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Abstract. This paper analyzes a stochastic forest growth model in which the manager is able to
first thin the forest to promote better growth before harvesting. Both Wicksell single thinning-and-
harvesting cycle and Faustmann on-going rotation problems are considered. The Wicksell problem
is analyzed by first restricting the class of decision times to (thinning,harvesting) pairs that bound
the growth away from infinity and imbedding the problem in an infinite-dimensional linear program
on a space of triplets of measures. These measures capture the thinning and harvesting decisions
along with the behavior of the growth process prior to harvest. An auxiliary linear program then
leads to a nonlinear optimization problem for which an optimal value and solution are determined.
The values of all the problems are be related through a set of inequalities. The solution of the
nonlinear problem determines (random) thinning and harvesting times for the single thinning-and-
harvesting cycle which demonstrate the equality of the values of these various problems. Finally
for the Wicksell problem, the unrestricted class of thinning-and-harvest times is shown to give
the same value as the restricted class. The Faustmann on-going thinning-and-harvesting rotation
problem is reduced to a Wicksell problem which then allows for the characterization of the value as
the solution to a different nonlinear optimization problem. The effects of the opportunity to thin
the forest are illustrated on a mean-reverting stochastic model.

Keywords. stochastic forest models, forest rotation, Wicksell, Faustmann, harvest, thinning,
linear programming.

1 Introduction

Consider a stochastic forest model where, without any intervention, the process X is assumed
to satisfy

dX(t) = µ(X(t), Y (t)) dt+ σ(X(t), Y (t)) dW (t), X(0) = xnew > 0. (1.1)

Here X is a process that captures the volume and quality of the forest stand, xnew is the value
of a “new” forest, µ denotes the mean growth rate, σ denotes the volatility of the growth rate
and W is a standard Brownian motion process which provides the random fluctuations of
the forest size. The process Y is an indicator process that identifies whether the forest is new
and densely planted (Y (t) = 1) or has been thinned (Y (t) = 2); we assume Y (0) = 1. For
our model, we have in mind functions µ and σ such that the process X is always nonnegative
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and represents a growth process. Allowing dependence on the process Y in these coefficients
means that the growth dynamics can differ for dense and thinned forests or even that the
process X can represent different quantities for the two types of forest. For example, X may
represent the volume of fuel wood for a dense forest and the diameter at breast height (dbh)
for an average, more valuable tree in the thinned forest. The interventions in the growth
of the forest occur when it is thinned and harvested. This paper analyzes both a single
thinning-harvesting cycle of Wicksell type and the Faustmann on-going rotation problem for
this two-decision model.

For the Wicksell single-cycle problem, the goal of the forest manager is to maximize the
expected present-value of the net proceeds of the forest product when thinned and harvested.
Let θ denote the time at which the manager thins the forest and let η be the harvest time.
The size of the forest after thinning is X(θ) whereas the size of the stand is X(θ−) at the
time the decision to thin is made; in this model, the thinning decision results in an immediate
jump to the process X. Let g1 and g2 denote the net profit functions from thinning and
harvesting, respectively, and let α > 0 denote the discount rate. The single-cycle objective
is one of selecting times θ and η, with θ ≤ η, so as to maximize

E
[
e−αθg1(X(θ−))I{θ<∞} + e−αηg2(X(η))I{η<∞}

]
. (1.2)

Let V w(xnew, 1) denote the optimal value.
At this point, one must mention the importance of the interpretation of the model for

the dense and thinned states. The process X may possibly represent two different quantities
in the two states, in which case it may be reasonable for thinning to result in an increase
to the process X; X(θ) > X(θ−). When the model is such that X represents the same
quantity for both dense and thinned forests, it may be necessary to impose an additional
condition on the decision times of the model. For example, if X were to represent the volume
of lumber on the stand, then a decision to thin would reduce the size of X and the model
would therefore restrict the thinning decision to occur only after the process X exceeds the
size of the thinned stand. If X(θ) = xthin, in the simplest case, then one would require
θ > τxthin , where τxthin is the first time at which X achieves level xthin. This paper treats
the more general model by allowing X to increase in value when thinning occurs; the results
can be easily adapted to include additional restrictions on the decision times.

The Faustmann rotation problem replants trees for the cycle to repeat with the new
planting resulting in the forest stand returning to value xnew so the process X starts from
this point following a harvest decision. For k = 1, 2, 3, . . ., let θk and ηk denote the random
times at which the forest is thinned and harvested, respectively, for the kth time. Then
for each k, X(θk−) and X(ηk−) represent the values of X when the decisions are made
to thin and harvest, respectively, while X(θk) and X(ηk) = xnew denote the sizes of X
immediately following these interventions. The Faustmann on-going rotation problem is one
of maximizing

E

[
∞∑
k=1

(
e−αθkg1(X(θk−))I{θk<∞} + e−αηkg2(X(ηk−))I{ηk<∞}

)]
. (1.3)

Let V f (xnew, 1) denote the optimal value for the Faustmann problem.
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The mathematical modeling of forest growth with the aim of determining on-going op-
timal harvesting decisions began with the paper by Faustmann [10] which considered the
case of deterministic growth. Since 1849, a large literature has developed on this topic.
The bibliography by Newman [22] provides a partial but extensive up-to-date (2002) list of
references on the economics of forest rotation. We concentrate our comments on some pa-
pers using stochastic models. Nordstrøm [23] modelled the growth process deterministically
but introduced randomness with prices that followed a finite-state Markov chain in discrete
time. Miller and Voltaire [20] consider a diffusion process for the tree size and solve the
rotation problem. A limitation of this model is that tree sizes will become negative. Clarke
and Reed [6] use a geometric Brownian motion for the forest size to ensure positivity and
an age-dependent geometric Brownian motion for the price process. Using optimal stop-
ping methods, the paper analyzes both the Wicksell single-period and Faustmann on-going
harvest rotation problems. Willassen [26] considers a general stochastic differential equa-
tion model for the growth process in continuous time and uses impulse control methods to
solve the problem. Buongiorno [4] and others employ Markov decision processes to model the
growth process in discrete time; Buongiorno reformulates the problem as a finite-dimensional
linear program. Sødal [25] restricts his analysis to decision times that are hitting times of
the growth process at fixed levels and uses an intuitive mark-up pricing approach to char-
acterize the value as a nonlinear optimization problem. Additional work on the Wicksell
single-period problem for stochastic growth models include papers by Alvarez and Koskela
(see, e.g., [2]), among others. Penttinen [24] includes thinning considerations in his models
but only in terms of cost, not with the possibility of the growth dynamics improving.

Though our exposition is expressed entirely in terms of forests, their harvest, rotation
and thinning, the paper by Miller and Voltaire [20] discusses how the rotation problem is a
paradigm that has many additional economic applications.

This paper is organized as follows. Section 2 concentrates on the Wicksell single thinning-
and-harvesting cycle problem, beginning by placing a restriction on the class of decision
times. The restricted stochastic problem is imbedded in an infinite-dimensional linear pro-
gram in Section 2.1 having variables in a space of triplets of measures. Section 2.2 develops
an auxiliary linear program and corresponding nonlinear optimization problem in such a
manner that all of the values for the various problems can be related by inequalities. The so-
lution to the nonlinear problem allows one to identify an optimal pair of thinning and harvest
times for the restricted stochastic problem whose value matches the largest bounding value
and hence demonstrates that the values of all of these problems are equal. The unrestricted
problem is shown to have the same value in Section 2.3 and hence the optimal thinning and
harvest times for the restricted problem are seen to be optimal for the unrestricted problem
as well. Section 3 examines the Faustmann thinning-and-harvesting rotation problem. The
strong Markov property is employed in Section 3.1 to reduce the Faustmann problem to a
Wicksell single-cycle problem with a slight modification to the harvest payoff function. As a
result, the value is characterized as the solution to a different nonlinear optimization prob-
lem. Illustrative examples using a mean-reverting growth process are given in Sections 2.4
and 3.2.

The reformulation of the stochastic problem in terms of an infinite-dimensional linear
program has previously been employed by the authors for optimal stopping problems (see
[5, 13, 14]), stochastic control problems (see, e.g., [11, 16]) and analysis of uncontrolled
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stochastic processes (see, e.g., [12]). A benefit of the linear programming formulation is that
it enables one to employ numerical methods to approximate the feasible/optimal measures
(see, e.g., [11, 12, 16]). For the model of this paper, however, an exact characterization of
the solution to the linear program is given.

1.1 Detailed Formulation

We begin with a precise formulation of the growth model with thinning. Assume the coeffi-
cients µ and σ are continuous and are such that the process Xy, y = 1, 2, is a weak solution
of the stochastic differential equation

dXy(t) = µ(Xy(t), y) dt+ σ(Xy(t), y) dW (t), Xy(0) = 0, (1.4)

(see Ethier and Kurtz [9, Section 5.3, p. 291] for details) and that these solutions are
unique in distribution. Let Ay denote the generator of the process Xy given by Ayf(x) =
µ(x, y)f ′(x) + (σ2(x, y)/2)f ′′(x). The uniqueness in distribution then implies that the mar-
tingale problems for Ay are well-posed and hence that each Xy is a strong Markov process
(see [9, Theorem 4.4.2, p. 184]). We wish to take advantage of the strong Markov property
to piece together the solutions X1 and X2 to form a weak solution (X, Y ) of (1.1) at all times
other than thinning and harvest times. Let {Ft} denote a common filtration with respect to
which X1 anf X2 are weak solutions of (1.4) for their respective values of y.

For the Wicksell problem, recall θ and η denote the thinning and harvesting times,
respectively; θ and η are required to be {Ft}-stopping times with θ ≤ η. For a given pair
(θ, η), define the paired process (X, Y ) as follows. The initial values are X(0) = xnew and
Y (0) = 1. For 0 < t < θ, X(t) = xnew + X1(t) and Y (t) = 1. At time θ, X jumps from
X(θ−) to X(θ), where X(θ) has distribution π on a bounded interval [xmin, xmax], with
xmin > 0, and Y (θ) = 2. The thinned level of the forest X(θ) is assumed to be independent
of the thinning time θ. For t > θ, X(t) = X(θ) +X2(t− θ). Since the Wicksell payoff ends
at the harvest time, we may stop the process at η and specify X(η) = X(η−).

The Faustmann model is quite similar, but with a couple of important changes. The
thinning and harvest times are {θk} and {ηk}, respectively. Define η0 = 0. These decision
times must be {Ft}-stopping times that satisfy ηk−1 ≤ θk ≤ ηk, for each k ∈ N. Again, for

each k ∈ N, let {X(k)
y } be a sequence of independent processes satisfying (1.4), y = 1, 2.

At each harvest time ηk−1, set (X(ηk−1), Y (ηk−1)) = (xnew, 1) and for ηk−1 ≤ t < θk, set

X(t) = xnew + X
(k)
1 (t − ηk−1) and Y (t) = 1. At each thinning time θk, X(θk) is chosen

from [xmin, xmax] according to π, independently of {θk} and {ηk} and Y (θk) = 2. Then for

θk ≤ t < ηk, define X(t) = X(θk) + X
(k)
2 (t − θk) and Y (t) = 2. Notice that at the times

θk, the forest is thinned to a level X(θk) within some range and this is assumed to happen
instantaneously, and at the times ηk, the forest is instantaneously harvested and replanted
so X(ηk) = xnew, with a corresponding decrease X(ηk) − X(ηk−) to the process. Observe
for each cycle, the process has “poorer growth” dynamics (1.4) with y = 1 between ηk−1 and
θk and “better growth” dynamics (1.4) with y = 2 for times between θk and ηk.

Let A denote the set of pairs of admissible decision rules (θ, η) for the Wicksell problem
and, with a slight abuse of notation, let A also denote the sequence of pairs {(θk, ηk)} for
the Faustmann problem.

4



We place additional restrictions on the coefficients µ and σ through the behavior of the
process at the boundaries. Assume ∞ is a natural boundary point (see [3, II.1.6, pp. 14,15]
or [15, p. 128-131]) so that the forest does not grow without bounds in a finite time. Also
assume that 0 is either a natural, entrance-not-exit or exit-not-entrance boundary point. In
the former two cases, the forest will never die out in finite time (since xnew > 0) whereas
the last condition implies that once the forest fails, it never recovers on its own. For models
in which 0 is an exit boundary point, the objective function would be non-positive for those
decision times θ and η that exceed the hitting time ζ of X at 0.

We note that {Ft} is the filtration associated with the weak solution to (1.1) so it may
contain more information than that arising from the observations of the process X. Since
the stopping times in A are {Ft}-stopping times, these may in principle be determined using
information contained in {Ft} that is not generated by X. Our results nevertheless show
that optimal decision rules exist within the subclass of hitting times of the process.

Before addressing the reward structure for the class of problems under consideration, it
is important to describe some additional structure to the problem. The change in dynamics
occurs only when the thinning and harvesting decisions are made and hence Y changes only
at these decision times. As a result, except at the thinning and harvest decision times, the
generator of the pair (X, Y ) is

Af(x, y) = µ(x, y)∂f
∂x

(x, y) + σ2(x,y)
2

∂2f
∂x2 (x, y)

operating on functions f : R+ × {1, 2} → R that are twice-continuously differentiable in x
for each y. Due to the discounting at rate α, the eigenvalue problem

Af = αf (1.5)

plays a central role in the analysis. Under the conditions assumed in this paper, for each
y ∈ {1, 2}, Af(·, y) = αf(·, y) has a nonnegative, strictly increasing solution ψy (unique up to
a positive multiplicative constant) and furthermore ψy(0+) ≥ 0 and limx→∞ ψy(x) =∞ (see
[3, II.1.10, pp. 18,19]). The specification of the model and the strictly increasing functions
ψ1 and ψ2 are used to determine restrictions on the payoff functions g1 and g2 allowed in
this paper.

Condition 1.1 The payoff functions g1 and g2 are assumed to satisfy the following:

(a) g1 and g2 are continuous and non-decreasing on [0,∞);

(b) g1(xnew) < 0 and g2(xmax) ≤ 0;

(c) there exists some x <∞ such that g2(x) > 0 and g1(x) + ψ2(xmin)
ψ2(x)

· g2(x) > 0; and

(d) for y = 1, 2, lim
x→∞

gy(x)

ψy(x)
= 0.

Condition 1.1(a) implies that a higher value of X yields a larger profit, whereas Con-
dition 1.1(b) indicates there is non-zero cost to immediately thin a replanted forest and
no profit from immediately harvesting the thinned forest. Condition 1.1(c) means that a
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sufficiently large value of X will return a positive profit for both harvesting and for thin-
ning followed by harvesting; should this not be the case, then the optimal times θ and η
would be infinite so that no cost is incurred. Finally, Condition 1.1(d) places a restriction
on how quickly the reward rate can grow relative to the size of X. This condition will be
needed in order to eliminate decisions to thin or harvest at arbitrarily large values from being
near-optimal decisions.

2 Wicksell Single Thinning-and-Harvesting Cycle

This section analyzes the single-cycle problem of deciding when to thin and when to harvest
a forest so as to maximize (1.2) over (θ, η) ∈ A with θ ≤ η. The examination of this problem,
however, begins by restricting the decisions to a smaller collection A1 of {Ft}-stopping times.
The restricted problem is imbedded in an infinite-dimensional linear program from which an
auxiliary linear program is derived and a finite-dimensional nonlinear optimization problem
arises. An optimal pair (θ∗, η∗) of decision times is determined using an optimal solution to
the nonlinear problem. Finally, the optimal solution for the restricted problem is shown to
be optimal for the unrestricted problem and these results are illustrated by an example.

Let A1 denote the collection of pairs of {Ft}-stopping times (θ, η), with θ ≤ η, for which
there exists some K < ∞ such that P (X(t) ≤ K, 0 ≤ t ≤ η) = 1. For such stopping times,
the process X is bounded away from ∞. Note that K may differ for different (θ, η) ∈ A1.
Let V w

r (xnew, 1) denote the optimal value over the restricted collection of pairs of stopping
times.

2.1 Linear Program Imbedding

Select (θ, η) ∈ A1 arbitrarily and define the process λθ by λθ(t) = I[0,t](θ). Notice that
λθ starts at 0 and jumps to 1 at the random time θ after which it remains at 1. Let
D = C2

c (R+×{1, 2}), the space of twice-continuously differentiable functions having compact
support. For f ∈ D, an application of Itô’s formula results in

e−αtf(X(t), Y (t)) = f(xnew, 1) +

∫ t

0

e−αs[Af − αf ](X(s), Y (s)) ds

+

∫ t

0

e−αs
∫

[f(x, 2)− f(X(s−), Y (s−))]π(dx) dλθ(s)

+

∫ t

0

e−αsσ(X(s), Y (s)) ∂f
∂x

(X(s), Y (s)) dW (s).
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The conditions on f imply that the stochastic integral is a martingale so the optional sam-
pling theorem (see [9, Theorem 2.2.13])) establishes that

e−α(t∧η)f(X(t ∧ η), Y (t ∧ η)) − f(xnew, 1)−
∫ t∧η

0

e−αs[Af − αf ](X(s), Y (s)) ds

−
∫ t∧η

0

e−αs
∫

[f(x, 2)− f(X(s−), Y (s−))] π(dx) dλθ(s)

=

∫ t∧η

0

e−αsσ(X(s), Y (s)) ∂f
∂x

(X(s), Y (s)) dW (s)

and hence taking expectations and letting t→∞ results in Dynkin’s formula:

E
[
e−αηf(X(η), Y (η))I{η<∞}

]
− E

[∫ η

0

e−αs[Af − αf ](X(s), Y (s)) ds

]
− E

[∫ η

0

e−αs
∫

[f(x, 2)− f(X(s−), Y (s−))] π(dx) dλθ(s)

]
(2.1)

= f(xnew, 1).

Now define three measures as follows: let νη denote the discounted distribution of
(X(η), Y (η)); let νθ denote the discounted distribution of (X(θ−), Y (θ−)); and define the
expected discounted occupation measure ν0 so that for each G1 ∈ B(R+) and y ∈ {1, 2}

ν0(G1 × {y}) = E

[∫ η

0

e−αsIG1×{y}(X(s), Y (s)) ds

]
.

Observe that Y (η) = 2 and Y (θ−) = 1 so νη and νθ can be (and, in the sequel, are) measures
on R+. Notice also that the total masses of νη and νθ are bounded above by 1 and the total
mass of ν0 is bounded above by 1/α. Finally observe that the discounting implies that the
sets {θ =∞} and {η =∞} contribute no mass to νθ and νη.

For a function h on [xmin, xmax], define 〈h, π〉 =
∫
h(x)π(dx). Using the definitions of

the measures νθ, νη and ν0 along with the fact that π is a probability measure, (2.1) can be
rewritten as ∫

f(x, 2) νη(dx) −
∫

[Af − αf ](x, y) ν0(dx× dy)

−
∫

[〈f(·, 2), π〉 − f(x, 1)] νθ(dx) = f(xnew, 1) (2.2)

and this identity holds for all f ∈ D and (θ, η) ∈ A1. (The identity (2.2) also holds for
all (θ, η) ∈ A but the ensuing argument requires the stopping times to be in A1.) These
measures can be used to evaluate the expected payoff (1.2) resulting in∫

g1(x) νθ(dx) +

∫
g2(x) νη(dx). (2.3)

Since for stopping times (θ, η) ∈ A1, the measures νη, νθ and ν0 satisfy (2.2) and the
corresponding value of (1.2) is given by (2.3), the stochastic decision problem on when to
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thin and harvest over the restricted class of decision rules is imbedded in the linear program

Maximize
∫
g1 dνθ +

∫
g2 dνη

Subject to
∫
f(x, 2) νη(dx)−

∫
[Af − αf ](x, y) ν0(dx× dy)

−
∫

[〈f(·, 2), π〉 − f(x, 1)] νθ(dx) = f(xnew, 1), ∀f ∈ D,∫
1 dνθ ≤ 1,∫
1 dνη ≤ 1,∫
1 dν0 ≤ 1/α,

νθ, νη, ν0 measures.

(2.4)

Let V w
lp (xnew, 1) denote the value of (2.4). The above argument immediately implies the

following comparison of values.

Theorem 2.1 V w
r (xnew, 1) ≤ V w

lp (xnew, 1).

2.2 Auxiliary Linear Program and Nonlinear Optimization

The goal now is to simplify the linear program into an auxiliary linear program in a manner
that becomes more tractable and for which the values can be easily related. Choose any
(θ, η) ∈ A1 and letK denote the bound corresponding to this pair. Recall, for each y ∈ {1, 2},
ψy is a strictly increasing solution to Af(·, y) = αf(·, y). Let f(x, y) = a1ψ1(x)I{1}(y) +
a2ψ2(x)I{2}(y) for some a1, a2 ∈ R. This function does not have compact support so cannot
be immediately used in (2.2). Let ξ : R+ → R+ be a mollifying function satisfying ξ(x) = x
for x ≤ K and ξ ∈ C2

c (R+). Considering the function f̃(x, y) = ξ(x) · f(x, y), we see that

f̃ ∈ D so can be used in (2.2). Moreover, for x ≤ K, ∂f̃
∂x

= ∂f
∂x

and ∂2f̃
∂x2 = ∂2f

∂x2 . Since

X(t) ≤ K a.s. for t ≤ η, it immediately follows that [Af̃ − αf̃ ](X(t), Y (t)) = 0 for all t ≤ η
and therefore ∫

a2ψ2(x) νη(dx)−
∫

[a2〈ψ2, π〉 − a1ψ1(x)] νθ(dx) = a1ψ1(xnew). (2.5)

Thus when restricting the pairs of decision times (θ, η) to the subcollection A1, the identity
(2.2) extends to the function f = a1ψ1I{1} + a2ψsI{2}, for any a1, a2 ∈ R.

We now define an auxiliary linear program by replacing the infinite collection of con-
straints in (2.4) by two constraints derived from (2.5) in which the first constraint selects
a1 = a2 = 1, while the second constraint takes a1 = 0 and a2 = 1. Further relax the condi-
tions by removing the total mass constraints on νθ, νη and ν0, thus eliminating ν0 from the
linear program. The auxiliary linear program is

Maximize
∫
g1(x) νθ(dx) +

∫
g2(x) νη(dx)

Subject to
∫

[ψ1(x)− 〈ψ2, π〉] νθ(dx) +
∫
ψ2(x) νη(dx) = ψ1(xnew),∫

〈ψ2, π〉 νθ(dx)−
∫
ψ2(x) νη(dx) = 0,

νη, νθ measures.

(2.6)

Inherent in the formulation (2.6) is the feasibility requirement on the measures that the
function ψ1 is integrable with respect to νθ and ψ2 is integrable with respect to νη. Denoting
the value of the auxiliary linear program by V w

aux(xnew, 1), again the next theorem follows
from the above discussion.
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Theorem 2.2 V w
lp (xnew, 1) ≤ V w

aux(xnew, 1).

We now turn to the analysis of (2.6) which is a special case of a general linear programming
problem (A.1) in Appendix A. A remark is necessary, however, in order that Proposition A.1
can be applied. One assumption on the model (A.1) is that the integrands in the constraints
be positive. The only integrand in (2.6) for which this is questionable is ψ1(x) − 〈ψ2, π〉.
Recall, the solutions ψ1 and ψ2 are unique up to a multiplicative constant so one may multiply
ψ1 by a sufficiently large constant in order to achieve this positivity; we assume the solution
ψ1 satisfies ψ1(xmin) > 〈ψ2, π〉. Note this condition is satisfied when ψ1(xmin) > ψ2(xmax).

Theorem 2.3 Assume g1 and g2 satisfy Condition 1.1. Let F = {(u, v) : u ≥ xnew, v ≥
xmax}. Then the value of the auxiliary linear program has the following bound:

V w
aux(xnew, 1) ≤ ψ1(xnew) · sup

u,v∈F

g1(u)ψ2(v) + 〈ψ2, π〉g2(v)

ψ1(u)ψ2(v)
. (2.7)

Moreover, optimizers (u∗w, v
∗
w) of the right-hand side of (2.7) exist in F and the hitting times

θ∗ = inf{t > 0 : X(t−) = u∗w} and η∗ = inf{t ≥ θ∗ : X(t−) = v∗w} (2.8)

are optimal thinning and harvesting times, respectively, for the restricted Wicksell single-
cycle problem. The optimal value for the restricted problem is

V w
r (xnew, 1) =

g1(u
∗
w)ψ2(v

∗
w) + 〈ψ2, π〉g2(v

∗
w)

ψ1(u∗w)ψ2(v∗w)
· ψ1(xnew). (2.9)

Proof. Begin by normalizing the first constraint of (2.6) by dividing both sides by ψ1(xnew).
The resulting formulation then matches the general linear program (A.1) so Proposition A.1
can be applied, establishing the bound (2.7). Now rewrite the bounding ratio in (2.7) as

ψ1(xnew)

ψ1(u)
·
[
g1(u) +

〈ψ2, π〉
ψ2(v)

· g2(v)

]
from which one can see that optimizing over v only involves optimizing the ratio g2(v)

ψ2(v)
.

By Condition 1.1(c), there exists some x for which g2(x) > 0. The function ψ2 is strictly

positive on (0,∞) so the ratio g2(x)
ψ2(x)

> 0. By continuity of g2 and ψ2 and Condition 1.1(d),
the maximum value is achieved at some location v∗w <∞.

Now turning to the optimization over u, we seek to maximize the ratio
g1(u)+

〈ψ2,π〉g2(v∗w)

ψ2(v∗w)

ψ1(u)
.

Condition 1.1(c) implies this ratio will be strictly positive for some sufficiently large value of

u. Since limu→∞ ψ1(u) =∞, the increase of g1 in the numerator by the constant 〈ψ2,π〉g2(v∗w)
ψ2(v∗w)

does not affect the limiting value as u → ∞ and hence Condition 1.1(d) establishes the
existence of a maximizer u∗w <∞.

Finally, using a pair (u∗w, v
∗
w) of maximizers of the ratio in (2.7), define the decision times

θ∗ and η∗ as in (2.8). The measure νθ∗ will concentrate all of its mass on {u∗w} and similarly
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νη∗ is a point mass on {v∗w}. The two constraints of the auxiliary linear program (2.6) form
the system {

[ψ1(u
∗
w)− 〈ψ2, π〉] νθ∗({u∗w}) + ψ2(v

∗
w) νη∗({v∗w}) = ψ1(xnew),

〈ψ2, π〉 νθ∗({u∗w}) − ψ2(v
∗
w) νη∗({v∗w}) = 0

from which one readily determines that νθ∗({u∗w}) = ψ1(xnew)
ψ1(u∗w)

and νη∗({v∗w}) = ψ1(xnew)
ψ1(u∗w)

· 〈ψ2,π〉
ψ2(v∗w)

.

Hence this choice of thinning and harvesting times achieves the upper bound (2.9). �

Remark 2.4 Let θu = inf{t > 0 : (X(t−), Y (t−)) = (u, 1)} denote the first hitting time of
u by X under dynamics given by Y (t) = 1 when X(0) = xnew. It is well-known that

E
[
e−αθu

]
=
ψ1(xnew)

ψ1(u)
(2.10)

(see [3, II.1.10, p. 18]). Now let ηv = inf{t > 0 : (X(t), Y (t)) = (v, 2)} be the first hitting
time by X of v under dynamics given by Y (t) = 2. Conditioning on X(θu) = x, we have
E
[
e−α(ηv−θu)|X(θu) = x

]
= ψ2(x)/ψ2(v) and since X(θu) has distribution π on [xmin, xmax],

it follows that E
[
e−α(ηv−θu)

]
= 〈ψ2, π〉/ψ2(v) and hence that E [e−αηv ] = ψ1(xnew)/ψ1(u) ·

〈ψ2, π〉/ψ2(v). The ratio in (2.7) can be expressed as

ψ1(xnew)

ψ1(u)
· g1(u) +

ψ1(xnew)

ψ1(u)
· 〈ψ2, π〉
ψ2(v)

· g2(v) (2.11)

= E
[
e−αθug1(X(θu−))I{θu<∞} + e−αηvg2(X(ηv))I{ηv<∞}

]
.

Thus the nonlinear optimization problem (2.7) maximizes (1.2) over the hitting times of the
paired process (X, Y ) at thinning and harvesting levels (u, 1) and (v, 2), respectively.

Remark 2.5 Let d1(u) = E
[
e−αθu

]
= ψ1(xnew)/ψ1(u) denote the expected discount factor

arising from the rule to thin the forest when (X, Y ) reaches level (u, 1) and let d2(v) =
E
[
e−α(ηv−θu)

]
= 〈ψ2, π〉/ψ2(v) be the expected discount factor associated with the rule to

harvest when (X, Y ) hits (v, 2), starting at time θu in location X(θu). The bound (2.7) then
takes the form d1(u)[g1(u) + d2(v)g2(v)]. The first order optimality conditions are therefore{

d′1(u)[g1(u) + d2(v)g2(v)] + d1(u)g′1(u) = 0

d′2(v)g2(v) + d2(v)g′2(v) = 0

which can be rewritten as 
u ∂
∂u

[g1(u) + d2(v)g2(v)]

[g1(u) + d2(v)g2(v)]
= −ud

′
1(u)

d1(u)

vg′2(v)

g2(v)
= −vd

′
2(v)

d2(v)
.

The second equation shows that the optimal harvesting level v∗w occurs where the elasticity of
the harvest payoff function g2 equals the negative of the elasticity of the harvesting discount
factor d2. The optimal thinning level u∗w, however, occurs where the partial elasticity of the
combined payoffs for thinning g1 and discounted harvesting d2(v)g2(v) equals the negative of
the elasticity of the thinning discount factor d1.
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2.3 Optimality for the Unrestricted Problem

The results of Section 2.2 determine an optimal pair of thinning and harvesting times
(θ∗, η∗) ∈ A1 for the restricted problem. This subsection demonstrates that this pair of
decision times is also optimal for the unrestricted problem.

Theorem 2.6 Assume g1 and g2 satisfy Condition 1.1. Then V w(xnew, 1) = V w
r (xnew, 1)

and hence the thinning and harvest times (θ∗, η∗) of Theorem 2.3 is an optimal pair for the
unrestricted stochastic forestry problem.

Proof. Choose (θ, η) ∈ A arbitrarily. Select a sequence Kn ↗∞ and define τKn = inf{t >
0 : X(t) = Kn}. Since ∞ is a natural boundary point, it follows that τKn ↗∞ as n→∞.
Observe that {(θ∧τKn , η∧τKN )} is a sequence of decision rules within the restricted collection
A1 and hence

V w
r (xnew, 1) ≥ E

[
e−α(θ∧τKn )g1(X(θ ∧ τKn))I{θ∧τKn )<∞}

+e−α(η∧τKn )g2(X(η ∧ τKn))I{η∧τKn )<∞}
]

= E
[
e−α(θ∧τKn )g1(X(θ ∧ τKn))I{θ∧τKn )<∞}I{θ<∞}

]
+E

[
e−α(θ∧τKn )g1(X(θ ∧ τKn))I{θ∧τKn )<∞}I{θ=∞}

]
+E

[
e−α(η∧τKn )g2(X(η ∧ τKn))I{η∧τKn<∞}I{η<∞}

]
(2.12)

+E
[
e−α(η∧τKn )g2(X(η ∧ τKn))I{η∧τKn<∞}I{η=∞}

]
.

Consider the first expectation on the right-hand side of (2.12). Observe that on the set
{θ <∞}, θ(ω) ∧ τKn(ω) = θ(ω) for n sufficiently large. Thus

lim
n→∞

e−α(θ∧τKn )g1(X(θ ∧ τKn))I{θ∧τKn<∞}I{θ<∞} = e−αθg1(X(θ))I{θ<∞}

and hence Fatou’s lemma implies that

E
[
e−αθg1(X(θ))I{θ<∞}

]
≤ lim

n→∞
E
[
e−α(θ∧τKn )g1(X(θ ∧ τKn))I{θ∧τKn<∞}I{θ<∞}

]
.

Analyzing the second term, notice that on the set {θ =∞}, θ ∧ τKn = τKn so

E
[
e−α(θ∧τKn )g1(X(θ ∧ τKn))I{θ∧τKn}I{θ=∞}

]
= E

[
e−ατKng1(X(τKn))I{τKn<∞}I{θ=∞}

]
≤ g1(Kn)E

[
e−ατKnI{τKn<∞}

]
= g1(Kn) · ψ1(xnew)

ψ1(Kn)

and the right-hand side converges to 0 by Condition 1.1(d). The same analyses applies to
the third and fourth expectations in (2.12) with the result that

V w
r (xnew, 1) ≥ E

[
e−αθg1(X(θ))I{θ<∞} + e−αηg2(X(η))I{η<∞}

]
.

Taking the supremum over (θ, η) ∈ A implies V w
r (xnew, 1) ≥ V w(xnew, 1). The reverse

inequality follows immediately from the fact that A1 ⊂ A. �
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2.4 Example

For simplicity, we illustrate the single cycle thinning-and-harvesting problem by looking at
the case in which X is a mean reverting process for both dense and thinned forests. The
key feature of this model are particular mean levels for dense and thinned forests to which
the process is attracted. In our formulation, the mean levels are 1/γy, with γy > 0. When
the process is smaller than 1/γy, the drift will be positive, but when the process exceeds this
level, the drift will be negative. These levels therefore act as natural targets for the sizes of
the dense and thinned forest or for the size of an individual tree in a dense or thinned forest,
depending on what the process X models for each type of forest. Specifically, the process
X satisfies (1.1), where for y = 1, 2, µ(x, y) = µ̄(1 − γyx) and σ(x, y) = σ̄

√
x, with µ̄ and

σ̄ being fixed positive constants. This model is an example of a process on the state space
(0,∞) for which the left end-point 0 is an entrance-not-exit boundary point. For simplicity,
we take the distribution π of the size of the thinned forest stand X(θ) to be a unit point
mass at xthin which means X(θ) = xthin following the decision to thin.

The differential operators for the mean-reverting model are A(y)f(x) = µ̄(1−γyx)f ′(x)+
(σ̄2/2)xf ′′(x), y = 1, 2. The increasing solutions of the eigenfunction equation (1.5) are given
by

ψy(x) = KM

(
α

γyµ̄
,
2µ̄

σ̄2
,
2γyµ̄

σ̄2
x

)
, (2.13)

in which KM(a, b, z) denotes the Kummer M -function

KM(a, b, z) = 1 +
az

b
+

(a)2

(b)2

z2

2!
+ · · ·+ (a)n

(b)n

zn

n!
+ · · · ,

where for c = a, b, (c)n := c(c+ 1)(c+ 2) · . . . · (c+ n− 1), (c)0 := 1 (see [1] for details). For
instance, KM(a, b, z) is a solution of the ordinary differential equation

zf ′′(z) + (b− z)f ′(z)− af(z) = 0;

an alternative notation for the Kummer M -function is KM(a, b, z) = 1F1(a, b; z) in [1].
For illustrative purposes we choose the thinning and harvesting reward functions g1 and

g2 as follows:

gy(x) = x · δy · 1+tanh(%y(x−zy))

2
− cy, y = 1, 2, (2.14)

where for y = 1 and 2, δy, %y, zy and cy are nonnegative constants. Nice interpretations can
be given to the parameters: δy represents the long-term growth rate of timber values (for
large values of x) when % > 0; the quantity cy may include a common shift in value that
applies to all timber sizes (e.g., property tax or transportation costs per tree [7, Table 1]);
%y is a scaling factor and zy is close to the inflection point where profits increase the most.
This form for the harvesting payoff function g2 gives a reasonable family of functions that
provide good approximations to the “Tree Value Conversion Standards” (see Mendel et. al.,
[19]) which estimate the harvesting payoffs based on the size (diameter at breast height -
dbh) and grade of the tree. An example of the fit for sugar maples is provided in Appendix
B; appropriate choices of parameters also provide good fits of g2 for the TVCS of other tree
varieties as well. (The tree value conversion standards were revisited in the publication [8]
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by DeBald and Dale; we base our illustration on the original paper [19].) The form (2.14) of
payoff function can be used for g1 to obtain good approximations of the “Fuel Value” (see
Morrow [21]). Notice that this class of functions includes affine functions when % = 0.

The paper [21] by Morrow lists the TVCS values corresponding to hardwood trees having
dbh in the range from 10 inches to 28 inches and comments that trees with dbh in the range
of 4 to 10 inches are worth nothing except for fuelwood, but are in the most need of thinning.
He further adds that trees with dbh in the range of 10-14 inches have marginal value for
timber and the rate of value increase is high, especially for thinned trees. The situation is
reversed when the trees have dbh in the range 24 to 28 inches with high values but low growth
rates. The function class (2.14) for g2 captures this type of value change while appropriate
choices of γy in the mean-reverting stochastic growth model will provide the observed type
of growth. Morrow also indicates that trees with dbh of 20 inches “do not just occur; they
are the result of thinning young stands, good sites, or a combination of both.”

Table 1 illustrates the optimal thinning and harvesting levels u∗w and v∗w, respectively,
for a particular choice of parameters along with the optimal expected discounted payoff
V w(xnew, 1) for thinning and harvesting. The particular choice of %1 = 0 and z1 = 0 indicates
that a good fit to the fuelwood values is given by an affine function. First observe that the
value of g1(u

∗
w) is slightly negative indicating that it is optimal to spend money to thin

the forest to receive the benefit of larger and more valuable trees when one harvests. Thus
thinning is important in order to develop more valuable trees rather than as a source of
income. Notice also the effect of increasing the thinned size of the forest is to thin earlier but
this has no impact on the decision to harvest. Intuitively, when xthin is small, the decision
to thin would remove larger trees so as to allow smaller, good quality trees to grow to full
size and be harvested. When xthin is large, however, the results indicate that the smaller
competing trees would be thinned leaving larger trees for later harvest.

xthin u∗w v∗w V w(xnew, 1)
10. 29.3 61.7 3.257
12.5 28.0 61.7 3.493
15. 26.5 61.7 3.770
17.5 24.9 61.7 4.097
20. 23.1 61.7 4.487
22.5 21.0 61.7 4.957
25. 18.8 61.7 5.526

Table 1: Optimal thinning levels u∗w and harvesting levels v∗w (in cm) for the Wicksell-Model
as well as values of V w(xnew, 1) for various xthin values (in cm) using two mean reverting
processes; µ1 = µ2 = 1, σ2

1 = σ2
2 = 0.03; 1/γ1 = 100, 1/γ2 = 120, α = 0.03, xnew = 0.5,

δ1 = 0.7345, %1 = 0, z1 = 0, c1 = 9.1748, δ2 = 1.8254, %2 = 0.04502, z2 = 56.6523,
c2 = 4.3862.

These values in Table 1 should be compared with those when thinning is not applied and
the process X only evolves according to the mean-reverting regime with parameters µ = 1,
σ2 = 0.03 and 1/γ1 = 100, and the reward function is given by g2. The choice of g2 for this
comparison provides an optimistic value since the trees in a dense forest will not grow to
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the same size or grade as for a thinned forest, but there will be some trees of sufficient size
so that the use of the fuelwood payoff function g1 would not be appropriate. The optimal
harvesting level of the corresponding Wicksell problem equals 58.8 and the optimal value
is 4.47. Moreover, the expected harvesting time is ∼ 87 years. For the case with thinning,
when xthin = 20 cm or xthin = 22.5 cm in Table 1 (and the associated selection of parameters
and payoff functions), for example, the two phases – before thinning and after thinning –
have an average length of 22-25 years and 61-64 years respectively. Hence, thinning might
slightly increase the average optimal cash flow while the average time up to harvesting is
about the same. (Appendix C derives an integral formula for the mean hitting times of a
mean-reverting process; this formula has been used to determine these mean thinning and
harvest times.)

The optimal values u∗w, v∗w and thinning level xthin serve as recommendations to the
forester who would be given the task of determining how to implement thinning and har-
vesting. Additional comments about the model and implementation are given in Section 4
of concluding remarks.

3 Faustmann Infinite-Cycle Rotation Problem

In contrast with the Wicksell problem whose goal is to maximize the expected discounted
reward for thinning and harvesting a forest one time, the Faustmann problem allows the
forest to be replanted after each harvest and therefore rewards are earned over an infinite
number of thinning and harvesting cycles.

3.1 Reduction to a Wicksell Single-Cycle Problem

This section analyzes the Faustmann problem by using the strong Markov property to relate
it to a Wicksell problem for an adjusted payoff function.

We assume the dynamics of the forest growth process X follow (1.1), that thinning occurs
at times {θk} with the thinned state X(θk) having distriubtion π and that harvesting and
replanting happens at times ηk at which point the process X reinitializes at xnew. The
Faustmann objective is to maximize (1.3) over all {(θk, ηk)} ∈ A. Note, we assume θk ≤
ηk ≤ θk+1 for every k. Recall V f (xnew, 1) denotes the optimal value for the Faustmann
problem.

To facilitate understanding of the argument for this section, we use a subscript on the
expectation operator, e.g. Exnew [·], to indicate the initial position of the process X. This
notation is important when using the strong Markov property.

Theorem 3.1 Assume g1 and g2 satisfy Condition 1.1. Then the optimal value for the
Faustmann infinite thinning-and-harvesting cycle problem is characterized by the nonlinear
optimization problem

V f (xnew, 1) = sup
u,v∈F

g1(u)ψ2(v) + 〈ψ2, π〉g2(v)

ψ1(u)ψ2(v)− ψ1(xnew)〈ψ2, π〉
· ψ1(xnew). (3.1)

Moreover, an optimal pair (u∗f , v
∗
f ) exists and the thinning and harvest times are given by

the successive hitting times of X to the levels u∗f and v∗f , namely, setting η∗0 = 0, define, for
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k = 1, 2, 3, . . . ,

θ∗k = inf{t > η∗k−1 : X(t−) = u∗f} and η∗k = inf{t > θ∗k : X(t−) = v∗f}. (3.2)

The optimal value is therefore

V f (xnew, 1) =
g1(u

∗
f )ψ2(v

∗
f ) + 〈ψ2, π〉g2(v

∗
f )

ψ1(u∗f )ψ2(v∗f )− ψ1(xnew)〈ψ2, π〉
· ψ1(xnew). (3.3)

Proof. In preparation for the analysis, notice that for k ≥ 2, θk ≥ η1; define θ̃k−1 = θk − η1.
Also recall that on the set {η1 <∞}, X(η1) = xnew and observe that the summands of (1.3)
are 0 for k ≥ 2 on the set {η1 =∞}. Then using the strong Markov property in the second
last equality below, we have

Exnew

[
∞∑
k=1

e−αθkg1(X(θk−))I{θk<∞}

]

= Exnew
[
e−αθ1g1(X(θ1−))I{θ1<∞}

]
+ Exnew

[
∞∑
k=2

e−αθkg1(X(θk−))I{θk<∞}

]
= Exnew

[
e−αθ1g1(X(θ1−))I{θ1<∞}

]
+ Exnew

[
Exnew

[
e−αη1I{η1<∞}

∞∑
k=2

e−α(θk−η1)g1(X(η1 + (θk − η1)−))I{η1+(θk−η1)<∞}

∣∣∣∣∣Fη1
]]

= Exnew
[
e−αθ1g1(X(θ1−))I{θ1<∞}

]
+ Exnew

[
e−αη1I{η1<∞}Exnew

[
∞∑
k=1

e−αθ̃kg1(X(η1 + θ̃k−))I{η1+θ̃k<∞}

∣∣∣∣∣Fη1
]]

= Exnew
[
e−αθ1g1(X(θ1−))I{θ1<∞}

]
+ Exnew

[
e−αη1I{η1<∞}EX(η1)

[
∞∑
k=1

e−αθ̃kg1(X(θ̃k−))I{θ̃k<∞}

]]
= Exnew

[
e−αθ1g1(X(θ1−))I{θ1<∞}

]
+ Exnew

[
e−αη1I{η1<∞}Exnew

[
∞∑
k=1

e−αθ̃kg1(X(θ̃k−))I{θ̃k<∞}

]]
.

Define η̃k−1 = ηk − η1, for k ≥ 2. The same analysis can be applied to the rewards obtained
from harvesting and thus

Exnew

[
∞∑
k=1

(
e−αθkg1(X(θk−))I{θk<∞} + e−αηkg2(X(ηk−))I{ηk<∞}

)]

= Exnew

[
e−αθ1g1(X(θ1−))I{θ1<∞} + e−αη1g2(X(η1−))I{η1<∞} (3.4)

+ e−αη1I{η1<∞}Exnew

[
∞∑
k=1

(
e−αθ̃kg1(X(θ̃k−))I{θ̃k<∞} + e−αη̃kg2(X(η̃k−))I{η̃k<∞}

)]]
.
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Denote the infinite sequences by (θ̃, η̃) = {(θ̃k, η̃k)} and notice (θ̃, η̃) ∈ A. Observe

V f (xnew, 1)

= sup
(θ̃,η̃)∈A

Exnew

[
∞∑
k=1

(
e−αθ̃kg1(X(θ̃k−))I{θ̃k<∞} + e−αη̃kg2(X(η̃k−))I{η̃k<∞}

)]
.

Taking the supremum of the right-hand side of (3.4) over (θ̃, η̃) ∈ A implies

Exnew

[
∞∑
k=1

(
e−αθkg1(X(θk−))I{θk<∞} + e−αηkg2(X(ηk−))I{ηk<∞}

)]
≤ Exnew

[
e−αθ1g1(X(θ1−))I{θ1<∞} + e−αη1g2(X(η1−))I{η1<∞} + e−αη1I{η1<∞}V

f (xnew, 1)
]

= Exnew
[
e−αθ1g1(X(θ1−))I{θ1<∞} + e−αη1 [g2(X(η1−)) + V f (xnew, 1)]I{η1<∞}

]
= Exnew

[
e−αθ1g1(X(θ1−))I{θ1<∞} + e−αη1 g̃2(X(η1−))I{η1<∞}

]
where g̃2(x) = g2(x) + V f (xnew, 1). Thus the Faustmann infinite-cycle rotation problem is
bounded above by a Wicksell single-cycle problem using the thinning payoff function g1 and
a shifted harvesting payoff function g̃2. In a similar manner, begin by taking the supremum
of the left-hand side of (3.4) over (θ, η) ∈ A, then the supremum of the right-hand side
over (θ̃, η̃) ∈ A and finally the supremum of the right-hand side over (θ1, η1) in the Wicksell
admissible set to obtain the opposite inequality and hence the value V f (xnew, 1) equals the
value Ṽ w(xnew, 1) of this Wicksell problem. Theorem 2.3 establishes existence of optimizers
u∗f and v∗f for which the value of this Wicksell problem (and hence the Faustmann problem)
is

V f (xnew, 1) = Ṽ w(xnew, 1) =
g1(u

∗
f )ψ2(v

∗
f ) + 〈ψ2, π〉g̃2(v

∗
f )

ψ1(u∗f )ψ2(v∗f )
· ψ1(xnew). (3.5)

Substituting g̃2(v
∗
f ) = g2(v

∗
f ) + V f (xnew, 1) into (3.5) and solving for V f (xnew, 1) yields

V f (xnew, 1) =
ψ1(xnew)[g1(u

∗
f )ψ2(v

∗
f ) + ψ2(xthin)g2(v

∗
f )]

ψ1(u∗f )ψ2(v∗f )
·

[
1− ψ1(xnew)〈ψ2, π〉

ψ1(u∗f )ψ2(v∗f )

]−1

=
g1(u

∗
f )ψ2(v

∗
f ) + ψ2(xthin)g2(v

∗
f )

ψ1(u∗f )ψ2(v∗f )− ψ1(xnew)〈ψ2, π〉
· ψ1(xnew). (3.6)

Now define (θ, η) ∈ A to be the successive hitting times of u∗f and v∗f defined in (3.2). Then
X(θ∗k−) = u∗f and X(η∗k−) = v∗f and the evaluation of (1.3) then involves determining the
value of the infinite series comprised of the Laplace transform of the successive hitting times
of the levels u∗f or v∗f . The evaluation of these series is given in Appendix D with the result
that the expected discounted reward obtained using this policy achieves the bound (3.6).

The final point to be addressed is the demonstration that (u∗f , v
∗
f ) is an optimizing pair

for the nonlinear optimization problem (3.1). To see this, the equality of V f (xnew, 1) and
Ṽ w(xnew, 1) in (3.5) implies that

V f (xnew, 1) = sup
u,v∈F

g1(u)ψ2(v) + 〈ψ2, π〉g̃2(v)

ψ1(u)ψ2(v)
· ψ1(xnew)
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and hence for each u, v ∈ F ,

V f (xnew, 1) ≥ g1(u)ψ2(v) + 〈ψ2, π〉g̃2(v)

ψ1(u)ψ2(v)
· ψ1(xnew)

=
g1(u)ψ2(v) + 〈ψ2, π〉g2(v)

ψ1(u)ψ2(v)
· ψ1(xnew) +

ψ1(xnew)〈ψ2, π〉
ψ1(u)ψ2(v)

· V f (xnew, 1).

Solving for V f (xnew, 1) yields for each u, v ∈ F ,

V f (xnew, 1) ≥ g1(u)ψ2(v) + 〈ψ2, π〉g2(v)

ψ1(u
ψ
2 (v)− ψ1(xnew)〈ψ2, π〉

· ψ1(xnew)

with equality for (u∗f , v
∗
f ), establishing (3.1). �

Remark 3.2 A similar remark to that of Remark 2.5 holds for the Faustmann problem.
Specifically, let

d1(u, v) =
ψ1(xnew)ψ2(v)

ψ1(u)ψ2(v)− ψ1(xnew)〈ψ2, π〉
and d2(u, v) =

ψ1(xnew)〈ψ2, π〉
ψ1(u)ψ2(v)− ψ1(xnew)〈ψ2, π〉

denote the sums of the expected thinning discount factors and the expected harvesting discount
factors, respectively, when thinning occurs at level u and harvesting occurs at level v. Observe
the nonlinear function (3.1) to be maximized takes the form d1(u, v)g1(u)+d2(u, v)g2(v). Also

note that d1(u, v) = ψ2(v)
〈ψ2,π〉 ·d2(u, v). Letting g(u, v) = ψ2(v)

〈ψ2,π〉 ·g1(u)+g2(v), (3.1) can be written

as d2(u, v)g(u, v). The first order optimality conditions for (u∗f , v
∗
f ) yield

u∗f
∂g
∂u

(u∗f , v
∗
f )

g(u∗f , v
∗
f )

= −
u∗f

∂d2
∂u

(u∗f , v
∗
f )

d2(u∗f , v
∗
f )

v∗f
∂g
∂v

(u∗f , v
∗
f )

g(u∗f , v
∗
f )

= −
v∗f

∂d2
∂v

(u∗f , v
∗
f )

d2(u∗f , v
∗
f )

and since
∂d1
∂u

(u, v)

d1(u, v)
=

∂d2
∂u

(u, v)

d2(u, v)

it follows that at a pair (u∗f , v
∗
f ) of optimizers, the partial elasticities of the payoff function g

equal the negative of the partial elasticities of the discount factors:{
ELu[g](u∗f , v

∗
f ) = −ELu[d1](u

∗
f , v
∗
f )

ELv[g](u∗f , v
∗
f ) = −ELv[d2](u

∗
f , v
∗
f )

Notice that the payoff function g is valued in currency at the time of harvesting, not its
present-value.
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3.2 Example

The illustration of the Faustmann solution uses the same model formulation as for the
Wicksell problem. Recall the growth process X satisfies (1.1) with µ(x, y) = µ̄(1− γyx) and
σ(x, y) = σ̄

√
x, where µ̄, σ̄ and γy are fixed positive constants, while each thinning decision

produces a value of X(θk) = xthin and harvesting restarts the forest value at X(ηk) = xnew.
Also recall that the differential operators for the mean-reverting model are A(y)f(x) = µ̄(1−
γyx)f ′(x) + (σ̄2/2)xf ′′(x), y = 1, 2, the increasing solutions of the eigenfunction equation
(1.5) are given by (2.13) and the payoff functions are as in (2.14).

Table 2 displays the optimal thinning and harvesting levels u∗f and v∗f along with the
optimal payoff for the Faustmann problem. Comparing these values with Table 1, one
observes the effect of optimizing over infinitely many cycles reduces both the optimal thinning
and harvesting levels while at the same time increases the payoff received. Moreover, these
optimal thinning and harvesting levels are in agreement with the comments by Morrow [21]
on the need to thin a stand of hardwoods when dbh is in the 4 to 10 inch range and the
valuation of the trees is high when dbh is 24 to 28 inches (∼ 60 cm to ∼ 70 cm).

xthin u∗f v∗f V f (xnew, 1)
10. 28.5 60.7 3.405
12.5 27.0 60.7 3.677
15. 25.3 60.6 4.002
17.5 23.5 60.4 4.396
20. 21.4 60.3 4.879
22.5 19.0 60.1 5.481
25. 16.1 59.9 6.249

Table 2: Optimal thinning levels u∗f and harvesting levels v∗f (in cm) for the Faustmann-

Model as well as values of V f (xnew, 1) for various xthin values (in cm) using two mean
reverting processes; µ1 = µ2 = 1, σ2

1 = σ2
2 = 0.03; 1/γ1 = 100, 1/γ2 = 120, α = 0.03,

xnew = 0.5, δ1 = 0.7345, %1 = 0, z1 = 0, c1 = 9.1748, δ2 = 1.8254, %2 = 0.04502, z2 = 56.6523,
c2 = 4.3862.

4 Concluding Remarks

This paper has examined a variation of the Wicksell single cycle and Faustmann on-going
harvest rotation problems that includes thinning of the forest to promote better growth
dynamics. The model adopts a deterministic pricing function. This choice can be understood
to be derived from aggregate data over a long-term horizon and thus the problem under
consideration treats rotation management as a long-term investment. One might use this
problem to determine an approximate age or size of tree at which harvesting would occur.
Then when one approaches the harvesting and marketing of the forest, one would take a
short-term view and use a stochastic pricing model to decide on the precise harvesting time.

The analysis in this paper replaces the stochastic model by an infinite-dimensional linear
program over a space of (deterministic) measures. This approach proved to be quite tractable
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for the problems under study in this paper. An interesting feature of this analysis is the
reduction of the Faustmann infinite-cycle problem to a Wicksell single-cycle problem through
the use of the strong Markov property for the growth process.

The results for the thinning-and-harvest problems immediately reduce to the known
results for the harvest only problems. When there is no change in dynamics allowed, there
is only one strictly increasing solution to the eigenvalue problem Af = αf and there would
be no dependence on a Y process. For the Wicksell problem, one eliminates the g2 term
from the optimization problem (2.7) since this would provide a second harvest opportunity.
Theorem 2.3 then reduces to the known solution (see, e.g., Sødal [25]). The reduction for the
Faustmann problem is even more immediate. When harvesting is the only decision to make,
there would be a single payoff function g, only one reinitializing point xnew, one decision
level u∗ and as above only one increasing function ψ. The expression (3.3) in Theorem 3.1
then simplifies to the known result.

This methodology can be easily adapted to include additional features to the model. For
instance, the owner of the forest stand may receive a running payment stream that depends
on the size of the forest; such payments might represent the amenity value of the forest or
carbon credit payments that are received as long as the forest is allowed to grow (see Helmes
and Stockbridge [14] for a single-cycle example using this methodology). The dynamics
may also include sudden destruction due to fire or pests. Assuming the occurrences of such
destruction are modelled by a Poisson process with some probability distribution on the size
of the forest following the occurrence, the methods of this paper apply with only a minor
modification to the generator A and an adjustment to the discount factor α.

The imbedding of the stochastic problem in an infinite-dimensional linear program can
often be sharpened to show equivalence between the formulations. Kurtz and Stockbridge
[18] establishes this equivalence for absolutely continuous stochastic control problems, Cho
and Stockbridge [5] proves this for optimal stopping problems in which the processes exclude
singular behavior (such as the thinning decisions of this paper) and Helmes and Stockbridge
[13] extends this result to processes having singular behavior. These results are proven with
less regularity of the payoff functions, typically only requiring semi-continuity. The linear
programming formulation then allows one to employ numerical techniques to approximate
the optimal solutions. A variety of such numerical approaches are possible, including ap-
proximating the diffusion process by a continuous-time Markov chain, characterizing the
measures using their moments and using finite-elements to determine densities for approxi-
mating measures. The model and analysis of this paper do not require the equivalence since
the equivalence of the values is derived from the exact analysis.

Appendix A Optimization of Linear Program (2.6)

In this appendix, we prove that an optimal choice of measures for (2.6) will place point
masses on locations which maximize (2.7). To do so, however, we phrase the problem more
generally as one of finding finite measures ν1 and ν2 so as to solve the linear programming
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problem 
Maximize

∫
g1(x) ν1(dx) +

∫
g2(y) ν2(dy)

Subject to

∫
F1(x) ν1(dx) +

∫
F2(y) ν2(dy) = 1,∫

G1(x) ν1(dx)−
∫
G2(y) ν2(dy) = 0,

(A.1)

in which Fi are non-negative, measurable, Gi are positive, measurable and gi are measurable
functions on measurable spaces (Ei,Fi), i = 1, 2. To be feasible, the measures ν1 and ν2

must be such that for i = 1, 2, Fi and Gi are integrable with respect to νi.

Proposition A.1 Define the functions H(x, y) = F1(x)G2(y) + G1(x)F2(y) and h(x, y) =
g1(x)G2(y) + G1(x)g2(y) and assume H is strictly positive. Then an upper bound on the
optimal value of (A.1) is given by∫

g1(x) ν1(dx) +

∫
g2(y) ν2(dy) ≤ sup

(x,y)

h(x, y)

H(x, y)

and if the function h/H has a global maximum, then this bound is achieved.

Proof. Let (ν1, ν2) be a feasible pair of measures and note that at least one (hence both)
measures have positive mass. Let ν = ν1×ν2 be the product measure on (E1×E2,F1×F2).
Observe that ∫

H dν =

∫
F1 dν1

∫
G2 dν2 +

∫
G1 dν1

∫
F2 dν2

=

(∫
F1 dν1 +

∫
F2 dν2

)∫
G2 dν2

where the second constraint has been used and hence∫
H∫
G2 dν2

dν = 1.

Thus a probability measure ν̃ can be defined by taking H/(
∫
G2 dν2) to be the density with

respect to ν.
Now observe that ∫

h dν =

∫
g1 dν1

∫
G2 dν2 +

∫
G1 dν1

∫
g2 dν2

=

(∫
g1 dν1 +

∫
g2 dν2

)∫
G2 dν2.

So as a result,∫
g1 dν1 +

∫
g2 dν2 =

∫
h∫

G2 dν2

dν =

∫
h

H
· H∫

G2 dν2

dν =

∫
h

H
dν̃.
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For any probability measure ν̃, the value of the objective is bounded above by supx,y
h(x,y)
H(x,y)

.

Moreover, when the ratio h/H achieves its maximum, say at (x∗, y∗), an optimal pair of
measures (ν∗1 , ν

∗
2) can be determined by taking ν̃ = δ{(x∗,y∗)}. This then implies that the

corresponding product measure ν∗ also places a point mass on {(x∗, y∗)} having mass
∫
G2 dν2

H(x∗,y∗)

and moreover that the measure ν∗1 is a point mass on {x∗} and similarly ν∗2 is a point mass
on {y∗}. Now utilizing the two constraints of the linear program, we are able to determine
the masses of ν∗1 and ν∗2 from the system of equations

F1(x
∗) ν∗1{x∗}+ F2(y

∗) ν∗2{y∗} = 1

G1(x
∗) ν∗1{x∗} −G2(y

∗) ν∗2{y∗} = 0

yielding

ν∗1{x∗} =
G2(y

∗)

F1(x∗)G2(y∗) +G1(x∗)F2(y∗)
, ν∗2{y∗} =

G1(x
∗)

F1(x∗)G2(y∗) +G1(x∗)F2(y∗)
.

�
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Appendix B Payoff Function g2

The form of the harvesting payoff function g2(x) = xδ2 · 1+tanh(%2(x−z2))
2

− c2 is chosen since
the parameters δ2, %2, z2 and c2 provide enough flexibility to accurately capture pricing data.
For example, Morrow [21] reports pricing data (based on 1972 prices) over their growth cycle
for a number of different varieties of trees. Table 3 displays the data for the growth of a
sugar maple; dbh stands for the diameter at breast height. Tree Value Conversion Standards
(TVCS) provide a measure of a tree’s worth, based on the comparative value of the quantity
and quality of expected yield of one-inch lumber, taking into account conversion costs such
as harvesting, transporting, and milling. It is a standard by which trees of different sizes can
be compared, but it excludes most price effects of inflation and the marketplace. A fit of this
pricing data using the parameters δ2 = 1.8254, %2 = 0.04502, z2 = 56.6523 and c2 = 4.3862
is displayed in Figure 1. We can see this family of pricing functions provides an excellent fit
to the data; very good fits are also provided with an appropriate change in the parameters
for the prices corresponding to other varieties of trees.

Appendix C Mean Hitting Times

To aid in the selection of model parameters, we determine formulae for the mean thinning
times and mean harvest times of various stochastic models that can be used for the growth
process. Observe the aim is to determine the mean hitting time for thinning the forest
stand and these cycles always begin with X at xnew and have Y (t) = 1 for ηk−1 ≤ t < θk.
Similarly, when we consider the mean harvest time from the time θk of thinning, Y is constant
at 2. To simplify the notation in this appendix, we therefore assume µ(x, y) = µ(x) and
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dbh Tree Value Conversion Standards
(in cm) (TVCS)

25 0
30 1
35 3
40 8
45 17
50 29
60 58
70 94

Table 3: Typical Change in Size and Value with Growth of a Sugar Maple

40 50 60 70

20

40

60

80

Figure 1: Fit of g2 to (dbh,TVCS) data in Table 3.

σ(x, y) = σ(x) and the generator A of the process X is Af(x) = µ(x)f ′(x) + (σ2(x)/2)f ′′(x),
defined for every f ∈ C2(0,∞). To cover both the thinning and harvesting situations, assume
X(0) = x0, where x0 is either xnew or some fixed x ∈ [xmin, xmax].

It is possible, of course, to estimate these means using Monte Carlo simulation. One can
also view (2.10) as an expression for the Laplace transform of the thinning time θu (in which
α is the variable) and employ numerical differentiation to approximate the mean.

We state and prove a general theorem that applies to many models and follow this by
specifying the results to the mean-reverting model used to illustrate the solution approach
in this paper. We begin by defining some notation.

First, define the function s by s(x) = e−
∫ x[2µ(y)/σ2(y)] dy using the indefinite integral. Also

define the scale function S by the indefinite integral S(x) =
∫ x

s(y) dy, the speed density

m(x) = 1/[σ2(x)s(x)] and the speed measure M on (0,∞) by M [a, b] =
∫ b
a
m(y) dy for

0 < a < b < ∞. Finally, define the measure S on (0,∞) by S[a, b] = S(b) − S(a) for
0 < a < b <∞. (This notation follows Karlin and Taylor [17, pp. 194, 227].)

Proposition C.1 Let X satisfy (1.1) with µ and σ not depending on y. Let b > x0 be a fixed
level and set τb = inf{t ≥ 0 : X(t−) = b} to be the time when the process X first reaches level
b. Suppose the model coefficients µ and σ are such that, for each x > 0, lima↘0 S[a, x] =∞
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and lima↘0M [a, x] <∞. Then the expected time until harvest at level b is given by

E[τb] =

∫ b

x0

∫ y

0

e
−

∫ y
z

2µ(u)

σ2(u)
du · 2

σ2(z)
dz dy. (C.2)

Proof. Select a such that 0 < a < x0 < b, where the last inequality is given by hypothesis.
Define τa = inf{t > 0 : X(t−) = a}, define τb similarly and let τa,b = τa ∧ τb = inf{t ≥ 0 :
X(t−) = a or X(t−) = b}. Karlin and Taylor [17, pp.192-197] show that

E[τa,b] = 2

{
S[a, x0]

S[a, b]

∫ b

a

∫ y

a

m(z) dz dS(y)−
∫ x0

a

∫ y

a

m(z) dz dS(y)

}
. (C.3)

Now observe that τa,b ≤ τb and since 0 is assumed to be either a natural or an entrance-not-
exit boundary point, τa,b ↗ τb as a ↘ 0. The monotone convergence theorem implies that
we need to analyze the limit of (C.3) as a decreases to 0. The key observation is that (C.3)
can be rewritten in the form

2

{∫ b

x0

∫ y

a

m(z)s(y) dz d(y)− S[x0, b]

S[a, b]

∫ b

a

∫ y

a

m(z)s(y) dz d(y)

}
.

The first term is continuous in a so taking the limit as a goes to 0 yields (C.2). We therefore
need to show the limit of the second term is 0. The numerator of the fraction is a fixed
constant so can be ignored. Observe that the remainder of the term can be expressed as∫ b

a

(∫ y

a

m(z) dz

)
s(y)

S[a, b]
dy (C.4)

and, in particular, notice that for each choice of a, the fraction forms a probability density
on the interval [a, b] ⊂ [0, b]. The condition lima↘0 S[a, x] = ∞ implies that this family of
probability measures converges weakly to a point mass at 0. The fact that (C.4) converges
to 0 is therefore a consequence of the finiteness of lima↘0M [a, y] for each y. �

Simple estimates verify that the conditions lima↘0 S[a, x] = ∞ and lima↘0M [a, x] < ∞
are satisfied by the mean-reverting model used in this paper. We therefore identify the mean
hitting time for this model.

Example C.2 Mean Reverting Model
For the mean-reverting growth model, the coefficients are µ(x) = µ(1−γx) and σ(x) = σ

√
x

for some constants γ, µ, σ > 0. Let κ = 2µ
σ2 and % = γκ, and assume b < 1/γ; since µ > 0

implies κ > 0, no additional constraint needs to be imposed on the relation between µ and
σ. The mean harvest time for the mean-reverting model is

E[τb] =
2

σ2

∫ b

x0

∫ y

0

e%(y−z)y−κzκ−1 dz dy.

Finally, we report the mean hitting times for several other stochastic models that have
been used in the literature to model the growth process.
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Example C.3 Geometric Brownian Motion Model
Recall, the geometric Brownian motion growth model has µ(x) = µx and σ(x) = σx for
some constants µ, σ > 0. Let κ = 2µ

σ2 . The conditions on S and M are satisfied provided
κ > 1 (that is, 2µ− σ2 > 0) resulting in the mean harvest time being

E[τb] =
2

2µ− σ2
ln(b/x0).

Example C.4 Logistic I Model
For the logistic I growth model, the coefficients are µ(x) = µx(1− γx) and σ(x) = σx, with
γ, µ, σ > 0. Again, let κ = 2µ

σ2 and % = γκ. Then when b < 1/γ and 2µ− σ2 > 0, the mean
harvest time for the logistic I model is

E[τb] =
2

σ2

∫ b

x0

∫ y

0

e%(y−z)y−κzκ−2 dz dy.

Example C.5 Logistic II Model
The coefficients of the logistic II growth model are µ(x) = µx(1−γx) and σ(x) = σx(1−γx)
with γ, µ, σ > 0. Again, let κ = 2µ

σ2 with κ > 1. Then when b < 1/γ, the mean harvest time
at level b for the logistic II model is

E[τb] =
2

σ2

∫ b

x0

∫ y

0

(
y

1− γy

)−κ(
z

1− γz

)κ
1

z2(1− γz)2
dz dy.

Appendix D Expected Discount Factors

Consider the thinning-and-harvesting rule whereby a dense forest is thinned whenever it
reaches level u and is harvested whenever a thinned forest achieves size v. Recall, the initial
state of the forest is (X(0), Y (0)) = (xnew, 1) indicating that the stand is dense and new.
Define the “zeroeth” harvesting time η0 = 0. Now define the successive thinning and harvest
times (for k = 1, 2, 3, . . .) by θk = inf{t ≥ ηk−1 : X(t−) = u} and ηk = inf{t ≥ θk : X(t−) =
v}. We seek to determine the expressions for the expected discount factors

E

[
∞∑
k=1

e−αθk

]
and E

[
∞∑
k=1

e−αηk

]
.

To determine E [e−αηk ] define η̃k = ηk − θk and observe that η̃k gives the first hitting time of
level v of the process X under the dynamics with Y (t) = 1 starting at time θk in location
X(θk) having distribution π on [xmin, xmax] independent of θk. Recall from Remark 2.4, the
Laplace transform of η̃k is given by 〈ψ2, π〉/ψ2(v). Using the strong Markov property and
subscripts on the expectation operator to indicate the initial value of X, we have

Exnew
[
e−αηk

]
= Exnew

[
e−α[θk+(ηk−θk)]

]
= Exnew

[
e−αθkExnew

[
e−α(ηk−θk)

∣∣Fθk]]
= Exnew

[
e−αθkEX(θk)

[
e−αη̃k

]]
(D.1)

= Exnew
[
e−αθk

]
E
[
EX(θk)

[
e−αη̃k

]]
= Exnew

[
e−αθk

]
· 〈ψ2, π〉
ψ2(v)

.
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Similarly, let θ̃k = θk − ηk−1, note θ̃k is the first hitting time of X (with Y (t) = 1) started

at time ηk−1 in location xnew and E[e−αθ̃k ] = ψ1(xnew)/ψ1(u). Applying the strong Markov
property, we have

Exnew
[
e−αθk

]
= Exnew

[
e−α[ηk−1+(θk−ηk−1)]

]
= Exnew

[
e−αηk−1Exnew

[
e−α(θk−ηk−1)

∣∣Fηk−1

]]
= Exnew

[
e−αηk−1EX(ηk−1)

[
e−αθ̃k

]]
(D.2)

= Exnew
[
e−αηk−1

]
· ψ1(xnew)

ψ1(u)
.

Iterating (D.1) and (D.2) determines the summands of each series and hence yields

E

[
∞∑
k=1

e−αηk

]
=
∞∑
k=1

(
ψ1(xnew)

ψ1(u)
· 〈ψ2, π〉
ψ2(v)

)k
=

1

1− ψ1(xnew)〈ψ2,π〉
ψ1(u)ψ2(v)

· ψ1(xnew)〈ψ2, π〉
ψ1(u)ψ2(v)

=
ψ1(xnew)〈ψ2, π〉

ψ1(u)ψ2(v)− ψ1(xnew)〈ψ2, π〉

and

E

[
∞∑
k=1

e−αθk

]
=
∞∑
k=1

(
ψ1(xnew)

ψ1(u)

)k
·
(
〈ψ2, π〉
ψ2(v)

)k−1

=
ψ2(v)

〈ψ2, π〉

∞∑
k=1

(
ψ1(xnew)

ψ1(u)
· 〈ψ2, π〉
ψ2(v)

)k
=

ψ1(xnew)ψ2(v)

ψ1(u)ψ2(v)− ψ1(xnew)〈ψ2, π〉
.
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