remains at
xl. We therefore interpret x ∈ [xl, xr] to be x ∈ (xl, xr] if xl is a natural or an exit boundary
point and allow x = xl if xl is an entrance boundary point. Similar statements apply to xr.
When xl = −∞ and/or xr = ∞, we require these points to be natural boundaries of the
diffusion, which implies the diffusion is non-explosive.

For some diffusions, we impose a restriction on the set of stopping times τ over which we
maximize (1.2). When xl is either a natural or an entrance-not-exit boundary point, each
stopping time τ under consideration must satisfy either: (a) there exists some constant M τ

1

with xl < M τ
1 < x, such that P (X(t) ≥ M τ

1 , t ≤ τ) = 1; or (b) P (X(τ) ∈ (xl, x)) = 0.
Similarly, when xr is either a natural or an entrance-not-exit boundary point, we require
each admissible stopping time τ to satisfy either: (a) there exists some constant M τ

2 with
x < M τ

2 < xr such that P (X(t) ≤ M τ
2 , t ≤ τ) = 1; or (b) P (X(τ) ∈ (x, xr)) = 0. Examples

of stopping times satisfying these conditions would be the first hitting time of a level a < x
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and the first hitting time of a level b > x. When both xl and xr are natural or entrance-
not-exit boundary points, both sets of conditions are imposed. These restrictions are not
imposed on the set of admissible stopping times when xl and/or xr are exit-not-entrance
boundary points. Denote the set of admissible stopping times by A.

Typically, one is interested in determining both an optimal stopping time τ ∗ and the
value function

V (x) = sup
τ∈A

J(τ ;x). (1.3)

It is helpful to observe that V is a function of the initial position of the diffusion X. This
will become important when the problem is imbedded in a family of linear programs param-
eterized by x.

Optimal stopping of stochastic processes has a long history which has resulted in several
solution approaches. Two excellent surveys of the general theory of optimal stopping are
[5] and [16]. The book by Shiryaev [15] approaches a non-discounted version of the above
problem in which r ≡ 0 by seeking the minimal excessive function lying on or above the
reward function g. This minimal excessive function is the value function V and an optimal
stopping rule is determined by stopping when the process X first hits a point a where
V (a) = g(a). The key to this solution technique is identifying the minimal excessive function
V along with the set {a : V (a) = g(a)}. The recent book by Peskir and Shiryaev [13] relates
the solution of optimal stopping problems to the solution of free boundary problems and
uses the terminology of superharmonic functions in place of excessive functions. The authors
consider more general problems that involve processes with jumps and include rewards based
on the supremum of the process X as well as running and terminal rewards. For continuous
processes, they employ the method of smooth pasting; that is, they seek to determine a
(not necessarily connected) open continuation region C, a (not necessarily connected) closed
stopping region S and a function V for which

(i) C ∩ S = ∅, C ∪ S = [xl, xr],

(ii) V ∈ C1[xl, xr], with V |C ∈ C2(C),

(iii) AV (y) − αV (y) + r(y) = 0 for all x ∈ C, and

(iv) V (y) = g(y) for all x ∈ S.

The moniker “smooth pasting” arises from the fact that one seeks to paste the solution to
the differential equation in the region C from (iii) to the function g on the set S with the
function so defined being continuously differentiable at the boundary points S ∩ C. When
the process has jumps, the condition of smooth pasting is relaxed to continuous pasting.
Optimal stopping of diffusion processes using smooth pasting is also discussed in the text
[12] by Øksendal.

The recent paper by Dayanik and Karatzas [4] shows that the excessive functions are
characterized as concave functions in a generalized sense. The problem of determining the
minimum excessive function which majorizes the reward function is therefore recast as a
problem of finding the minimum generalized concave function which majorizes the reward
function. Their paper illustrates this approach on a number of optimal stopping problems.

As indicated in the first paragraph, this paper approaches the optimal stopping problem
quite differently. The stochastic problem is imbedded in an infinite-dimensional linear pro-
gram (Section 2). We then optimize over a smaller class of stopping times, specifically the
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two-point hitting times, and relax the constraints to form an auxiliary linear problem. A
dual linear program is derived for which a weak duality relationship exists between the linear
programs (Section 3). Strong duality between the problems and sufficiency of a two-point
hitting rule is proven in Section 4. The result of strong duality is that the original stopping
problem is reformulated as an explicit non-linear optimization problem and as a semi-infinite
linear program, both of which can be used to determine the value. This solution technique
is then illustrated in Section 5 on a number of examples.

2 LP Problem and Stopping Rule Analysis

2.1 Derivation of the LP

We take the initial position x ∈ [xl, xr] to be arbitrary but fixed in the following discussion.
Let f ∈ C2[xl, xr] have compact support. Since X satisfies (1.1), an application of Itô’s

formula yields

e−αtf(X(t)) = f(x) +

∫ t

0

e−αs [Af(X(s)) − αf(X(s))] ds+

∫ t

0

e−αsf ′(X(s)) dW (s).

Now let τ be any stopping time in A. The optional sampling theorem [6, Theorem 3.6.6]
implies that

e−α(t∧τ)f(X(t ∧ τ)) − f(x) −
∫ t∧τ

0

e−αs [Af(X(s)) − αf(X(s))] ds

=

∫ t∧τ

0

e−αsf ′(X(s)) dW (s) (2.1)

and so the left-hand side is a martingale. Since f and its derivatives are bounded, taking
expectations in (2.1) and letting t→ ∞ yields

E

[
e−ατf(X(τ)) −

∫ τ

0

e−αs[Af(X(s)) − αf(X(s))] ds

]
= f(x). (2.2)

Notice, in particular, that τ is not assumed to be almost surely finite; on the set {τ = ∞},
the discounting drives the first term to 0 and also implies that the integral term is finite.
The identity (2.2) holds for all f ∈ C2

c [xl, xr].
The LP associated with the optimal stopping problem is derived using a discounted

occupation measure and discounted stopping distribution. Define the measure µτ as

µτ (G) = E
[
e−ατIG(X(τ))

]
, ∀G ∈ B[xl, xr]. (2.3)

Observe that this measure is well-defined when τ = ∞ even though X(τ) is not defined since
the discounting drives the mass to 0. Furthermore, µτ has total mass that is less than or
equal to 1. The discounted occupation measure µ0 is defined by

µ0(G) = E

[∫ τ

0

e−αsIG(X(s)) ds

]
, ∀G ∈ B[xl, xr]; (2.4)
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the total mass of µ0 is less than or equal to 1/α.
The identity (2.2) can be expressed in terms of µτ and µ0 as

∫
f dµτ −

∫
[Af − αf ] dµ0 = f(x), ∀f ∈ C2

c [xl, xr]. (2.5)

Notice the dependence of this identity on the initial position x of the diffusion X.
Turning to the objective function (1.2), observe that it can also be expressed in terms of

µτ and µ0 as

J(τ ;x) =

∫
r dµ0 +

∫
g dµτ . (2.6)

We wish to eliminate the running reward from the objective by adjusting the terminal
reward function and to do so, we assume the following condition is satisfied.

Condition 2.1 The reward function r is such that there exists a solution fr of

Af − αf = r. (2.7)

We demonstrate the reformulation for τ ∈ A having associated bounds M τ
1 and M τ

2 ; the
same reformulation for other τ ∈ A requires a slight adjustment to the argument. Let M
denote the pair (M τ

1 ,M
τ
2 ).

Let ξM : [xl, xr] → [0, 1] be such that ξM ∈ C2
c [xl, xr] and ξM(y) = 1 for all y ∈ [M τ

1 ,M
τ
2 ].

Define the function fr,M = fr · ξM and note that fr,M ∈ C2
c [xl, xr]. Using fr,M in (2.5), we

have

fr(x) = fr,M(x) =

∫
fr,M dµτ −

∫
[Afr,M − αfr,M ] dµ0

=

∫
fr dµτ −

∫
r dµ0

and thus the expected reward using the stopping rule τ is

J(τ ;x) =

∫
r dµ0 +

∫
g dµτ =

∫
[fr + g] dµτ − fr(x). (2.8)

At this point, the question arises as to whether (2.8) depends on the particular choice of
solution fr for (2.7). Consider the homogeneous equation

Af − αf = 0. (2.9)

It is well-known (see [2, II.10, p. 18,19] or [9, p. 128-131]) that (2.9) has a positive, strictly
decreasing solution φ and a non-negative, strictly increasing solution ψ as its fundamental
solutions. (Both φ and ψ depend on α; since we assume α is fixed, we do not use notation
that indicates this dependence.) The functions φ and ψ are unique up to a multiplicative
factor. Furthermore, φ(xl+) = ∞ and ψ(xl+) ≥ 0 when xl is either a natural or an entrance-
not-exit boundary of X and φ(xl−) ∈ (0,∞) when xl is an exit-not-entrance boundary point.
Similar comments apply to xr with the roles of φ and ψ reversed.
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Now consider a stopping time τ ∈ A having an upper bound M τ
2 . Taking M τ

1 = xl and
letting M denote the pair (xl,M

τ
2 ), define ψM = ψ · ξM and observe that

ψ(x) = ψM(x) =

∫
ψM dµτ −

∫
[AψM − αψM ] dµ0

=

∫
ψ dµτ . (2.10)

By considering (fr+ cψ) · ξM , with c constant, and noting that µ0 has its support in [xl,M
τ
2 ],

we have

(fr + cψ)(x) =

∫
(fr + cψ) dµτ −

∫
[A(fr + cψ) − α(fr + cψ)] dµ0

=

∫
(fr + cψ) dµτ −

∫
r dµ0

which, using (2.10), simplifies to

∫
r dµ0 =

∫
fr dµτ − fr(x).

Slight adjustments to the argument indicates that these results hold for φ and for all τ ∈ A.
Thus using the function fr allows the replacement of the running reward of the objective

function by suitably adjusting the terminal reward earned at time τ and shifting by the
constant −fr(x). Since the constant shift is the same for each stopping rule τ ∈ A, it may
be ignored for optimization purposes. To simplify notation, let gr = fr + g, and define

Jr(τ ;x) = J(τ ;x) + fr(x) =

∫
gr dµτ and Vr(x) = V (x) + fr(x). (2.11)

The analysis in the sequel will examine Jr and Vr.
For each stopping time τ and process X satisfying (1.1), the corresponding measures µτ

and µ0 satisfy (2.5) and the value Jr(τ ;x) is given by (2.11). Thus the optimal stopping
problem is imbedded in the linear program






Maximize

∫
gr dµτ

Subject to

∫
f dµτ −

∫
[Af − αf ] dµ0 = f(x), ∀f ∈ C2

c [xl, xr],∫
1dµτ ≤ 1,

∫
1dµ0 ≤ 1/α,

µτ ≥ 0, µ0 ≥ 0.

(2.12)

Denote the value of this linear program by Vlp(x). It immediately follows that

Vr(x) ≤ Vlp(x). (2.13)
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2.2 Analysis of Stopping Rules

The constraints of LP (2.12) can be used to determine the values corresponding to some
simple stopping rules that will play a central role in the construction of the value function.
In particular, we examine the reward obtained by the first hitting time at levels to the right
of, to the left of, or on both sides of x.

Example 2.2 Hitting at Level b ≥ x
Let b ≥ x be fixed and consider the stopping rule τb = inf{t ≥ 0 : X(t) = b} which
stops the first time the process X hits {b}. (The possibility that τb = ∞ is allowed.) It
immediately follows from (2.3) and (2.4) that µτb places all its mass on {b} and µ0 has
support in [xl, b]. When xr is an exit-not-entrance boundary point ψ(xr−) < ∞ and the
following argument can simply use ψ, but when xr is either a natural or an entrance-not-exit
boundary point, ψ(xr−) = ∞ and we must make an adjustment. Use the argument for
(2.10) with ξb ∈ C2

c [xl, xr] such that ξb(y) = 1 for y ∈ [xl, b]. The constraint involving ψb is

ψ(x) = ψb(x) =

∫
ψb dµτb −

∫
[Aψb − αψb] dµ0

= ψ(b)µτb{b} (2.14)

and it immediately follows that µτb{b} = ψ(x)/ψ(b). Using the fact that (2.8) only depends
on the measure µτb , the reward associated with the stopping rule τb is

Jr(τb;x) =
ψ(x)gr(b)

ψ(b)
. (2.15)

Example 2.3 Hitting at Level a ≤ x
Let a be a point in (xl, x] and consider the stopping rule τa = inf{t ≥ 0 : X(t) = a}. Then
µτa is a point mass at {a} and the associated µ0 has support in [a, xr]. We present the
adjustment necessary when xl is either a natural or an entrance-not-exit boundary point
and hence φ(xl+) = ∞. Let ζa ∈ C2[xl, xr] be such that ζa(y) = 0 for y ∈ [xl, a− ǫ] for some
0 < ǫ < a ∧ (a− xl), and ζa(y) = 1 for y ∈ [a, xr]. Using the decreasing solution φ to (2.9),
define φa = φ · ζa. The identity (2.5) is satisfied by φa. (Note, we use ζa to ensure that φa
satisfies the necessary integrability conditions.) Thus

φ(x) = φa(x) =

∫
φa dµτa −

∫
[Aφa − αφa] dµ0

= φ(a)µτa{a} (2.16)

so µτa{a} = φ(x)/φ(a) and hence

Jr(τa;x) =
φ(x)gr(a)

φ(a)
. (2.17)

Remark 2.4 In light of the definition (2.3) of µτ , the above two examples indicate that the
Laplace transform of the first hitting time of the process X at level {c} is

E[e−ατc ] =

{
φ(x)/φ(c) for c ≤ x,
ψ(x)/ψ(c) for c ≥ x;

see, e.g., [2, II.10,p. 18].
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Example 2.5 Hitting {a, b}
Fix a ≤ x ≤ b and consider the stopping rule τa,b = τa ∧ τb = inf{t ≥ 0 : X(t) ∈ {a, b}},
the first hitting time of either level a or level b. Definition (2.3) implies µτa,b

has {a, b}
for its support and definition (2.4) indicates that the associated occupation measure µ0 is
concentrated on [a, b]. Using the two functions φa and ψb in the identity (2.5) and recognizing
that, for c = a, b, φa(c) = φ(c) and ψb(c) = ψ(c) yields the system

{
φ(a)µτa,b

(a) + φ(b)µτa,b
(b) = φ(x)

ψ(a)µτa,b
(a) + ψ(b)µτa,b

(b) = ψ(x).

Two cases must be considered. When a = x = b, the equation involving φ reduces to
φ(x)µτx(x) = φ(x) and similarly for ψ with solution µτx(x) = 1. Now suppose a < b. The
solution of the system is then

µτa,b
(a) =

φ(x)ψ(b) − φ(b)ψ(x)

φ(a)ψ(b) − φ(b)ψ(a)
and µτa,b

(b) =
φ(a)ψ(x) − φ(x)ψ(a)

φ(a)ψ(b) − φ(b)ψ(a)
. (2.18)

These masses are non-negative since φ is decreasing and ψ is increasing. It therefore follows
that the reward associated with the stopping rule τa,b is

Jr(τa,b;x) =

{
gr(x), a = b,

gr(a) · φ(x)ψ(b)−φ(b)ψ(x)
φ(a)ψ(b)−φ(b)ψ(a)

+ gr(b) · φ(a)ψ(x)−φ(x)ψ(a)
φ(a)ψ(b)−φ(b)ψ(a)

, a < b.
(2.19)

Examining the expression for J(τa,b;x) when a < b, we see that it simplifies to gr(x) when
either a = x < b or a < x = b.

Remark 2.6 We observe the following limiting results which agree with one’s intuition.

(a) When xr is either a natural boundary point or an entrance-not-exit boundary point,
ψ(xr−) = ∞. As a result, if we hold the left boundary point a fixed and let b → xr,
the expression for µτa,b

(a) → φ(x)/φ(a) = µτa(a) and µτa,b
(b) → 0. Similarly, when

xl is either a natural or exit-not-entrance boundary point, φ(xl+) = ∞ and holding b
fixed and letting a → xl yields µτa,b

(a) → 0 and µτa,b
(b) → ψ(x)/ψ(b) = µτb(b). Thus

Jr(τa,b;x) → Jr(τa;x) as b→ xr and as a→ xl, Jr(τa,b;x) → Jr(τb;x).

A benefit of these observations is that our optimization of Jr(τa,b;x) in Section 4 allows
for one-sided stopping rules to be seen to be optimal.

(b) When xr is an entrance-not-exit boundary point, ψ(xr−) < ∞ and when xl is an
entrance-not-exit boundary point φ(xl+) < ∞. In either of these cases, letting b → xr
or a→ xl, the masses (2.18) converge to the masses associated with stopping at xr or
xl respectively, and J(τa,b;x) → J(τa,xr

;x) as b → xr and a similar result holds when
a→ xl.

Remark 2.7 The expression (2.19) for J(τa,b;x) exhibits an interesting result when gr =
c1φ+ c2ψ for any constants c1 and c2. This situation occurs when the running reward r ≡ 0
and the terminal reward is g = c1φ + c2ψ. For each choice of stopping locations a and b,
by explicit computation J(τa,b;x) = c1φ(x) + c2ψ(x) and thus every two-point stopping rule
has the same value. Of course, this observation is merely a special case of (2.10) (suitably
generalized to include φ).
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Finally observe that for any choice of a and b, with xl ≤ a ≤ x ≤ b ≤ xr, the reward
obtained using stopping rule τa,b is no greater than the optimal reward:

Jr(τa,b, x) ≤ Vr(x). (2.20)

3 Auxiliary LP, Dual LP and Weak Duality

This section analyzes the LP (2.12) using an auxiliary linear program that involves a relax-
ation of the constraints, the dual linear program and a further restricted linear program. To
begin we place the following additional assumption on the problem to ensure existence of
finite values for the linear programs.

Condition 3.1 For each x ∈ (xl, xr), sup
xl≤y≤x

gr(y)

φ(y)
<∞ and sup

x≤y≤xr

gr(y)

ψ(y)
<∞.

For the remainder of this section, fix x ∈ [xl, xr] arbitrarily.
Consider τ ∈ A with corresponding bounds M τ

1 and M τ
2 . Applying the argument leading

to (2.8) yields

ψ(x) =

∫
ψ dµτ and φ(x) =

∫
φ dµτ .

These identities also hold for all τ ∈ A.
Define the auxiliary LP by replacing the infinite number of constraints corresponding to

each f ∈ C2
c [xl, xr] by these two constraints involving φ and ψ and eliminating the mass

constraint on µ0. 




Maximize

∫
gr dµτ

Subject to

∫
φ dµτ = φ(x),

∫
ψ dµτ = ψ(x),

∫
1 dµτ ≤ 1,

µτ ≥ 0.

(3.1)

Notice this auxiliary LP is expressed solely in terms of the measure µτ . We do not assume the
optimal value is attained for this auxiliary LP or for any other LP in this section. Sufficient
conditions to guarantee the existence of an optimizing measure µτ are given in Section 4.
Denote the value of this auxiliary LP by Valp(x), where again the LP is parameterized by
the initial position x.

Theorem 3.2 For the initial value x ∈ [xl, xr],

Vlp(x) ≤ Valp(x). (3.2)

Proof. Clearly the feasible set of this auxiliary LP (3.1) includes the measure µτ for each
feasible point in the LP (2.12). �

9



We now develop a dual LP corresponding to (3.1). Since there are three constraints,
there will be three dual variables, which we denote by c1, c2 and c3. The dual LP is






Minimize c1φ(x) + c2ψ(x) + c3
Subject to c1φ(y) + c2ψ(y) + c31(y) ≥ gr(y), ∀y ∈ [xl, xr],

c1, c2 unrestricted,
c3 ≥ 0.

(3.3)

In this linear program, the function 1 represents the constant function taking value 1. Let
Vdlp(x) denote the value of this dual LP.

Theorem 3.3 For x ∈ [xl, xr],
Vdlp(x) ≥ Valp(x). (3.4)

Proof. Observe that Condition 3.1 implies the existence of feasible points for the dual
LP (3.3) and taking µτ = δ{x} shows that the feasible set for the auxiliary LP (3.1) is
nonempty. A standard weak duality argument therefore establishes the result. �

Finally, we restrict the feasible set of the dual LP (3.3) by setting c3 = 0. This results in
a restricted dual LP






Minimize c1φ(x) + c2ψ(x)
Subject to c1φ(y) + c2ψ(y) ≥ gr(y), ∀y ∈ [xl, xr],

c1, c2 unrestricted.
(3.5)

Denote the value of (3.5) by Vrdlp(x). The above discussion implies that the feasible set of
the dual LP (3.3) contains the feasible set of restricted dual LP (3.5) so

Vdlp(x) ≤ Vrdlp(x). (3.6)

Now look carefully at this restricted dual LP. The function c1φ+ c2ψ satisfies the differ-
ential equation Af −αf = 0 and, to be feasible, is required to lie above the reward function.
The goal of the LP is to pick the values c1 and c2 so as to minimize the objective function.

Combining the set of inequalities in (2.13), (2.20), (3.2), (3.4) and (3.6) yields for every
xl ≤ a ≤ x ≤ b ≤ xr,

Jr(τa,b;x) ≤ Vr(x) ≤ Vlp(x) ≤ Valp(x) ≤ Vdlp(x) ≤ Vrdlp(x). (3.7)

At this point, it will be helpful for our further discussion to state clearly the weak duality
result that will be exploited. Let J∗

r (x) = supa,b:xl≤a≤x≤b≤xr
Jr(τa,b;x) denote the optimal

value associated by restricting the stopping rules to the set {τa,b : xl ≤ a ≤ x ≤ b ≤ xr}.
Also define Ĵr(c1, c2;x) = c1φ(x)+c2ψ(x) for those c1 and c2 that are feasible for (3.5). Then

Vrdlp(x) = infc1,c2 Ĵr(c1, c2;x).

Theorem 3.4 Weak Duality Let a and b satisfy xl ≤ a ≤ x ≤ b ≤ xr and let c1 and c2 be
feasible for (3.5). Then

Jr(τa,b;x) ≤ J∗
r (x) ≤ Vrdlp(x) ≤ Ĵr(c1, c2;x). (3.8)
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4 Optimization of Jr(τa,b;x) and Strong Duality

We return to the examination of the reward Jr(τa,b;x) associated with stopping at the first
hitting time of {a, b} and, in particular, we consider the optimization of this value over all
possible choices of a and b with xl ≤ a ≤ x and x ≤ b ≤ xr. Again, let x ∈ [xl, xr] be fixed
for this discussion.

We begin by considering the situation in which gr ≤ 0 with x ∈ (xl, xr) and with xl and
xr being either natural boundaries or entrance-not-exit boundaries for the diffusion. This
assumption means that τxl,xr

= ∞ almost surely and moreover, φ(xl+) = ψ(xr−) = ∞. In
this setting, an optimal stopping rule is τxl,xr

since Jr(τxl,xr
;x) = 0 and stopping at any finite

locations a and b will result in a non-positive expected reward.
For the rest of the optimization discussion, we assume there is some y ∈ [xl, xr] for which

gr(y) > 0. We assume y > xl if xl is either a natural boundary point or an entrance-not-exit
boundary point and similarly y < xr if xr is either a natural or entrance-not-exit boundary
point.

We now impose conditions which imply that J∗
r (x) is achieved by some points a∗ ∈ [xl, x]

and b∗ ∈ [x, xr].

Condition 4.1 Assume gr satisfies the following:

(a) gr is upper semicontinuous;

(b) if xl is either a natural or an entrance-not-exit boundary point, then limy→xl

gr(y)
φ(y)

= 0;
and

(c) if xr is either a natural or an entrance-not-exit boundary point, then limy→xr

gr(y)
ψ(y)

= 0.

Since fr is continuous, Condition 4.1(a) requires g to be upper semicontinuous.

Theorem 4.2 Under Conditions 3.1 and 4.1, for each x ∈ [xl, xr], there exist values a∗ =
a∗(x) ∈ [xl, x] and b∗ = b∗(x) ∈ [x, xr] such that Jr(τa∗,b∗ ;x) = J∗

r (x).

Proof. When J∗
r (x) = gr(x), the choice of a∗ = x = b∗ satisfies the claim. So assume that

J∗
r (x) > gr(x). Let {(an, bn) : n ∈ N} be a sequence with an < x and bn > x for all n ∈ N

such that Jr(τan,bn ;x) → J∗
r (x) as n→ ∞.

Compactify the interval [xl, xr] when xl and/or xr are either natural or entrance-not-exit
boundary points. It then follows that there exists a subsequence {nk} and values a∗ and b∗

such that ank
→ a∗ and bnk

→ b∗. To simplify notation, assume the original sequence has
the properties of this subsequence. The following set of relations then holds.

J∗
r (x) = lim

n→∞
Jr(τan,bn ;x)

= lim
n→∞

(
gr(an) ·

φ(x)ψ(bn) − φ(bn)ψ(x)

φ(an)ψ(bn) − φ(bn)ψ(an)
+ gr(bn) ·

φ(an)ψ(x) − φ(x)ψ(an)

φ(an)ψ(bn) − φ(bn)ψ(an)

)

≤ gr(a
∗) · φ(x)ψ(b∗) − φ(b∗)ψ(x)

φ(a∗)ψ(b∗) − φ(b∗)ψ(a∗)
+ gr(b

∗) · φ(a∗)ψ(x) − φ(x)ψ(a∗)

φ(a∗)ψ(b∗) − φ(b∗)ψ(a∗)

= Jr(τa∗,b∗ ;x)

≤ J∗
r (x);
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the first inequality follows since the continuity of φ and ψ imply the convergence of the
fractions and gr is upper semicontinuous. Thus equality holds throughout these relations
and τa∗,b∗ is an optimal stopping time.

To be precise, should a∗ = xl with xl being a natural or an entrance-not-exit boundary
point and b∗ be an interior point of the interval [xl, xr], the limiting expression is ψ(x)

ψ(b∗)
gr(b

∗) =

Jr(τb∗ ;x) and τb∗ is optimal. A similar comment applies to the case of b∗ = xr with a∗ ∈
(xl, xr) yielding τa∗ as an optimal stopping time.

The case in which a∗ = xl and b∗ = xr with both boundary points being either natural
or entrance-not-exit does not arise. For if it would, Conditions 4.1(b,c) imply that the
coefficients of gr(a

∗) and gr(b
∗) would be 0, corresponding to τa∗,b∗ = ∞ almost surely, and

hence Jr(τa∗,b∗ ;x) = 0. But there exists some y ∈ (xl, xr) with gr(y) > 0. The stopping
time τy which stops the process when it first hits {y} will have a strictly positive value for
Jr(τy;x), contradicting 0 = limn→∞ Jr(τan,bn ;x) = J∗

r (x). �

Remark 4.3 The above proof only uses upper semicontinuity of gr at the optimizing points
a∗ and b∗. One would therefore be able to relax the upper semicontinuity assumption on gr
so that it only is required to hold at the optimizers.

At this point an observation is very helpful in preparation for the proof of the strong
duality theorem. To this point we have been considering a single initial point x and the
linear programs related to it. The value function Vr is a function of the initial position
and we will prove that the values of the family of LPs parameterized by x give Vr. It
is thus beneficial to consider more than a single initial value at at time. For instance,
should x be an initial value such that a∗ < x < b∗, then the optimization of J(τa,b; x̃) for
every other initial value x̃ ∈ (a∗, b∗) implies that a∗ and b∗ are also optimal for x̃. The non-
degenerate interval (a∗, b∗) is thus seen to be part of the continuation region C described in the
introduction in which it is optimal to allow the process X to continue without stopping. Let
C = ∪{x ∈ [xl, xr] : a∗(x) < x < b∗(x)} be the continuation region. The set S = [xl, xr] ∩ Cc
is the stopping region. Let C denote the closure of C and S◦ denote the interior of S.

The following proposition identifies a condition under which x is an element of C.

Proposition 4.4 If lim supy→x gr(y) < gr(x), then x ∈ C.

Proof. Suppose x is a point at which lim supy→x gr(y) < gr(x). Choose δ such that 0 < δ <
gr(x) − lim supy→x gr(y). Let y1 < x be fixed and consider the stopping rule τy1,x when the
initial value is y with y1 < y < x. The value associated with this rule is

Jr(τy1,x; y) =
φ(y)ψ(x) − φ(x)ψ(y)

φ(y1)ψ(x) − φ(x)ψ(y1)
gr(y1) +

φ(y1)ψ(y) − φ(y)ψ(y1)

φ(y1)ψ(x) − φ(x)ψ(y1)
gr(x).

Observe that the coefficient of gr(y1) converges to 0 as y converges to x and similarly, the
coefficient of gr(x) converges to 1. Select y2 < x such that for all y2 < y < x, gr(y) < gr(x)−δ,
∣∣∣∣
φ(y)ψ(x) − φ(x)ψ(y)

φ(y1)ψ(x) − φ(x)ψ(y1)
gr(y1)

∣∣∣∣ <
δ

3
and

φ(y1)ψ(y) − φ(y)ψ(y1)

φ(y1)ψ(x) − φ(x)ψ(y1)
gr(x) > gr(x) −

δ

3
.

Then for all y2 < y < x, Jr(τy1,x; y) > gr(y) and y ∈ C.
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Having established the existence of optimizers a∗ = a∗(x) and b∗ = b∗(x) for the optimal
stopping problem restricted to two-point stopping rules, the goal is to prove the optimality
of τa∗,b∗ for the general stopping problem. Our approach will be to obtain coefficients c∗1
and c∗2 that are feasible for the restricted dual LP with Ĵ(c∗1, c

∗
2;x) = J(τa∗,b∗ ;x) and thus

equality will hold throughout (3.7) and (3.8). To achieve this result, we must further restrict
the class of reward functions.

Condition 4.5 For each x ∈ (xl, xr) for which lim supy→x gr(y) = gr(x),

(a) −∞ < lim infyրx
gr(y)−gr(x)

y−x <∞ and −∞ < lim supzցx
gr(z)−gr(x)

z−x <∞; and

(b) if x is a point where lim infyրx
gr(y)−gr(x)

y−x 6= lim supzցx
gr(z)−gr(x)

z−x , then there exists a

sequence {yn < x : n ∈ N}, with yn → x and gr(yn)−gr(x)
yn−x → lim infyրx

gr(y)−gr(x)
y−x as

n→ ∞, such that for each n,

lim inf
yրyn

gr(y) − gr(yn)

y − yn
= lim sup

zցyn

gr(z) − gr(yn)

z − yn
(4.9)

or there exists a sequence {zn > x : n ∈ N} with limn→∞ zn = x and limn→∞
gr(zn)−gr(x)

zn−x =

lim supzցx
gr(z)−gr(x)

z−x such that (4.9) is satisfied for each n when zn replaces yn.

Observe that Condition 4.5(b) is satisfied, for example, when gr is C1 in either a left-
neighborhood or a right-neighborhood of x with the left-hand derivative or right-hand deriva-
tive of gr, respectively, existing at x.

Theorem 4.6 Strong Duality Under Conditions 3.1, 4.1 and 4.5 on gr, for x ∈ [xl, xr],
there exist stopping locations a∗ ∈ [xl, x] and b∗ ∈ [x, xr] and coefficients c∗1 and c∗2 such that

Jr(τa∗,b∗ ;x) = J∗
r (x) = Vr(x) = Vrdlp(x) = Ĵr(c

∗
1, c

∗
2;x).

Proof. The existence of a∗ and b∗ such that J(τa∗,b∗ ;x) = J∗
r (x) follows from Theorem 4.2.

Notice in (2.19) that when a = x or b = x, Jr(τx,b;x) = gr(x) so

J∗
r (x) = sup

a,b:xl≤a≤x≤b≤xr

Jr(τa,b;x) ≥ gr(x). (4.10)

It is necessary to consider different cases for the initial value x. Before doing so, however,
we examine the value associated with a two-point hitting rule and establish some notation.

Observe that the expression for J(τa,b;x) in (2.19) with a < x < b can be rewritten as

Jr(τa,b;x) =
gr(a)ψ(b) − gr(b)ψ(a)

φ(a)ψ(b) − φ(b)ψ(a)
· φ(x) +

gr(b)φ(a) − gr(a)φ(b)

φ(a)ψ(b) − φ(b)ψ(a)
· ψ(x). (4.11)

Define the coefficients c1 and c2 by

c1(a, b) =
gr(a)ψ(b) − gr(b)ψ(a)

φ(a)ψ(b) − φ(b)ψ(a)
and c2(a, b) =

gr(b)φ(a) − gr(a)φ(b)

φ(a)ψ(b) − φ(b)ψ(a)
. (4.12)
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Now, let Ja,b(y) = c1(a, b)φ(y) + c2(a, b)ψ(y) for y ∈ [xl, xr]; that is, we define the function
Ja,b on [xl, xr] to have the form of Jr(τa,b;x) in (4.11) but do not require the independent
variable to lie in the interval (a, b).

Case (a): Suppose x ∈ C. Then there are points a∗ and b∗ such that a∗ = a∗(x) < x <
b∗(x) = b∗.

We claim that Ja∗,b∗ ≥ gr. To verify this claim, consider first a = y < x and b = b∗. Then
Jr(τy,b∗ ;x) ≤ Jr(τa∗,b∗ ;x) implies

c1(y, b
∗)φ(x) + c2(y, b

∗)ψ(x) ≤ c1(a
∗, b∗)φ(x) + c2(a

∗, b∗)ψ(x).

Using the definitions of c1 and c2 in (4.12) and rewriting the expressions as in (2.19), we
have

φ(x)ψ(b∗) − φ(b∗)ψ(x)

φ(y)ψ(b∗) − φ(b∗)ψ(y)
· gr(y) +

φ(y)ψ(x) − φ(x)ψ(y)

φ(y)ψ(b∗) − φ(b∗)ψ(y)
· gr(b∗)

≤ φ(x)ψ(b∗) − φ(b∗)ψ(x)

φ(a∗)ψ(b∗) − φ(b∗)ψ(a∗)
· gr(a∗) +

φ(a∗)ψ(x) − φ(x)ψ(a∗)

φ(a∗)ψ(b∗) − φ(b∗)ψ(a∗)
· gr(b∗) .

Isolating gr(y) on the left-hand-side results in

gr(y) ≤
φ(y)ψ(b∗) − φ(b∗)ψ(y)

φ(a∗)ψ(b∗) − φ(b∗)ψ(a∗)
· gr(a∗) +

(
φ(y)ψ(b∗) − φ(b∗)ψ(y)

φ(x)ψ(b∗) − φ(b∗)ψ(x)

)

·
[
φ(a∗)ψ(x) − φ(x)ψ(a∗)

φ(a∗)ψ(b∗) − φ(b∗)ψ(a∗)
− φ(y)ψ(x) − φ(x)ψ(y)

φ(y)ψ(b∗) − φ(b∗)ψ(y)

]
gr(b

∗)

=
φ(y)ψ(b∗) − φ(b∗)ψ(y)

φ(a∗)ψ(b∗) − φ(b∗)ψ(a∗)
· gr(a∗) +

φ(a∗)ψ(y) − φ(y)ψ(a∗)

φ(a∗)ψ(b∗) − φ(b∗)ψ(a∗)
· gr(b∗)

= c1(a
∗, b∗)φ(y) + c2(a

∗, b∗)ψ(y) = Ja∗,b∗(y).

Using a similar computation with a = a∗ and b = y > x establishes the claim. We
therefore see that this choice of c∗1 = c1(a

∗, b∗) and c∗2 = c2(a
∗, b∗) is feasible for the restricted

dual linear program (3.5) and (a∗, b∗) is optimal for the problem of maximizing Jr(τa,b;x)

over a and b, and moreover, by the definition of c∗1 and c∗2, Jr(τa∗,b∗ ;x) = Ĵr(c
∗
1, c

∗
2;x).

Case (b): Suppose x ∈ ∂C, the boundary of C. There are two cases to consider.

(i): Suppose x is a point at which lim supy→x gr(y) < gr(x). Since x /∈ C, the proof of
Proposition 4.4 shows that for y sufficiently close to x, with y < x, y ∈ C and b∗(y) = x.
Since a∗(y) < b∗(y) = x, the result of Case (a) applies so that fixing y < x sufficiently close
to x and defining c∗1 = c1(a

∗(y), x) and c∗2 = c2(a
∗(y), x), the function c∗1φ+ c∗2ψ majorizes gr

with equality holding at x.

(ii): Now suppose x ∈ ∂C with lim supy→x gr(y) = gr(x). Then there exists a sequence {xn ∈
C : n ∈ N} such that limn→∞ xn → x. Without loss of generality, assume xn ց x. By consid-

ering a subsequence, if necessary, we may assume that gr(xn)−gr(x)
xn−x → lim supn→∞

gr(xn)−gr(x)
xn−x =:

m. Since each xn ∈ C, a∗n := a∗(xn) < b∗(xn) =: b∗n. Observe that x ≤ a∗n < xn so as n→ ∞,
a∗n ց x. Should b∗n converge to some value b∗ ∈ (x, xr], the proof of Case (a) applies. So
assume b∗n ց x as n → ∞. Define cn1 = c1(a

∗
n, b

∗
n) and cn2 = c2(a

∗
n, b

∗
n). It then follows that
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cn1φ+cn2ψ majorizes gr with equality holding at xn. We investigate the limit of cn1 as n→ ∞.
Observe

c1(a
∗
n, b

∗
n) =

gr(a
∗
n)ψ(b∗n) − gr(b

∗
n)ψ(a∗n)

φ(a∗n)ψ(b∗n) − φ(b∗n)ψ(a∗n)

=
gr(a

∗
n)ψ(b∗n) − gr(a

∗
n)ψ(a∗n) + gr(a

∗
n)ψ(a∗n) − gr(b

∗
n)ψ(a∗n)

φ(a∗n)ψ(b∗n) − φ(a∗n)ψ(a∗n) + φ(a∗n)ψ(a∗n) − φ(b∗n)ψ(a∗n)

=
gr(a

∗
n)

ψ(b∗n)−ψ(a∗n)
b∗n−a∗n

− gr(b∗n)−gr(a∗n)
b∗n−a∗n

ψ(a∗n)

φ(a∗n)
ψ(b∗n)−ψ(a∗n)

b∗n−a∗n
− φ(b∗n)−φ(a∗n)

b∗n−a∗n
ψ(a∗n)

.

Letting n → ∞, we see that cn1 → gr(x)ψ′(x)−mψ(x)
φ(x)ψ′(x)−φ′(x)ψ(x)

=: c+1 . A similar analysis shows that as

n→ ∞, cn2 → mφ(x)−gr(x)φ′(x)
φ(x)ψ′(x)−φ′(x)ψ(x)

=: c+2 and thus cn1φ+ cn2ψ converges to c+1 φ+ c+2 ψ. Therefore

c+1 φ+ c+2 ψ majorizes gr and moreover, [c+1 φ+ c+2 ψ](x) = gr(x).

Case (c): Suppose x ∈ S◦. Then a∗(x) = x = b∗(x). In this case, c∗1 = c1(x, x) and
c∗2 = c2(x, x) are not defined and we need a different argument.

(i): To begin, consider the situation in which lim infyրx
gr(y)−gr(x)

y−x = lim infzցx
gr(z)−gr(x)

z−x =
m. We seek constants c1 and c2 such that the function c1φ+ c2ψ majorizes gr and equality
holds at the initial value x. Consider the system of equations

c1φ(x) + c2ψ(x) = gr(x)
c1φ

′(x) + c2ψ
′(x) =m

(4.13)

which arises by requiring the first derivative of c1φ+ c2ψ to equal m as well as c1φ+ c2ψ to
equal gr at x. The solution to this system is

c1 =
gr(x)ψ

′(x) −mψ(x)

φ(x)ψ′(x) − φ′(x)ψ(x)
and c2 =

mφ(x) − gr(x)φ
′(x)

φ(x)ψ′(x) − φ′(x)ψ(x)
. (4.14)

We claim the function c1φ+ c2ψ majorizes gr.
To see this, let ǫ > 0 be chosen arbitrarily and let y < x be arbitrary and z > x be chosen

as will be specified later. The optimality of τx implies that Jr(τy,z;x) ≤ Jr(τx;x) = gr(x).
Writing Jr(τy,z;x) as in (2.19) and isolating gr(y) leads to the inequality

gr(y) ≤
φ(y)ψ(z) − φ(z)ψ(y)

φ(x)ψ(z) − φ(z)ψ(x)
· gr(x) −

φ(y)ψ(x) − φ(x)ψ(y)

φ(x)ψ(z) − φ(z)ψ(x)
· gr(z)

=
gr(x)ψ(z) − gr(z)ψ(x)

φ(x)ψ(z) − φ(z)ψ(x)
· φ(y) +

gr(z)φ(x) − gr(x)φ(z)

φ(x)ψ(z) − φ(z)ψ(x)
· ψ(y) . (4.15)

Now as in Case (b,ii) examine the coefficient of φ(y). We have

gr(x)ψ(z) − gr(z)ψ(x)

φ(x)ψ(z) − φ(z)ψ(x)
=
gr(x)ψ(z) − gr(x)ψ(x) + gr(x)ψ(x) − gr(z)ψ(x)

φ(x)ψ(z) − φ(x)ψ(x) + φ(x)ψ(x) − φ(z)ψ(x)

=
gr(x)

(
ψ(z)−ψ(x)

z−x

)
−
(
gr(z)−gr(x)

z−x

)
ψ(x)

φ(x)
(
ψ(z)−ψ(x)

z−x

)
−
(
φ(z)−φ(x)

z−x

)
ψ(x)
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and thus letting {zn > z : n ∈ N} be a sequence with zn → x such that gr(zn)−gr(x)
zn−x → m, it

follows that

lim
n→∞

gr(x)ψ(zn) − gr(zn)ψ(x)

φ(x)ψ(zn) − φ(zn)ψ(x)
=

gr(x)ψ
′(x) −mψ(x)

φ(x)ψ′(x) − φ′(x)ψ(x)
.

Arguing similarly with the coefficient of ψ(y) yields

lim
n→∞

gr(zn)φ(x) − gr(x)φ(zn)

φ(x)ψ(zn) − φ(zn)ψ(x)
=

mφ(x) − gr(x)φ
′(x)

φ(x)ψ′(x) − φ′(x)ψ(x)
.

Recalling that y is fixed, let N ∈ N be such that for all n ≥ N
∣∣∣∣
gr(x)ψ(zn) − gr(zn)ψ(x)

φ(x)ψ(zn) − φ(zn)ψ(x)
− gr(x)ψ

′(x) −mψ(x)

φ(x)ψ′(x) − φ′(x)ψ(x)

∣∣∣∣ <
ǫ

φ(y) + ψ(y)
(4.16)

and ∣∣∣∣
gr(zn)φ(x) − gr(x)φ(zn)

φ(x)ψ(zn) − φ(zn)ψ(x)
− mφ(x) − gr(x)φ

′(x)

φ(x)ψ′(x) − φ′(x)ψ(x)

∣∣∣∣ <
ǫ

φ(y) + ψ(y)
. (4.17)

Using the estimates in (4.16) and (4.17) in (4.15) yields

gr(y) ≤
gr(x)ψ

′(x) −mψ(x)

φ(x)ψ′(x) − φ′(x)ψ(x)
· φ(y) +

mφ(x) − gr(x)φ
′(x)

φ(x)ψ′(x) − φ′(x)ψ(x)
· ψ(y) + ǫ

= c1φ(y) + c2ψ(y) + ǫ.

Since ǫ > 0 is arbitrary, the claim holds for all y < x.
A similar argument with z > x chosen arbitrarily and yn < x chosen in a similar ap-

proximating sequence close enough to x establishes the relation for z > x. Thus when
lim infyրx

gr(y)−gr(x)
y−x = lim infzցx

gr(z)−gr(x)
z−x = m at x and a∗ = x = b∗, we see that

defining c1 and c2 as in (4.14) produces the function c1φ + c2ψ which majorizes gr with
[c1φ+ c2ψ](x) = gr(x) and hence τx = 0 is optimal.

(ii): Suppose gr satisfies Condition 4.5(b) at x with a “>” inequality and for simplic-
ity assume that there is a left-approximating sequence {yn < x : n ∈ N} and let mn =

lim infyրyn

gr(y)−gr(yn)
y−yn

. A similar argument will apply when a right approximating sequence

{zn > x : n ∈ N} exists.

Let m = lim infyրx
gr(y)−gr(x)

y−x and define the coefficients c−1 and c−2 to be the solutions

of the system (4.13). We claim that the function c−1 φ + c−2 ψ majorizes gr and satisfies
[c−1 φ+ c−2 ψ](x) = gr(x). The latter condition follows immediately from the first equation in
the system so we only need to show that c−1 φ+ c−2 ψ majorizes gr.

Since x ∈ S◦, there is some δ such that for all x̃ ∈ (x − δ, x), a∗(x̃) = x̃ = b∗(x̃). For
yn ∈ (x − δ, x), define cn1 and cn2 as in (4.14) with mn replacing m. Case (b,i) then implies

that cn1φ+ cn2ψ majorizes gr and [cn1φ+ cn2ψ](yn) = gr(yn). Since gr(yn)−gr(x)
yn−x → m as n→ ∞,

it follows that gr(yn) → gr(x). Letting n→ ∞, the continuity of the derivatives of φ and ψ

and the existence of the finite limit m of gr(yn)−gr(x)
yn−x implies cn1 → c−1 and cn2 → c−2 and hence

cn1φ+ cn2ψ → c−1 φ+ c−2 ψ. Therefore c−1 φ+ c−2 ψ majorizes gr.
Observe that when gr satisfies has both approximating sequences in Conditions 4.5(b),

one is able to make this argument on both sides to obtain pairs of coefficients (c−1 , c
−
2 ) and

(c+1 , c
+
2 ) such that both c−1 φ+ c−2 ψ and c+1 φ+ c+2 ψ majorize gr and agree with gr at x. Using
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convex combinations shows that the whole family of coefficients (λc−1 +(1−λ)c+1 , λc
−
2 +(1−

λ)c+2 ), where 0 ≤ λ ≤ 1, also provide majorizing functions.

(iii): Suppose gr satisfies Condition 4.5(b) at x with a “<” inequality. The same proof as
in Case (b,ii) applies to establish that c−1 φ+ c−2 ψ majorizes gr, with equality at x. However,

c−1 φ+ c−2 ψ is smooth at x so [c−1 φ+ c−2 ψ]′(x) ≤ lim infyրx
gr(y)−gr(x)

y−x < lim supzցx
gr(z)−gr(x)

z−x .

Thus [c−1 φ + c−2 ψ](z) < gr(z) for some z > x sufficiently close to x, a contradiction. Hence
x ∈ S◦ implies that Condition 4.5(b) can only be satisfied with a “>” inequality. �

The proof of Case (b,iii) indicates a condition which implies x ∈ C. We formalize this
result in the following proposition.

Proposition 4.7 Suppose gr satisfies Conditions 3.1, 4.1 and 4.5. If x is a point at which

lim inf
yրx

gr(y) − gr(x)

y − x
< lim sup

zցx

gr(z) − gr(x)

z − x
,

then x ∈ C.

An implication of Theorem 4.6 is that the optimal stopping problem has been reformu-
lated as two different optimization problems. One may solve the non-linear maximization
problem J(τa,b;x) over the values of a ≤ x and b ≥ x. One may also solve the restricted
dual linear program (3.5) over coefficients c1 and c2. Only Conditions 3.1, 4.1 and 4.5 are
imposed on gr so little regularity is required.

We emphasize the constructive nature of this approach. For each initial position x, the
optimizing values a∗ and b∗ determine an interval [a∗, b∗] which may be degenerate. Consider
an x for which a∗ < x < b∗ so that the interval [a∗, b∗] is not degenerate. Then for each
x ∈ [a∗, b∗], the corresponding optimizing values are also given by a∗ and b∗. So for each x
in the interval, the coefficients c∗1 and c∗2 given by (4.12) are constant. Moreover, on [a∗, b∗],
c∗1φ+ c∗2ψ is the minimal harmonic function which majorizes gr. Thus a single optimization
determines the value function over the interval;

Vr(x) = c∗1φ(x) + c∗2ψ(x), x ∈ [a∗, b∗].

For the degenerate interval [a∗, b∗] = {x}, the proof of Theorem 4.6 shows how to find coeffi-
cients c∗1 and c∗2 such that c∗1φ+c∗2ψ majorizes gr with c∗1φ(x)+c∗2ψ(x) = gr(x). Thus the value
function can be constructed by solving the family of non-linear optimization problems or by
solving the family of restricted dual LPs (3.5) or by some combination of these approaches.

4.1 Smooth Pasting

Suppose now that gr has some additional smoothness. Specifically, suppose gr is C1 in a
neighborhood of the optimizing values a∗ and b∗. For each a and b with a ≤ x ≤ b and a < b,
define functions c1 and c2 by (4.12). Since we are interested in optimizing with respect to a
and b, we simplify notation by letting h(a, b) = J(τa,b;x) = c1(a, b)φ(x)+ c2(a, b)ψ(x). Using
the smoothness of gr, taking partial derivatives with respect to a and b and simplifying the
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expressions yields

∂h

∂a
(a, b) =

[
g′r(a) −

(
gr(a)ψ(b) − gr(b)ψ(a)

φ(a)ψ(b) − φ(b)ψ(a)
φ′(a) +

gr(b)φ(a) − gr(a)φ(b)

φ(a)ψ(b) − φ(b)ψ(a)
ψ′(a)

)]
(4.18)

·
[
φ(x)ψ(b) − φ(b)ψ(x)

φ(a)ψ(b) − φ(b)ψ(a)

]

= [g′r(a) − (c1(a, b)φ+ c2(a, b)ψ)′(a)] ·
[
φ(x)ψ(b) − φ(b)ψ(x)

φ(a)ψ(b) − φ(b)ψ(a)

]
(4.19)

and

∂h

∂b
(a, b) =

[
g′r(b) −

(
gr(a)ψ(b) − gr(b)ψ(a)

φ(a)ψ(b) − φ(b)ψ(a)
φ′(b) +

gr(b)φ(a) − gr(a)φ(b)

φ(a)ψ(b) − φ(b)ψ(a)
ψ′(b)

)]
(4.20)

·
[
φ(a)ψ(x) − φ(x)ψ(a)

φ(a)ψ(b) − φ(b)ψ(a)

]

= [g′r(b) − (c1(a, b)φ+ c2(a, b)ψ)′(b)] ·
[
φ(a)ψ(x) − φ(x)ψ(a)

φ(a)ψ(b) − φ(b)ψ(a)

]
. (4.21)

Consider the expression on the right-hand side of (4.18). When x = b, the second factor
is 0 indicating that there is no change in h as one moves the stopping location a. This is
intuitively clear since x = b implies the process is stopped immediately. For a ≤ x < b,
the second factor is strictly positive and less than or equal to 1. A similar analysis of the
right-hand side expression in (4.20) shows that the second factor is 0 when x = a and is
strictly positive and bounded by 1 for a < x ≤ b.

From these observations, we see that setting ha = 0 and hb = 0 requires either a = x or
from (4.19)

g′r(a) = (c1(a, b)φ+ c2(a, b)ψ)′(a) (4.22)

and b = x or from (4.21)
g′r(b) = (c1(a, b)φ+ c2(a, b)ψ)′(b). (4.23)

Thus when a∗ 6= x and b∗ 6= x, the optimization over a and b imposes equality of the first
derivatives of the functions gr and c1(a, b)φ + c2(a, b)ψ at the optimizers. At the beginning
of Section 4, it is shown that

gr(a) = (c1(a, b)φ+ c2(a, b)ψ)(a) and gr(b) = (c1(a, b)φ+ c2(a, b)ψ)(b) (4.24)

for every choice of a and b. This means that at an optimal pair (a∗, b∗) of stopping locations,
either a∗ = x and the process stops immediately or a∗ satisfies the smooth pasting condition
and similarly either b∗ = x or the smooth pasting condition is satisfied at b∗.

In the case of natural or entrance-not-exit boundary points, we point out that a∗ could
be xl in which case Jr(τxl,b;x) has expression (2.15) and the smooth pasting condition is
only required at b∗ and similarly should b∗ = xr, the expression for Jr(τa,xr

;x) is (2.17) and
smooth pasting is only required at a∗.

The above argument assumes that the partial derivatives ∂h
∂a

and ∂h
∂b

actually equal 0 for
some a and b with xl ≤ a ≤ x and x ≤ b ≤ xr. The optimal value could also occur with
a = xl or b = xr without either the smooth pasting condition holding or a∗ or b∗ being x.
The endpoints must also be considered when determining the optimizing values of a and b.
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5 Examples

This section illustrates how to construct the value function V using the non-linear optimiza-
tion method, the restricted dual LP and a combination of these approaches. We consider
a geometric Brownian motion process for the first five examples. This choice of diffusion
implies that xl = 0 and xr = ∞ and that both boundaries are natural. We conclude this
section with examples of optimal stopping problems for other types of diffusions. Additional
examples involving other types of processes may be found in [8], though for those examples
the initial position is assumed to be small. For later reference, we begin by determining the
important results concerning geometric Brownian motion.

Let α > 0 denote the discount rate and let µ < α and σ > 0 be constants. We assume
the process X satisfies the stochastic differential equation

dX(t) = µX(t) dt+ σX(t) dW (t), X(0) = x > 0. (5.1)

The generator A of the process X is Af(y) = σ2

2
y2f ′′(y)+µyf ′(y) so the solutions of the

differential equation (2.9) are φ(y) = yγ1 and ψ(y) = yγ2 , in which

γ1 :=
1

2
− µ

σ2
−
√(

1

2
− µ

σ2

)2

+
2α

σ2
< 0 <

1

2
− µ

σ2
+

√(
1

2
− µ

σ2

)2

+
2α

σ2
=: γ2. (5.2)

Consider a general solution f = c1φ+ c2ψ in which c1, c2 > 0. Evaluating the derivative
we have

f ′(y) = γ1c1y
(γ1−1) + γ2c2y

(γ2−1).

Setting f ′ = 0 and solving for y yields

yc =

(−c1γ1

c2γ2

)1/(γ2−γ1)

.

Observe f ′′(y) > 0 for y > 0 since α > µ implies γ2 > 1. Thus f ′ is strictly decreasing for
y < yc and strictly increasing for y > yc and hence yc is a minimizer of f .

We utilize this structure of f in some of the following examples.

Example 5.1 Perpetual Put Option

For this example, X represents the price of a risky asset in a Black-Scholes market. Let
K > 0 denote the option’s strike price. The goal is to select a stopping time τ so as to
maximize

E
[
e−ατ (K −X(τ))+

]
. (5.3)

For this optimization problem to give the risk-neutral price of the option, α is the interest
rate on the non-risky asset and the expectation is taken with respect to the risk-neutral
measure with the result that the mean rate of return of the risky asset is µ = α. As a result,
γ1 = −2α

σ2 and γ2 = 1.
This optimal stopping problem has no running reward r; a reward g is only earned when

the option is exercised at the stopping time. The reward function is g(y) = (K − y)+.
Our goal is, for each x ∈ (0,∞), to maximize (2.19) over stopping locations a and b with
a ≤ x ≤ b.
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We note that since r = 0, Jr = J so we drop the subscript for both J and Ĵ in the
discussion of this example and for the other examples that lack a running reward.

Solution 1: Maximizing J(τa,b;x)

Initial Analysis of Stopping Location a to the Left of x. Consider the case when x > K.
For any stopping location a with a > K and hence any b with b > K as well, J(τa,b;x) = 0
by simple evaluation of (2.19) since g(a) = 0 = g(b). But for each a ∈ (0, K), J(τa,b;x) > 0
so the optimal choice a∗ must be less than K.

Analysis of Stopping Location b to the Right of x. Now consider the case x > 0 and let
a < x ∧ K. First consider the case when x < b < K. The function Ja,b having expression
(4.11) but which takes the independent variable in [xl, xr] is strictly convex and satisfies
Ja,b(a) = K − a and Ja,b(b) = K − b and hence it follows that Ja,b(x) < K − x = gr(x).

Now consider any b > K ∨ x and the stopping time τa,b. The second summand in (2.19)
is 0 and the first summand only depends on b in its mass. In fact, this mass is an increasing
function of b and hence the maximal value occurs when b = ∞. This means that an optimal
stopping rule has the form τa which exercises the option when the stock price first hits
some value a. The goal now reduces to maximizing J(τa;x) given by (2.17) over values of
a ∈ [0, K].

Fix x > 0 and let h(a) = g(a)
φ(a)

· φ(x) = (Ka−γ1 − a1−γ1)xγ1 for 0 < a < K. Setting

h′(a) = 0 results in a∗ = −Kγ1
1−γ1 . A simple analysis shows that a∗ is a maximizer. This means

that for any x ≥ a∗, an optimal stopping rule is given by τa∗ . The relationship between the
functions g and g(a∗)

φ(a∗)
φ is displayed in Figure 1(a).

@
@

@
@

@
@

K

g

g(a∗)
φ(a∗)

· φ

a∗

(a)

@
@

@

V

a∗

(b)

Figure 1: Relation between g and (g(a∗)/φ(a∗))φ and the value function V

Analysis when x < a∗. Now consider 0 < x < a∗. Suppose there were an optimal
stopping location a1 < x < a∗. Since for 0 < y < K, g is continuously differentiable,
a1 would satisfy the smooth pasting principle. However, a∗ is the unique value at which
g(a)
φ(a)

φ′(a) = −1 = g′(a). Thus for no a1 < x < a∗ is a1 an optimal stopping location. It then
follows that the optimal stopping rule is to stop immediately.

20



The value function V and optimal stopping time τ ∗ are given by

V (x) =






K − x, for 0 ≤ x ≤ a∗,

(K − a∗)
( x
a∗

)γ1
, for x ≥ a∗.

and τ ∗ =

{
τx = 0, for x ≤ a∗,
τa∗ , for x ≥ a∗.

The value function V is displayed in Figure 1(b).

Solution 2: Minimizing Ĵ(c1, c2; gr).

We demonstrate how to use the restricted dual LP (3.5) to obtain the value function.
Let x > 0 be fixed. First observe that the majorizing condition of c1φ + c2ψ over g along
with φ(0+) = ∞ and the strict positivity of g near 0 implies that c1 must be positive. Also
since ψ(∞) = ∞ and φ(∞) = 0, c2 must also be non-negative. Since ψ(x) > 0, the objective
function would be minimized if c2 = 0. In this case, the majorizing condition reduces to

c1φ ≥ g yielding c∗1 = sup0<a≤x
g(a)
φ(a)

. Observe that a∗ =
(

−γ1
1−γ1

)
K is the optimizer. Thus for

any initial value x ≥ a∗, the pair (c∗1, 0) provides the optimal solution for the restricted dual
LP.

For x < a∗, c2 must be positive. In trying to minimize [c1φ + c2ψ](x) subject to the
majorizing condition, we must have [c1φ + c2ψ](x) ≥ g(x). The question then arises as to
whether it is possible to have [c1φ+ c2ψ](x) = g(x). Since g is C1 on (0, a∗), the majorizing
requirement implies [c1φ + c2ψ]′(x) = g′(x) when [c1φ + c2ψ](x) = g(x). This then sets up
the system (4.13) of linear equations that determine the optimal choice of c∗1 and c∗2 given by
(4.14). Since [c∗1φ+ c∗2ψ]′′ > 0, [c∗1φ+ c∗2ψ]′ is strictly increasing and it follows that c∗1φ+ c∗2ψ
majorizes g.

Example 5.2 Perpetual “Up-and-Out” Barrier Put Option

Our second example is a modification of the perpetual put option in Example 5.1 in which we
consider an “up-and-out” barrier for which the option becomes worthless at the time when
the stock price first hits a barrier level. This example is solved by Dayanik and Karatzas [4]
using a characterization of the excessive functions as generalized concave functions combined
with a change in variable argument. We determine the solution using the approaches of this
paper.

Again, let the stock price process satisfy (5.1) with µ = α, where α denotes the risk-
neutral interest rate. Let b0 > K denote the barrier such that the option expires at time
τb0 = inf{t ≥ 0 : X(t) ≥ b0}. We observe that τb0 = 0 for initial values X(0) = x ≥ b0. The
option price is determined by optimizing

J(τ ∧ τb0 ;x) = E
[
e−α(τ∧τb0 )(K −X(τ ∧ τb0))+

]
(5.4)

over all stopping times τ ∈ A. We note that the dynamics (5.1) of the stock price process
X are determined under the risk-neutral measure and that for initial positions x ≥ b0 the
definition of τb0 implies J(τ ∧ τb0 ;x) = 0 for every τ ∈ A.

As in Example 5.1, γ1 = −2α
σ2 and γ2 = 1 so the decreasing solution of Af − αf = 0 is

φ(y) = yγ1 and the increasing solution is ψ(y) = y. Let τa,b denote the two-point stopping
rule with a ≤ x ≤ b and a < b. We observe that when b ≤ b0, τa,b ∧ τb0 = τa,b and that
τa,b ∧ τb0 = τa,b0 when b ≥ b0. We therefore optimize the value

J(τa,b;x) = (K − a)+ · bx
γ1 − xbγ1

baγ1 − abγ1
+ (K − b)+ · xa

γ1 − axγ1

baγ1 − abγ1
(5.5)
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over the possible values of a and b with a ≤ x ≤ b.
Consider the case of a < x < b < K in which both terms of (5.5) are positive and

define the function Ja,b on [xl, xr] by (5.5) with the independent variable replacing x. We
have already established that Ja,b(a) = (K − a)+ and Ja,b(b) = (K − b)+. Observe Ja,b is
strictly convex, whereas the function (K − y)+ is linear over [0, K]. It therefore follows that
J(τa,b;x) = Ja,b(x) < (K − x)+ so τa,b is not optimal. Thus either the optimal b = x and it
is optimal to stop immediately or the optimal choice of b is greater than K. In the latter
case, the second term of (5.5) is 0 and the first term is strictly increasing in b. Since the
option becomes worthless at the time the process first hits the barrier, the optimal choice
of b is b∗ = b0. The same analysis as in Example 5.1 indicates that a∗ < K. Since the
second term in (5.5) is 0, the optimization problem reduces to maximizing the first term of
J(τa,b0 ;x) over the values of a. A brief examination shows that J(τ0,b0 ;x) = 0 = J(τK,b0;x)
with J(τa,b0 ;x) > 0 for all a ∈ (0, K). Setting the derivative with respect to a equal to 0
results in the transcendental equation

−b0γ1Ka
γ1−1 + b0 (γ1 − 1) aγ1 +Kbγ10 = 0 (5.6)

whose solution is the optimal value a∗, provided a∗ ≤ x. Figure 2(a) displays the rela-
tion between g and Ja∗,b0 , the function having form J(τa∗,b0 ;x) without restriction on the
independent variable.
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@
@

@

K

g(x)

Ja∗,b0

a∗ b0
(a) g and J(τa∗,b0 ;x)

@
@

@

K

V

a∗ b0
(b) The Value Function V

Figure 2: Relation between g and J(τa∗,b0 ;x) and the value function V

For x < a∗, the same arguments in Example 5.1 yields the optimal stopping location
a = x so that stopping occurs immediately. Thus the optimal stopping rule is

τ ∗ =

{
τa∗,b0 , for a∗ ≤ x ≤ b0,

0, otherwise,

and the value function is

V (x) =






K − x, for 0 ≤ x ≤ a∗,

(
(K − a∗)

a∗((a∗)γ1−1 − bγ1−1
0 )

)
xγ1 −

(
(K − a∗)bγ1−1

0

a∗((a∗)γ1−1 − bγ1−1
0 )

)
x, for a∗ ≤ x ≤ b0,

0, for x ≥ b0.
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The value function V is displayed in Figure 2(b). Equation (5.6) agrees with equation (6.7)
of [4] for determining the optimal stopping location a∗, and the formulas for V are the
same. Our expression for V exhibits the function as a linear combination of the fundamental
solutions φ and ψ to Af − rf = 0 on [a∗, b0] and equal to g otherwise.

Example 5.3 Capped Call Option on a Dividend-Paying Asset

Consider now a process X satisfying (5.1) with µ = α−δ in which α > 0 denotes the interest
rate on the risk-free asset and δ > 0 gives the dividend rate for the risky asset. Let K > 0
denote the strike price of the call option and let L > K denote the cap. The option pays
g(y) = (y ∧L−K)+ when exercised at a time that the stock price value is y. The goal is to
determine an optimal exercise time τ ∈ A so as to maximize

E
[
e−ατg(X(τ))

]
.

The generator of the dividend-paying asset is Af(y) = (α − δ)yf ′(y) + (σ2/2)y2f ′′(y).
Define

γ1 :=
1

2
+
δ − α

σ2
−
√(

1

2
+
δ − α

σ2

)2

+
2α

σ2
< 0 <

1

2
+
δ − α

σ2
+

√(
1

2
+
δ − α

σ2

)2

+
2α

σ2
=: γ2.

It then follows that the decreasing and increasing solutions to the equation Af −αf = 0 are
φ(y) = yγ1 and ψ(y) = yγ2 , respectively. Note that γ2 ≥ 1 with equality only when δ = 0.

Using arguments similar to those used for the stopping location b to the right of x in
Exercise 5.1 but for the stopping location a to the left of x, it follows that the optimal choice
for the left stopping boundary is a∗ = 0 and the value associated with the exercise rule which
says to stop when first hitting level b is

J(τb;x) =
g(b)

ψ(b)
· ψ(x).

We wish to maximize the function

h(y) =






(y −K)+

yγ2
, for K ≤ y ≤ L,

(L−K)+

yγ2
, for y ≥ L.

Clearly, the maximum of the second expression occurs when y = L. The maximum of the
first expression occurs at the point x0 = Kγ2

γ2−1
provided x0 ≤ L. When x > x0 ∧ L, one can

determine coefficients c−1 and c−2 as in Case (c,ii) of the proof of Theorem 4.6 and hence it is
optimal to stop immediately when x ≥ x0 ∧ L. The value function is therefore given by

V (x) =






x0 ∧ L−K

xγ20

· xγ2 , for 0 ≤ x ≤ x0 ∧ L,

x ∧ L−K, for x ≥ x0 ∧ L.

The relation between the g(x0)
ψ(x0)

·ψ and g is displayed in Figure 3. Notice in Figure 3(a) that

x0 is the location where the functions g(x0)
ψ(x0)

· ψ and g are tangent. Thus x0 is the stopping
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location for the optimal exercise rule. In Figure 3(b), however, the function g(x0)
ψ(x0)

· ψ is
strictly greater than g so it is not possible to realize the larger function by any stopping
location b. Observe the smaller function g(L)

ψ(L)
· ψ majorizes g as required and gives the value

corresponding to the stopping rule τL. The optimal exercise time is

τ ∗ =

{
τx0∧L, for x ≤ x0 ∧ L,

0, for x ≥ x0 ∧ L.

The value function V and the optimal exercise rule agree with the results of Example 6.3 of
[4]. This problem was first studied by Broadie and Detemple [3].
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Figure 3: Maximizer x0 of (y −K)+/ψ(y)

Example 5.4 Forest Harvest with Carbon Credits

Let X satisfy (5.1) with µ, σ > 0. The process X now represents the quantity of lumber in a
stand of forest. When the stand is harvested, it earns a net profit of g(y) = k1y

β−k2, in which
k1, k2 > 0 and β > 0. Until harvest, the owner is paid a carbon credit that is proportional
to the same power of the size of the forest, so r(y) = Ryβ. The owner’s objective is to select
a stopping time τ so as to maximize

E

[∫ τ

0

e−αtRXβ(t) dt+ e−ατ (k1X
β(τ) − k2)

]
. (5.7)

We make the following assumptions about the relation between the parameters. In order to
have a finite maximum in (5.7), we impose the condition that β < γ2, where γ2 is defined
in (5.2); otherwise, the owner can receive arbitrarily large discounted rewards by choosing
to stop when X hits sufficiently large values. The assumption 0 < β < γ2 also implies that
(σ2/2)β(β − 1) + µβ − α < 0. In addition, we assume k1[α − βµ − (σ2/2)β(β − 1)] > R,
which will imply the existence of a finite optimal stopping time.

Applying the differential operator Af − αf to the function fr(y) = R
(σ2/2)β(β−1)+µβ−α y

β

results in Afr − αfr = Ryβ. Let k3 = k1 + R
(σ2/2)β(β−1)+µβ−α . Thus the function gr(y) =
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fr(y) + g(y) = k3y
β − k2. We note that the assumptions on the parameters imply k3 > 0 so

that the owner has an incentive to harvest the lumber at some point. It then follows that

gr is strictly increasing, gr(0) = −k2 and gr(y0) = 0 for y0 =
(
k2
k3

)1/β

. For x < y0, choosing

any value a such that 0 < a < x has value J(τa,b; a) = gr(a) < 0. Selecting a = 0 and b ≥ y0

and hence c1(a, b) = 0, however, yields

J(τa,b;x) = J(τb;x) =
gr(b)

ψ(b)
· xγ2 ,

with the result that its value is non-negative for all x ≥ 0. Thus for x sufficiently small, the
optimal stopping time will be τb for some b > x ∨ y0. We now seek the optimal value of b.

Define h(b) = gr(b)/ψ(b) = k3b
β−γ2 − k2b

−γ2 . Setting the derivative of h equal to 0 yields

0 = k3(β − γ2)b
β−γ2−1 + k2γ2b

−γ2−1 = [k3(β − γ2)b
β + k2γ2]b

−γ2−1

and hence a unique maximum occurs at b∗ =
(

k2γ2
k3(γ2−β)

)1/β

.

Now consider the situation for x ∈ (b∗,∞). Since for x > b∗, gr ∈ C1(b∗,∞). If there were
two distinct points a∗ and b∗ for which the stopping time τa∗,b∗ would be optimal, the points
would need to satisfy the smooth pasting conditions (4.22) and (4.23). These conditions
would imply that g′r(y) = c1φ

′(y) + c2ψ
′(y) for at least two values of y. Differentiating

h1(y) = c1φ′(y)+c2ψ′(y)
g′r(y)

= c1γ1
k3β

yγ1−β + c2γ2
k3β

yγ2−β yields

h′1(y) =
c1γ1(γ1 − β)

k3β
yγ1−β−1 +

c2γ2(γ2 − β)

k3β
yγ2−β−1 > 0.

The ratio c1φ′+c2ψ′

g′r
is therefore strictly increasing and b∗ is the only value which satisfies the

smooth pasting principle. Thus, for x > b∗, there cannot be two distinct optimal points a∗

and b∗. The only optimal stopping rule is τ ∗ = 0.
The value function is therefore

Vr(x) =






(
gr(b

∗)

(b∗)γ2

)
xγ2 , for x ≤ b∗,

k3x− k2, for x ≥ b∗.

The value function for the original stopping problem is

V (x) =






(
gr(b

∗)

(b∗)γ2
− R

(σ2/2)β(β − 1) + µβ − α

)
xγ2 , for x ≤ b∗,

k1x
β − k2, for x ≥ b∗.

Example 5.5 Discontinuous Reward

In order that the algebra be tractable, we consider the specific model in which µ = σ2

2
and

α = 2σ2. With this choice of parameters, φ(y) = y−2 and ψ(y) = y2.
Let X denote the quantity of some product. Let g1 and g2 be positive constants with

g1 < g2. Consider the reward function g(y) = g1I[0,x1)(y) + g2I[x1,∞)(y). The discontinuity
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of the reward function represents the possibility that the reward changes dramatically once
the quantity achieves a certain threshold. The goal of the decision maker is to determine a
stopping time τ ∈ A so as to maximize E [e−ατg(X(τ))].

Consider any initial point x ≥ x1. In this case, it is simpler to solve the restricted
dual linear program. Observe that g satisfies Condition 4.5(b). Define c1 = g2

2
x2 and

c2 = g2
2
x−2. which are the solutions of (4.13). Since g′(y) = 0 for y > x1, the function

c1φ(y)+c2ψ(y) = g2
2

(
x2

y2
+ y2

x2

)
has minimum value g2 at x and hence majorizes g. Therefore

the optimal stopping time is τ = 0 corresponding to selecting a∗ = x = b∗.
Consider x ∈ (0, x1). Selecting a = x = b results in τa,b = 0 and a value J(τa,b;x) =

g(x) = g1. Now consider other stopping locations. Clearly a < x < x1 so g(a) = g1. When b
is chosen so that x < b < x1, defining the strictly convex function Ja,b on [xl, xr], along with
Ja,b(a) = g1 = Ja,b(b), indicates that J(τa,b;x) = Ja,b(x) < g(x) which implies that τa,b is
suboptimal. When b ≥ x1, the possibility exists for the value to exceed g1. We now examine
this case more carefully.

Since g(y) = g2 for all y ≥ x1 and choosing b > x1 requires a longer time for the process
to hit b than for it to hit x1 and hence more discounting to occur, it is clear that the optimal
choice for stopping to the right of x is b∗ = x1.

Consider now h(a) := J(τa,x1
;x) given by (2.19). For the particular geometric Brownian

motion under consideration, the expression simplifies to

h(a) =
g2x

2x2
1 + g1 [(x1/x)

2 − x2] a2 − g2(x1/x)
2a4

x4
1 − a4

.

Setting h′(a) = 0 results in the equation

2 (x4
1/x

2 − x2)

x4
1 − a4

· a
[
g1x

4
1 − 2g2x

2
1a

2 + g1a
4
]

= 0

having solutions a = 0 and

a =

√√√√g2

g1

−
√(

g2

g1

)2

− 1 · x1. (5.8)

Observe that for x sufficiently close to 0, J(τ0,b;x) =
(
g2
x2

1

)
x2 < g1 and thus a = 0 is not an

optimal choice. Let a∗ be given by (5.8). Then for a∗ ≤ x ≤ x1, τa∗,x1
is an optimal stopping

rule. Define the function

Ja∗,x1
(y) =

g2x
2
1 − g1a

2
∗

x4
1 − a4

∗
y2 +

g1a
2
∗ − g2a

4
∗

x4
1 − a4

∗
(x1/y)

2, y ∈ [0,∞).

Thus Ja∗,x1
is the same function as J(τa∗,x1

;x) but without the restriction on the independent
variable that a∗ ≤ x ≤ x1. Figure 4 displays the relationship between g and Ja∗,x1

.
For x ≤ a∗, any choice of a < x results in J(τa,x1

;x) < g(x) so the optimal stopping rule
is to stop immediately.

From the above analysis, we have determined the value function V to be

V (x) =






g1, for 0 ≤ x ≤ a∗,

c1(a∗, x1)x
−2 + c2(a∗, x1)x

2, for a∗ ≤ x ≤ x1,

g2, for x ≥ x1.
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Figure 4: Relation between g and Ja∗,x1

This example is similar to an example of Salminen [14] in which he considers a drifted
Brownian motion on (−∞,∞) having piecewise constant reward function. A significant
distinction is that in our example, the reward function is upper semicontinuous, contrasting
with the lower semicontinuous reward function of [14], and resulting in the existence of an
optimal stopping time.

We now investigate several examples in which the diffusion is not a geometric Brownian
motion process. We begin by revisiting the “up-and-out” barrier put option of Example 5.2.

Example 5.6 Constant-Elasticity-of-Variance Model

This example is analyzed in Example 6.2 of [4] using the generalized concavity approach.
Let β ∈ (0, 1) be given. The stock price process is given by the constant-elasticity-of-

variance model:
dX(t) = αX(t) dt+ σX1−β(t) dW (t), X(0) = x,

in which α > 0 denotes the interest rate on the non-risky asset, b0 denotes the “up-and-out”
barrier and the dynamics of X are given relative to the risk-neutral measure. The objective
is to maximize over all admissible τ

E
[
e−ατ (K −X(τ))+

]

in which K < b0 denotes the strike price of the option.
Again for x ≥ b0, the barrier is immediately reached or exceeded so the option is worthless.

Thus for every admissible stopping time τ , J(τ ;x) = 0 and hence V (x) = 0 for x ≥ b0.
Now consider x with 0 ≤ x ≤ b0. The process X lives on [0,∞) and has generator

Af(y) = σ2

2
y2(1−β)f ′′(y) + αy f ′(y) defined for f ∈ C2[0,∞). The decreasing and increasing

solutions, respectively, of Af − αf = 0 are

φ(y) = y

∫ ∞

y

1

z2
e
− α

βσ2
z2β

dz, and ψ(y) = y.

Straightforward calculations show that φ(0+) = 1 and φ′′(x) > 0 for each x > 0. Note in
this example, 0 is an exit-not-entrance boundary point and so is part of the state space for
X.
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Let 0 ≤ a < x < b ≤ b0 be given and consider the two-sided stopping rule τa,b. The value
(2.19) associated with τa,b is

J(τa,b;x) =
φ(x)ψ(b) − φ(b)ψ(x)

φ(a)ψ(b) − φ(b)ψ(a)
(K − a)+ +

φ(a)ψ(x) − φ(x)ψ(a)

φ(a)ψ(b) − φ(b)ψ(a)
(K − b)+. (5.9)

The same arguments as in Example 5.2 establish (i) that the optimal b is b∗ = b0 for every
a and (ii) that the optimal choice for a is in [0, K). Notice that K < b0 = b∗ implies that
the second term in (5.9) is 0 and hence we only need to optimize the first summand in a.
Observe also that the restriction a ∈ [0, K) implies (K−a)+ = K−a and this is continuously
differentiable on [0, K). There are two possibilities for the optimal a: either a ∈ (0, K) or
a = 0. The former case holds when the derivative (with respect to a) of J(τa,b0 ;x) equals 0.
This requirement is satisfied when the following condition holds:

h(a) := φ(b0)a− b0φ(a) − (K − a)[b0φ
′(a) − φ(b0)] = 0. (5.10)

Observe that h(K) < 0. The fact that φ′′ > 0 implies that limaց0 φ
′(a) exists. Denote this

limit by φ′(0+) and observe that φ′(0+) may equal −∞. The condition (5.10) is satisfied by
some (unique) a ∈ [0, K) when

φ′(0+) ≤ φ(b0)

b0
− 1

K
. (5.11)

We remark that when β ≤ 1
2
, one can show that φ′(0+) = −∞ which guarantees the existence

of an optimizing a ∈ (0, K); the value of φ′(0+) is unknown for 1
2
< β < 1. Should (5.11)

fail, then the optimizer is a∗ = 0. Letting a∗ denote the optimizer for (5.9), the optimal
stopping rule is

τ ∗ =

{
τa∗,b0 , for a∗ ≤ x ≤ b0,

0, otherwise

and the value function is

V (x) =






K − x, for 0 ≤ x ≤ a∗,
K−a∗

φ(a∗)b0−φ(b0)a∗
[b0 · φ(x) − φ(b0)x] , for a∗ ≤ x ≤ b0,

0, for x ≥ b0.

Example 5.7 Optimal Stopping Problem for a Mean Reverting Process

This example comes from Example 6.10 of [4]. The diffusion processX satisfies the stochastic
differential equation

dX(t) = µX(t)(R−X(t)) dt+ σX(t) dW (t), X(0) = x > 0, (5.12)

in which µ, R and σ are positive constants. Notice that xl = 0 and xr = ∞ and both
boundaries are natural. The generator of X is Af(y) = σ2

2
y2f ′′(y) + µy(R − y)f ′(y) for

f ∈ C2(0,∞).
Let α > 0 denote the discount rate and set K > 0. The goal is to maximize

E
[
e−ατ (X(τ) −K)+

]
(5.13)
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over all τ ∈ A. We remark that this problem differs from pricing a perpetual call option
having strike K since the expectation is taken with respect to the ‘real-world’ probability
measure, not the ‘risk-neutral’ measure.

We begin by considering the restricted dual LP. Let φ and ψ denote the decreasing and
increasing solutions of Af−αf = 0, respectively. Since 0 is a natural boundary, φ(0+) = ∞.
As a result of g(y) = (y −K)+ being non-negative, c1 must also be non-negative. The goal
of the restricted dual LP is to minimize c1φ(x) + c2ψ(x) so taking c1 = 0, if possible, would
be best. We therefore optimize

J(τb;x) =
(b−K)+

ψ(b)
· ψ(x)

over b > 0.
Let M denote the Kummer M -function

M(a, b, z) = 1 +
az

b
+

(a)2

(b)2

z2

2!
+ · · · + (a)n

(b)n

zn

n!
+ · · · ,

where for c = a, b, (c)n := c(c + 1)(c + 2) · . . . · (c + n − 1), (c)0 := 1 (see [1] for details).
M(a, b, z) is the increasing solution of the ordinary differential equation

zf ′′(z) + (b− z)f ′(z) − af(z) = 0.

Let γ1 =
(

1
2
− µR

σ2

)
−
√(

1
2
− µR

σ2

)2
+ 2α

σ2 and γ2 =
(

1
2
− µR

σ2

)
+

√(
1
2
− µR

σ2

)2
+ 2α

σ2 , noting

that γ1 < 0 < γ2, and let c = 2µ
σ2 . The increasing solution ψ of Af − αf = 0 is

ψ(y) = (cy)γ2 M(γ2, 2γ2 + cR, cy), y ≥ 0.

Using the integral representation of the confluent hypergeometric function M , ψ can also be
expressed as

ψ(y) =
Γ(2γ2 + cR)

Γ(γ2 + cR)Γ(γ2)
(cb)γ2

∫ 1

0

ecbttγ2−1(1 − t)−γ1 dt, g ≥ 0.

Thus we need to maximize the ratio

h(b) =
(b−K)+

bγ2M(γ2, 2γ2 + c, cb)
=

(b−K)+

bγ2
∫ 1

0
ecyttγ2−1(1 − t)−γ1 dt

(5.14)

over b > 0. A brief examination of (5.14) indicates that h(b) = 0 for b ≤ K and the
denominator dominates the numerator for large b so limb→∞ h(b) = 0. Furthermore h(b) > 0
for b > K. Using the integral representation and seeking the critical point(s) of h by setting
the derivative equal to zero results (after some algebra) in the equation (for b > K)

γ2K −
[
(γ2 − 1)b+ cb(b−K)

∫ 1

0
ecbttγ2(1 − t)−γ1 dt

∫ 1

0
ecbttγ2−1(1 − t)−γ1 dt

]
= 0. (5.15)

Examining the lefthand-side of (5.15) we see that the expression is initially positive, but is
strictly decreasing in b (for b > K). Hence there is a unique value b∗ for which equality holds
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in (5.15) and it follows that b∗ is a maximizer. We have therefore identified the optimal value
for each x ≤ b∗.

When x > b∗, the fact that g′(b) = 1 for b > x > b∗ > K allows the same smooth pasting
argument as in solution 1 of Example 5.1 to be applied to conclude that it is optimal to stop
immediately. Hence the value function is

V (x) =






(b∗ −K)+

(cb∗)γM(γ, 2γ + cR, cb∗)
· (cx)γM(γ, 2γ + cR, cx), for 0 ≤ x ≤ b∗,

(x−K)+, for x ≥ b∗,

and the optimal stopping rule is

τ ∗ =

{
τb∗ , for 0 < x ≤ b∗,
0, for x > b∗.

Example 5.8 Brownian Motion with Piecewise Linear Reward

Let µ ≡ 0 and σ(x) ≡ 1 so that X is a Brownian motion process whose generator is Af = 1
2
f ′′

for f ∈ C2(−∞,∞). The boundary points ±∞ are both natural boundaries. Let x0 > 0
and c > 0 be constants such that 1 − cx0 > 0. Define the terminal reward function

g(x) =






1, for x ≤ 0,
1 − cx, for 0 ≤ x ≤ x0,
1 − cx0, for x ≥ x0.

The objective is to maximize E [e−ατg(X(τ))] over admissible stopping times τ . This example
has been considered by Øksendal and Reikvam [11] and also appears as Example 6.11 of [4].

The decreasing and increasing solutions to Af − αf = 0 are φ(y) = e−
√

2αy and ψ(y) =

e
√

2αy, respectively. Let x be fixed and consider a and b such that a ≤ x ≤ b with a < b.
The value (2.19) corresponding to the stopping rule τa,b is

J(τa,b;x) =

(
e
√

2α(b−x) − e−
√

2α(b−x)

e
√

2α(b−a) − e−
√

2α(b−a)

)
g(a) +

(
e
√

2α(x−a) − e−
√

2α(x−a)

e
√

2α(b−a) − e−
√

2α(b−a)

)
g(b). (5.16)

Consider first the case in which x < 0. Taking c1 = 1
2
e
√

2αx and c2 = 1
2
e−

√
2αx, the

function [c1φ+ c2ψ](y) = cosh(y − x) has minimum value 1 at x and therefore majorizes g.
Thus, it is optimal to stop the process immediately.

We now consider x ≥ 0. Since g is piecewise linear, there are two cases to analyze. The
optimal left endpoint a∗ must satisfy the smooth pasting conditions when 0 < a∗ < x0 or
should a∗ = 0, the only conditions would be that c1φ(0)+c2ψ(0) = 1 and c1φ

′(0)+c2ψ
′(0) ≥

g′(0+).
We begin by examining the second case; that is, we seek a linear combination c1φ+c2ψ of

φ and ψ for which (c1φ+ c2ψ)(0) = 1 and (c1φ+ c2ψ)′(0) ≥ −c = g′(0+). More specifically,
we are considering the case in which the left stopping location is a = 0 and we wish to
optimize over the right stopping location b. The smooth pasting condition must be satisfied
at the optimal choice b∗. This situation is illustrated in Figure 5(a).
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Figure 5: Possibilities for c1(0, b
∗)φ+ c2(0, b

∗)ψ when c1(0, b
∗)φ(0) + c2(0, b

∗)ψ(0) = 1.

The smooth pasting conditions require

{
1 − cx0 = c1(0, b)e

−
√

2αb + c2(0, b)e
√

2αb

0 = −
√

2αc1(0, b)e
−
√

2αb +
√

2αc2(0, b)e
√

2αb.

The second equation implies c1(0, b) = c2(0, b)e
2
√

2αb which, when used in the first equation,
yields

1 − cx0 = 2c2(0, b)e
√

2αb.

Using (4.12), one can determine that the value of b satisfying this equation is

b∗ =
1√
2α

ln

(
1

1 − cx0

(
1 +

√
1 − (1 − cx0)2

))
(5.17)

and the corresponding coefficients c1 and c2 are

c1(0, b
∗) =

1

2
+

1

2

√
1 − (1 − cx0)2 and c2(0, b

∗) =
1

2
− 1

2

√
1 − (1 − cx0)2.

The condition (c1φ+ c2ψ)′(0) ≥ −c is satisfied when the parameters satisfy the condition

4αx0

1 + 2αx2
0

≤ c, (5.18)

which is the condition assumed in [11].
For x ≥ b∗, the function [c1φ+ c2ψ](y) = (1 − cx0) cosh(y − x) majorizes g and equals g

at x. Therefore τx is an optimal stopping time.
Thus when the parameters satisfy (5.18), the value function is

V (x) =






1, for x ≤ 0,

(1
2

+ 1
2

√
1 − (1 − cx0)2)e−

√
2αx + (1

2
− 1

2

√
1 − (1 − cx0)2)e

√
2αx, for 0 ≤ x ≤ b∗,

1 − cx0, for x ≥ b∗.

Now consider the case in which the parameters α, c and x0 do not satisfy (5.18). Fig-
ure 5(b) displays the function c1(0, b)φ(x) + c2(0, b)ψ(x) when b satisfies the smooth pasting
conditions. Clearly this function does not majorize g so a = 0 is not optimal. Thus a∗ > 0
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and the smooth pasting conditions must be satisfied at both a∗ and b∗. These conditions
are: 





1 − ca = c1(a, b)e
−
√

2αa + c2(a, b)e
√

2αa

1 − cx0 = c1(a, b)e
−
√

2αb + c2(a, b)e
√

2αb

−c = −
√

2αc1(a, b)e
−
√

2αa +
√

2αc2(a, b)e
√

2αa

0 = −
√

2αc1(a, b)e
−
√

2αb +
√

2αc2(a, b)e
√

2αb.

Observe that the second and fourth equations are the same as in the previous case, so we
immediately have

c1(a, b) =
1 − cx0

2
e
√

2αb and c2(a, b) =
1 − cx0

2
e−

√
2αb.

Using these values in the third equation establishes

b− a =
1√
2α

sinh−1

(
c
√

2α

1 − cx0

)
.

The first equation can be written as

1 − ca

1 − cx0

= cosh(
√

2α(b− a))

which solving for a results in

a∗ =
1

c

[
1 − (1 − cx0) cosh

(
sinh−1

( √
c2α

1 − cx0

))]

and hence

b∗ =
1

c

[
1 − (1 − cx0) cosh

(
sinh−1

( √
c2α

1 − cx0

))]
+

1√
2α

sinh−1

(
c
√

2α

1 − cx0

)
.

Thus for a∗ ≤ x ≤ b∗, the value function V is determined. For x ≥ b∗, the argument of the
previous case indicates that optimal stopping must occur immediately and hence

V (x) =






1, for x ≤ 0,
1 − cx, for 0 ≤ x ≤ a∗,

(1 − cx0) cosh
(√

2α(b∗ − x)
)
, for a∗ ≤ x ≤ b∗,

1 − cx0, for x ≥ b∗,

and the optimal stopping rule is

τ ∗ =

{
τa∗,b∗ , for a∗ ≤ x ≤ b∗,

0, otherwise.

Example 5.9 Drifted Brownian Motion with Running Cost

A version of this optimal stopping problem arose in the study of an optimal stochastic control
problem by Karatzas and Ocone [10] and was examined in Example 6.9 of [4].
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Let θ be a positive constant. The process X satisfies the stochastic differential equation

dX(t) = −θ dt+ dW (t), X(0) = x,

in which W is a standard Brownian motion and x ∈ (−∞,∞). The objective is to select an
admissible stopping time τ so as to minimize

E

[∫ τ

0

e−αtX2(t) dt+ δe−ατX2(τ)

]
(5.19)

in which α > 0 denotes the discount rate and δ is a positive constant. The generator of X
is Af(y) = −θf ′(y) + 1

2
f ′′(y), defined for all f ∈ C2(−∞,∞).

Our formulation of this optimal stopping problem differs from that in Example 6.9 of [4]
in that we allow initial positions x < 0 and do not have 0 as an absorbing barrier. The more
restricted problem can be solved by considering τ ∧τ0, where τ0 denotes the first hitting time
of {0} and only taking x ≥ 0.

The first task is to rephrase the minimization problem as the negative of the maximization
of the negative of the running and terminal cost functions. Secondly, by considering fr(y) =
1
α
y2 − 2θ

α2 y + α+2θ2

α3 , Af(y) − αf(y) = −y2 and the objective function (5.19) becomes

E

[
e−ατ

(
1 − αδ

α
X2(τ) − 2θ

α2
X(τ) +

α+ 2θ2

α3

)]
;

we have omitted from this objective function both the constant correction −fr(x) and the
negative of the entire expression. These must be taken into account when determining the
value function for the original minimization problem. The adjusted terminal reward function
is gr(y) = 1−αδ

α
y2 − 2θ

α2y + α+2θ2

α3 .

Let γ1 = θ−
√
θ2 + 2α and γ2 = θ+

√
θ2 + 2α and note that γ1 < 0 < γ2. The decreasing

and increasing solutions to Af − αf = 0 are φ(y) = eγ1y and ψ(y) = eγ2y, respectively.
There are several cases to analyze depending on the value of 1 − αδ.

Case i: 1−αδ < 0. In this case, gr is a quadratic function with a negative leading coefficient.
This case is illustrated in Figure 6. The maximum value of gr occurs at θ

α(1−αδ) < 0 and

gr(0) > 0. Observe that y2/eγ1y → 0 as y → −∞ and similarly y2/eγ2y → 0 as y → ∞,
which implies that c1 and c2 must be non-negative in order for c1φ + c2ψ to majorize gr.
Since the restricted dual LP seeks to minimize [c1φ+ c2ψ](x), it would be best to set either
c1 = 0 or c2 = 0, if possible.

Consider the second case. Maximizing the ratio gr(y)
φ(y)

= 1−αδ
α
y2e−γ1y− 2θ

α2ye
−γ1y+α+2θ2

α3 e−γ1y

determines the optimal coefficient c∗1. Straightforward calculations show that
(
gr(y)
φ(y)

)′
is pos-

itive when y = θ
α(1−αδ) and negative when y = 0 and monotone decreasing on

(
θ

α(1−αδ) , 0
)

so

there is a unique value a∗ where the derivative is 0. The value a∗ is the solution of

−α2γ1(1 − αδ) y2 + 2(α2(1 − αδ) + αγ1θ) y − (2αθ + γ1(α+ 2θ2)) = 0 (5.20)

that is greater than θ
α(1−αδ) . Let c∗1 = gr(a∗)

φ(a∗)
. Then for x ≥ a∗, the optimal stopping rule is

τa∗ and Vr(x) = c∗1φ(x).
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gr
θ

α(1−αδ)

c∗1φ
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(a) x > a∗

gr
θ

α(1−αδ)

c∗2ψ

b∗

(b) x < b∗

Figure 6: gr, c
∗
1φ and c∗2ψ when 1 − αδ < 0

A similar analysis applies to find b∗ and c∗2 = gr(b∗)
ψ(b∗)

such that for x ≤ b∗ the optimal

stopping time is τb∗ and the value function is Vr(x) = c∗2ψ(x). In fact, b∗ is the root of
equation (5.20), in which γ1 is replaced by γ2, with the root being less than θ

α(1−αδ) .
Figure 6 illustrates the relation between gr and the optimal multiples of φ and ψ.
For b∗ ≤ x ≤ a∗, using the stopping rule τa,b with a < x < b, the concavity of gr along

with the convexity of c1(a, b)φ+ c2(a, b)ψ and the equality of gr and c1(a, b)φ+ c2(a, b)ψ at
y = a and y = b results in Jr(τa,b;x) < gr(x). Hence the optimal stopping time is τ ∗ = 0
with resulting value function Vr(x) = gr(x).

Summarizing, the optimal stopping rule τ ∗ and corresponding value function Vr are

τ ∗ =






τb∗ , for x ≤ b∗,
0, for b∗ ≤ x ≤ a∗,
τa∗ , for x ≥ a∗,

and Vr(x) =






c∗2ψ(x), for x ≤ b∗,
gr(x), for b∗ ≤ x ≤ a∗,
c∗1φ(x), for x ≥ a∗.

The value function V for the original optimal stopping problem which seeks to minimize
(5.19) is

V (x) =






1
α
x2 − 2θ

α2 x+ α+2θ2

α3 − c∗2e
γ2x, for x ≤ b∗,

δx2, for b∗ ≤ x ≤ a∗,
1
α
x2 − 2θ

α2 x+ α+2θ2

α3 − c∗1e
γ1x, for x ≥ a∗,

Case ii: 1 − αδ = 0. In this case, gr is a linear function with negative slope and the
analysis of the previous case with x large applies to find the root a∗ = α+2θ2

2α2θ
+ 1

αγ1
of (5.20),

recognizing that the quadratic term has coefficient 0. The optimal stopping rule is to stop
immediately when x ≤ a∗ and to use the hitting time τa∗ when x ≥ a∗. The resulting value
function V for the original optimal stopping problem is

V (x) =

{
δx2, for x ≤ a∗,

1
α
x2 − 2θ

α2 x+ α+2θ2

α3 − c∗1e
γ1x, for x ≥ a∗,

Case iii: 1 − αδ > 0. In this case, gr is a quadratic function with positive leading coef-
ficient. Since gr is continuously differentiable, we seek two points a∗ and b∗ which satisfy
the smooth pasting conditions. Using coefficients c1(a, b) and c2(a, b) given by (4.12) implies
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that c1(a, b)φ(a) + c2(a, b)ψ(a) = gr(a) and similarly for b, for every choice of a and b. Thus
the smooth pasting conditions are imposed on the derivatives and require

{
γ1c1(a, b)e

γ1a + γ2c2(a, b)e
γ2a = g′r(a)

γ1c1(a, b)e
γ1b + γ2c2(a, b)e

γ2b = g′r(b),

or 




(
γ1e

γ1a+γ2b − γ2e
γ2a+γ1b

)
gr(a) + (γ1 − γ2) e

(γ1+γ2)agr(b)

=
(

2(1−αδ)
α

a− 2θ
α2

) (
eγ1a+γ2b − eγ1b+γ2a

)

(γ1 − γ2) e
(γ1+γ2)bgr(a) +

(
γ2e

γ1a+γ2b − γ1e
γ2a+γ1b

)
gr(b)

=
(

2(1−αδ)
α

b− 2θ
α2

) (
eγ1a+γ2b − eγ1b+γ2a

)
.

(5.21)

Let a∗ < b∗ denote the solutions of (5.21) and let c∗1 = c1(a
∗, b∗) and c∗2 = c2(a

∗, b∗). Figure 7
illustrates the relation between gr and c∗1φ+ c∗2ψ.

gr

θ
α(1−αδ)a∗ b∗

c∗1φ+ c∗2ψ

Figure 7: Relation between gr and c∗1φ+ c∗2ψ

The optimal stopping time and value function Vr are

τ ∗ =

{
τa∗,b∗ , for a∗ ≤ x ≤ b∗,

0, otherwise,
and Vr(x) =

{
c∗1φ(x) + c∗2ψ(x), for a∗ ≤ x ≤ b∗,

gr(x), otherwise.

The value function V for the original optimal stopping problem is

V (x) =






1
α
x2 − 2θ

α2 x+ α+2θ2

α3 − c∗1e
γ1x − c∗2e

γ2x, for a∗ ≤ x ≤ b∗,

δx2, otherwise.

Example 5.10 Cantor Set Indicator as Terminal Reward

Again consider a Brownian motion process X having generator Af = 1
2
f ′′ and solutions

φ(y) = e−
√

2αy and ψ(y) = e
√

2αy of Af − αf = 0. Let C1 denote the Cantor set in [0, 1]
obtained by removing successive middle thirds and define the set C to be the union of all
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integer translations of C1. Let g = IC be the terminal reward function. Since C is perfect,
g is upper semicontinuous. The objective is to optimize E [e−ατg(X(τ))] over all admissible
stopping times τ .

To determine the value function V and optimal stopping rules for this problem, two cases
must be analyzed.
Case i: Suppose the initial value x is an element of C. Define c∗1 and c∗2 to be the solution
of the system (4.13) with gr(x) = 1 and replacing g′r(x) by 0. It then follows that c∗1φ+ c∗2ψ
has minimum value 1 at x and majorizes gr. The stopping rule corresponding to this choice
of c∗1 and c∗2 is τ ∗ = τx = 0 and it is optimal to stop the process immediately.

We observe that when x ∈ C, even though lim supyրx
g(y)−g(x)
y−x = ∞ and lim infzցx

g(z)−g(x)
z−x =

−∞, g satisfies Condition 4.5(a) with the two values being equal.

Case ii: Suppose x /∈ C. Then x is an element of some open interval which does not intersect
C. Let

ax = max{c ∈ C : c < x} and bx = min{c ∈ C : c > x}. (5.22)

We claim that τax,bx is an optimal stopping rule. Observe that the expression (4.11) for
J(τax,bx ; x̃) is strictly positive for all x̃ ∈ (ax, bx) whereas picking ax ≤ a ≤ x ≤ b ≤ bx with
either a 6= ax or b 6= bx results in J(τa,b; x̃) < J(τax,bx ; x̃). So a∗(x) ≤ ax and b∗(x) ≥ bx.
Clearly the optimal stopping boundaries must be elements of C. Should one choose a ∈ C

with a < ax, then τa,b > τax,b resulting in more discounting. Hence ax is an optimal left
hitting boundary. A similar argument applies for bx.

The value function and optimal stopping times for this problem are

V (x) =






1, for x ∈ C,

e
√

2α(bx−x) − e−
√

2α(bx−x)

e
√

2α(bx−ax) − e−
√

2α(bx−ax)
+

e
√

2α(x−ax) − e−
√

2α(x−ax)

e
√

2α(bx−ax) − e−
√

2α(bx−ax)
, for x /∈ C,

and

τ ∗ =

{
τx, for x ∈ C,
τax,bx , for x /∈ C.

6 Concluding Remarks

This paper establishes two alternative optimization approaches to the solution of optimal
stopping problems for one-dimensional diffusions. One method recasts the problem as a
non-linear maximization over two-point stopping locations while the other determines a semi-
infinite linear program over the coefficients of the harmonic functions. The combination of an
explicit formula for the expected reward obtained using a two-point hitting rule and duality
analysis proves that the class of such two-point hitting times contains an optimal stopping
rule.

The method is local in nature in that the optimization problems are parameterized by
the initial position x of the diffusion. Therefore, in principle, it is necessary to solve the
entire family of optimization problems in order to determine the value function. In practice,
however, the structure of the two-point stopping rules determines the value function over
intervals of initial values. Strong duality between the optimization problems allows one to
choose whichever problem is easier to analyze for a given initial value. As demonstrated by
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some of these examples, one is also able to use knowledge of the stochastic process and its
hitting times to determine the optimal stopping rules.

The restricted dual linear program (3.5) is quite similar to the approach of Shiryaev [15]
in that it seeks a minimal harmonic function which majorizes the terminal reward function.
Shiryaev’s approach seeks a minimal super-harmonic function for all values of x since this
function is the value function V . Our approach only determines the value function piecewise
so is able to utilize the fundamental solutions of the differential equation Af − αf = 0
to characterize all harmonic functions. When the pieces are connected, the resulting value
function is, of course, super-harmonic.
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