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Abstract— We show how the Beneš-Problem, i. e. the problem
of how to choose a nonanticapting control process u whose
absolute value is bounded by 1 such that the second moment
at time T of the controlled diffusion process X with drift
process u is as small as possible, can be solved by analyzing
a special entry-and-exit problem. A characterization of the
optimal strategy of general entry-and-exit problems can be
phrased in terms of a finite-dimensional nonlinear optimization
problem. This nonlinear optimization problem can be solved
explicitly for the case of switching controls of Brownian motion
with a quadratic cost function of the state. The explicit solution
is an essential ingredient of a new proof of the Beneš-Problem
as well as related problems.

I. INTRODUCTION

Over the years, the Beneš-Problem has stimulated the
development of different solution techniques for stochastic
control problems, see [1], [2], [4], [5], [9], [10], [12], [17].
In this note we shall present one more proof which is based
on a characterization of the optimal strategy of a special
entry-and-exit problem. Furthermore, all relevant properties
of the value function are derived in “frequency space”,
i. e. we study the behavior of the Laplace transform of
the second moment function t 7→ Ex[X2

t ], x fixed, dX(t) =
−sign(X(t))dt + dW (t), X(0) = x, without exploiting the
explicit formula for Ex[X2(t)] given in [13]. The technique
can also be used when analyzing problems related to the
Beneš-Problem, for example, when the objective function
includes a particular additive penalty term involving u, see,
for instance, [3], [15], or when the control set is asymmetric,
i. e. −a≤ u≤ b, a,b > 0.

In Section 2 we describe a particular class of entry-and-
exit problems and state a characterization theorem of the
optimal strategies of such switching problems in terms of a
finite-dimensional nonlinear optimization problem. In Sec-
tion 3 we derive a formula for the aforementioned Laplace
transform. The proof of the optimality of the −sgn(Xt)
control process is spelled out in Section 4.

II. SWITCHING CONTROLS

Switching controls, cf. [7], are a special case of entry-and-
exit problems. Entry-and-exit problems have a long history in
many areas of applications, e. g. in economics, engineering,
production, inventory and queueing theory, etc; for details
and further references of applications within each area see,
for instance, [6], [14], [16] and [18]. In [11] we derive a
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characterization of the optimal strategy of general entry-and-
exit problems in terms of a nonlinear optimizatin problem.
We exploit this general result for the case of switching
controls. The simplest case of a switching control problem
is the following one: Let α > 0 be a discount factor and
let c > 0 denote the cost of switching the drift value of a
Brownian motion from µ to −µ , µ > 0, and vice versa. The
objective of the decision maker is to choose Markov times(
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is minimized. The process X satisfies the equation

dX(t) =
(
µY (t)−µ(1−Y (t))

)
dt +σdW (t), (2)

X(0) = x0, Y (0) = y0, and Y is the process – determined
by the switching times τ(0) and τ(1) – which records if the
controlled process X is running with positive drift µ , i. e.
Y (t) = 1, or is running at rate −µ and Y (t) = 0.

For ease of presentation, we restrict attention to the
“natural” initial values (x0,y0) in which both x0 ≤ 0 and
y0 = 1 or both x0 > 0 and y0 = 0.

Let
ρ = ρ(α) :=

1
σ2

(√
µ2 +2ασ2−µ

)
, (3)

and define

ψ(x) := eρx and φ(x) := e−ρx.

Let R = − 4µ

α2 . It follows from [11] that the nonlinear opti-
mization problem

max
u<0<v

{
Z(u,v)
N(u,v)

}
,

where
Z(u,v) = (Ru− c)φ(v)− (Rv+ c)φ(u)

and

N(u,v) = ψ(v)φ(u)−φ(v)ψ(u) = 2sinh(ρ (v−u))

characterizes the optimal switching times for (1), (2).
It is instructive to consider the special (symmetric) case

when u = −v as the initial analysis of the two-dimensional
optimization problem.



Theorem 2.1: Set R :=− 4µ

α2 < 0 and observe ρ is positive.

(i) Define H (v) = Z(−v,v)
N(−v,v) for v > 0. The unique

solution of maxv>0{H (v)} is determined by the
transcendental equation

ρv+ρ
c
R

= tanh(ρv). (4)

(ii) The optimization problem maxu<0<v

{
Z(u,v)
N(u,v)

}
has

a unique solution (u∗,v∗) with u∗ =−v∗ < 0.
(iii) Let v∗ satisfy (4). For x0 ∈R, recall y0 = I(−∞,0)(x0).

Then the optimal value M̂(sw)(x0,y0) of the control
problem (1), (2) is given by the expression,

M̂(sw)(x0,y0) =
(

x2
0

α
+

σ2−2µ|x0|
α2 +

2µ2

α3

)
+

R
2ρ
· 1

cosh(ρ v∗)
e−ρ|x0|

=
[(

x2
0

α
− 2µ|x0|

α2 +
2µ2

α3

)
+

σ2

α2

]
− 2µ

ρα2
e−ρ|x0|

cosh(ρ v∗)
. (5)

Moreover, the optimal switching times are the
hitting times of the process (X ,Y ) at (−v∗,0) and
(v∗,1).

(iv) For given c≥ 0 let v := v(c) satisfy (4). For x0 ∈R,
recall y0 = I(−∞,0)(x0), and let X satisfy (2) with Y
switching at the hitting times of (X ,Y ) at (−v,0)
and (v,1). Then

Ex0

[∫
∞

0
e−αtX2

t dt
]

=
[(

x2
0

α
− 2µ|x0|

α2 +
2µ2

α3

)
+

σ2

α2

]
− 2µ

ρα2
ρv

sinh(ρv)
e−ρ|x0|. (6)

Proof: (i) If u = −v the expression Z(−v,v)
N(−v,v) simplifies

to

H (v) =− (Rv+ c)cosh(ρv)
2sinh(ρv)cosh(ρv)

=
(−c+(−R)v)

2sinh(ρv)
.

The necessary optimality condition becomes

0 = H ′(v) =− tanh(ρv)+
(

ρ
c
R

+ρv
)

. (7)

There are several ways to see that (7), and hence (4),
has a unique positive solution. Perhaps the easiest way is
a “proof by picture;” simply graph both functions of the
identity (4). Rigorous ways are to analyze the function
(4) and, besides applying the Intermediate Value Theorem,
show that the function is strictly monotone increasing on
(0,∞); an alternative is to verify that the assumptions of
Banach’s Fixed Point Theorem are satisfied for the function
x 7→ tanh(x)−ρ

c
R .

(ii) In the general case when u < 0 < v the necessary
optimality conditions ∇

Z
N (u,v) = 0 can be rewritten as

N(u,v) · ∂Z
∂u

(u,v)+Z(u,v) ·2ρ cosh(ρ(v−u)) = 0

and

N(u,v) · ∂Z
∂v

(u,v)−Z(u,v) ·2ρ cosh(ρ(v−u)) = 0.

Both equations involve the parameter R. Solving for R, the
first equation yields the expression

R =
cρ (eρv + eρu)2

e2ρv− e2ρu +ρu(e2ρv + e2ρu)−2ρveρ(v+u) .

From the second equation we derive the formula

R =
cρ (eρv + eρu)2

e2ρu− e2ρv +ρv(e2ρv + e2ρu)−2ρueρ(v+u) .

Equating the right hand sides of these two expressions we
obtain after a series of simple but somewhat tedious algebraic
manipulations the identity

(v+u)(eρv− eρu) = 0.

Since the second factor is positive the unique solution of the
optimality conditions satisfies u =−v.

(iii) Formula (5) is an immediate consequence of the
general characterization theorems proved in [11].

(iv) Assume x0 < and y0 = 1. By (1), the weighted squared
L2-norm of X equals M(sw)(x0,y0) minus the total expected
discounted switching costs. The characterization theorems
of [11] together with identity (4) and formula (5) provide
a way to express these costs in terms of v(c), µ , α , σ2,
x0 and ρ . Observe that the expressions for the cost in
(4) hold with a∗1 = −v and b∗1 = v. Using once more the
characterization results along with φ(x) = e−ρx and ψ(x) =
eρx, these expected discounted switching costs equal

ceρx0e−ρv [1+ e−2ρv] 1
1− e−4ρv

= ce−ρ|x0| cosh(ρv)
sinh(2ρv)

= e−ρ|x0|
[
− 2µ

ρα2 ·
1

cosh(ρv)
+

2µ

ρα2 ·
vρ

sinh(ρv)

]
;

the last equality replaces c by its expression obtained from
(4). Hence, (6) follows.

Remark 2.2: Observe that the solution of (5) when c = 0
is v∗ = 0. This value for v∗ indicates that, in the absence
of costs for switching, an optimal control policy is to use a
positive rate when the process X is negative and a negative
rate when X is positive. We note that due to the properties
of the diffusion process X in this situation, there will be
infinitely many switches shortly after X hits level 0. The
imposition of a positive cost for switching avoids this control
policy.



III. ANALYSIS OF PROCESS X WITH DRIFT −µ SGN(x)

Formula (5) for the value function of the switching prob-
lem allows one to deduce a formula for the Laplace transform
of the second moment of the process X defined by

dX(t) =−µ sgn(X(t))dt +σ dW (t), X(0) = x. (8)

We denote the initial value by x rather than x0 for the
remainder of the paper and will sometimes take this to be
a parameter and sometimes to be a variable. This process
and some modifications of this process have been studied
by many authors (see e.g., [3] and [13, Section 6.5]). The
Laplace transform treats the discount parameter α > 0 as its
variable so we explicitly state the dependence on α in the
sequel.

Proposition 3.1: Let ρ(α) be defined by (3). Then the
Laplace transform of the second moments of the process X
of (8) is

V (α;x) = E
[∫

∞

0
e−αtX2(t)dt

]
=

[(
x2

α
− 2µ|x|

α2 +
2µ2

α3

)
+

σ2

α2

]
− 2µ

α2ρ(α)
e−ρ(α)|x|
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σ2
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]

−2µe−
µ|x|
σ2

1
α2ρ(α)

e
−|x|

√
2

σ2

√
α+ µ2

2σ2 . (9)

Proof: Formula (9) follows from Theorem 2.1(iii) by
putting v = 0 in (5) due to the observation in Remark 2.2.
The second formula for V (α;x) displays e−ρ|x| in a form that
facilitates the determination of its inverse Laplace transform
in (10).

Remark 3.2: Consider the process X̃ with X̃(t) = x+µt +
σW (t) for t ≥ 0 when x < 0 which has constant drift rate
µ or X̃(t) = x−µt +σW (t) when x≥ 0 which has constant
drift −µ . A simple calculation shows

Ex

[∫
∞

0
e−αt X̃2(t)dt

]
=
(

x2

α
− 2µ|x|

α2 +
2µ2

α3

)
+

σ2

α2 .

Thus the remaining term in (9) compensates for the overes-
timation by the first term from using constant drift rate ±µ

and therefore equals the value of the option to switch any
time in [0,∞) between the drift rates +µ and −µ .

Formula (9) can be used in many ways. One possibility
is to use (9) as a benchmark when evaluating other control
policies or when deciding on the magnitute of drift rates µ or
switching locations v. The following collection of formulae
are easily derived from (6) and (9).

Corollary 3.3: Let dX(t) = u∗(X(t))dt +σdW (t), X(0) =
0, where u∗ is the switching control where the drift rates ∓µ ,
µ > 0, change at the locations ±v, v > 0.

(i) Let µ = 0, i. e. dX(t) = σdW (t), X(0) = 0. Then

E0

[∫
∞

0
e−αtX2(t)dt

]
=

σ2

α2 .

(ii) Let µ > 0 and v = 0, i. e. dx(t) = −µ sgn(X(t))dt +
σdW (t), X(0) = 0. Then ∃ξ , 0 < ξ < h := 2ασ2

µ2 such that

BV := E0

[∫
∞

0
e−αtX2

t dt
]

=
σ2

α2

[
1− µ2

ασ2

(√
1+

2ασ2

µ2 −1
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=
σ2

α2

(
h
2
· 1
(1+ξ )3/2

)
.

(iii) Let µ > 0 and v > 0, then

E0
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∞

0
e−αtX2

t dt
]

=
σ2

α2 −
2µ

α2

(
1
ρ
· ρv

sinh(ρv)
− µ

α

)

=
σ2

α2 −
σ2

α2 ·
µ2

ασ2

[(√
1+

2ασ2

µ2 +1

)
ρv

sinh(ρv)
−2

]

=
σ2

α2

[
1− µ2

ασ2

(√
1+

2ασ2

µ2 −1

)

+
µ2

ασ2

(√
1+

2ασ2

µ2 +1
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·
(

1− ρv
sinh(ρv)
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= BV +
µ2

α3

(√
1+

2ασ2

µ2 +1

)(
1− ρv

sinh(ρv)

)
.

To illustrate how this corollary might be used, let us
assume that time is measured in years, σ = 0.05, α = 0.03
and, for ease of computation, assume x0 = 0. This choice of
x0 indicates that there is initially no deviation between the
state of the system and the desired equilibrium level.

First consider the process in which no drift can be applied.
While the system on average is in equilibrium, the weighted
L2-norm of X is σ2/α2 = 25/9 ≈ 2.78, see Cor. 3.3 (i).
We observe that the 99 %-confidence interval for the total
difference between production and demand at the end of one
year is (−0.15,0.15).

Now consider the policy which switches between levels
of positive und negative drift value µ = 0.3. Use x0, σ , α

as above and set y0 = 1. The choice of y0 means the process
is initially experiencing a positive drift. Assume (soft) state
constraints of ±v =±0.15 are desirable so the policy which
switches between ∓µ whenever X hits ±v is adopted. Then
the weighted L2-norm, see Cor. 3.3 (iii) is approximately
0.25, that is, approximately 9 % of the uncontrolled level.
One can also check that the average time between changing
drift rates is one year. The value 0.25 should be compared
with the benchmark value BV for this example which is
easily computed to be approximately 0.001.



The calculations for more general situations, such as
asymmetric production rates, are more involved but the
general results apply and modifications of the formulas of
Corollary 3.3 can be derived.

Another possibility how to use (9) is to compute the
inverse Laplace transform of V (α;x) and in this way derive
an explicit formula for the second moment of each X(t),
t ≥ 0. Let x ∈ R, t ≥ 0, and let Φ denote the standard
Normal cumulative distribution function. The inverse Laplace
transform is

Ṽ (t,x) := Ex[X2
t ]

=
σ4

2µ2 + tσ2
(
|x|−µt− σ2

µ

)
1√

2πtσ2
e−

(|x|−µt)2

2tσ2

+
(

(|x|−µt)2 + tσ2− σ4

2µ2

)
Φ

(
|x|−µt

σ
√

t

)

+
(
|x|σ2

µ
+ tσ2− σ4

2µ2

)
e

2µ|x|
σ2

·
(

1−Φ

(
|x|+ µt

σ
√

t

))
. (10)

When µ = σ2 = 1 formula (10) reduces to the expression
given by Karatzas and Shreve [13, p. 441].

IV. NEW SOLUTION TO THE BENEŠ-PROBLEM

Now, viewing Ṽ as a function of time t and initial position
x, it can be easily verified that Ṽ (t,x) satisfies the partial
differential equation

−Ṽ ′t +
σ2

2
Ṽ ′′xx−µ · sgn(x)Ṽ ′x = 0, (11)

as well as the conditions

lim
t↘0

Ṽ (t,x) = x2, lim
t→∞

Ṽ (t,x) =
σ4

2µ2 .

However, rather than work with the formula (10) for Ṽ
to show it satisfies (11) along with the initial and terminal
conditions, it is easier to work in the frequency domain and
use the formula for V (α;x) directly. One can verify that

σ2

2
V ′′xx(α;x)−µ · sgn(x)V ′x(α;x)−αV (α;x)+ x2 ≡ 0. (12)

Observe that∫
∞

0
e−αsṼt(s,x)ds = e−αsṼ (s,x)

∣∣∞
0 +α

∫
∞

0
e−αsṼ (s,x)ds

= −Ṽ (0,x)+αV

and also
V ′x(α;x) =

∫
∞

0
e−αtṼ ′x(t,x)dt

and
Ṽ ′′xx(α;x) =

∫
∞

0
e−αtṼ ′′xx(t,x)dt.

Hence, it immediately follows that Ṽ satisfies (11). The
boundary conditions follow from the Initial Value Theorem
and the Final Value Theorem of Laplace transforms.

Since we are working in the “frequency” domain as indi-
cated by formula (5) we can give a new proof of the Beneš-
Problem which complements the other solutions refered to
above.

Proposition 4.1: The function u(x) = −sgn(x) is the op-
timal control for the problem of minimizing, T > 0 given,

E
[
X2(T )

]
,

over processes X satisfying dX(t) = u(X(t))dt +dW (t), with
X(0) = x and control functions u satifying the hard constraint
|u(x)| ≤ 1.

Proof: Put σ = 1 and µ = 1 in all previous formulas.
One can verify the function Ṽ (t,x) not only satisfies (10) but
also the partial differential equation

Ṽ ′t −
1
2

Ṽ ′′xx + min
−1≤u≤1

{u ·Ṽ ′x}= 0.

This can be seen by either analyzing the sign of Ṽ ′x using
formula (10) or by exploiting the representation of Ṽ ′x in
terms of V ′x . This latter approach only argues in the frequency
domain.

We indicate the “frequency” proof in the case x≥ 0. First,
we need to show that the inverse Laplace transform of the last
term in (9) exists. Let g(t;x) be the Laplace transform of α 7→
e−xρ(α), where ρ(α) is defined by (3); here the dependence
on α is explicitly expressed. Since α 7→ xρ(α) is a positive
function with a completely monotone derivative, e−xρ(α) is
completely monotone as well [8, §13.4]. Hence, the inverse
Laplace transform g(t;x) exists; moreover, since 1 = e−xρ(0)

the function g is a probability density. Now observe

Ṽ ′x(t,x) = 2x−2t +2
∫ t

0
(t− s)g(s;x)ds.

While g can be explicitly computed we stress the fact that
our analysis takes place in the (α,x)-space. Since

2x = lim
α→∞

αV ′x(α;x) = lim
t↘0

Ṽ ′x(t,x)

and
0 = lim

α↘0
αV ′x(α;x) = lim

t→∞
Ṽ ′x(t,x),

the identity sgn(x) = sgn(Ṽ ′x) would follow from the property
Ṽ ′′xt < 0. But Ṽ ′′xt = −2 + 2

∫ t
0 g(s;x)ds < 0 since g is a

probability density. The case x < 0 is analyzed in a similar
way. Finally, put

F(s,x) := Ṽ (T − s,x), 0≤ s≤ T,

and check that F satisfies the Hamilton-Jacobi-Bellman
equation of the Beneš-Problem, i. e. F(T,x) = x2 and

min
−1≤u≤1

{F ′s +
1
2

F ′′xx +uF ′x}= 0.



V. CONCLUDING REMARKS

This note establishes the optimality of a simple two-
point hitting rule for a particular entry-and-exit problem.
It uses the novel approach of relating the control problem
to a nonlinear optimization problem in two variables. This
nonlinear optimization problem can be solved explicitely.
The explicit solution provides a “frequency analysis” of the
diffusion having drift rate −µ sgn(x) and a new “frequency”
proof of optimality for the solution of the Beneš control
problem. This technique can also be used when analyzing
similar kind of control problems.
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