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Abstract. The issue of when to intervene in the evolution of a production system is the focus of this
study. The interventions take the form of changes to production depending on the current value of
the products. Each change incurs a charge representing costs such as physical expansion, overtime
or new hiring when production increases and costs such as severance or shut down when production
decreases. The goal is to maximize the expected return subject to these intervention costs over at
most a finite number of intervention cycles. This paper determines for a large class of problems an
explicit formula for the value function and a set of optimal times at which to increase and decrease
production. The optimization is over a very general class of stopping times and proves that an
optimal set of times in this general class is given as the hitting times of various levels, depending
on the number of remaining interventions. These optimal hitting levels are characterized as a
maximizing point for a high-dimensional nonlinear function and can be efficiently and iteratively
determined as the solutions of successive one-dimensional nonlinear maximization problems. The
solution method is illustrated on some examples, including mean-reverting processes.

Keywords. reversible investment, reversible disinvestment, entry-and-exit, infinite-dimensional
linear programming, nonlinear optimization.

1 Introduction

Consider the situation of a company which seeks to determine optimal times at which to
increase a line of production when the return rate is good and to reduce production when
times are bad. Associated with each decision is a cost to increase production so the manager
is willing to initially delay an increase in “good times” in light of the concern that “bad times”
are just around the corner. Similarly, there is a cost to reduce production so management
will continue production in “bad times” with the hope that they are not too “bad” and
“better times” are coming shortly. The company directors have set a limit on the funds
designated for these switching costs and hence the increase and decrease of production are
limited to at most a finite number of occurrences. Let N denote the number of production
increase-decrease cycles; N remains fixed throughout this paper.

For ease of terminology, we refer to the increase of production as “start-up” and the
decrease as “mothballing.” These terms indicate one type of increase and decrease. The
results of this paper, however, apply to more general increases and decreases in production.

To establish the main goal of the problem, let X denote the process for the value of
production and let Y be an indicator process denoting that production is running (1) or
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mothballed (0). In our framework, we allow the evolution of the process X to depend on
the process Y so that there are different dynamics when the line is mothballed from when
it is in production. Let r(x, y) denote the net rate of income when (X, Y ) takes value (x, y)
and let α > 0 denote the discount rate. Throughout this paper for simplicity, we assume
the company has not yet invested in production so the first decision is when to do so. For
k = 1, . . . , N , let c

(in)
k ≥ 0 denote the fixed cost to open production for the kth time and

similarly let c
(out)
k ≥ 0 be the cost to mothball; we assume c

(in)
k +c

(out)
k > 0 and c

(out)
k +c

(in)
k+1 > 0.

The aim of the production manager is to select decision times {τ (in)
k : k = 1, . . . , N} and

{τ (out)
k : k = 1, . . . , N} at which to open up and to mothball production so as to maximize

E

[∫ ∞
0

e−αsr(X(s), Y (s)) ds−
N∑
k=1

e−ατ
(in)
k c

(in)
k −

N∑
k=1

e−ατ
(out)
k c

(out)
k

]
. (1.1)

This problem is a modification of well-studied problems in which one seeks to maximize
the expected discounted reward earned over either a single decision or over an infinite number
of cycles when there are entry and exit costs. In the forestry literature, the problem of interest
relates to the timing of harvests and rewards rather than costs accrued at harvest times; the
single decision problem is known as the Wicksell problem, whereas the infinite-cycle problem
is the Faustmann problem (see e.g., [2, 26, 29]). These problems also appear, for example, in
the economics literature [7, 8, 15, 27, 28] and management and operations research literature
(see e.g., [20, 25]). Mathematically, these models are versions of optimal stopping, impulse
control or more general stochastic control problems. The problems are usually analyzed by
solving the Hamilton-Jacobi-Bellman (HJB) equation associated with the given problem.
Since there are different solution concepts for HJB-equations [11], these models have also
attracted the interest of mathematicians and control theorists; see [3, 6, 9, 21, 30] and
references therein, for a short selection of recent publications. The paper [23] utilizes a
viscosity solutions approach to solve the infinite switching problem for a two-regime geometric
Brownian motion model, while [17] address a single-regime diffusion process having non-
smooth data with a more general discount mechanism by constructing an explicit solution
to the HJB equation.

This paper analyzes a modification in which only a finite number of cycles is allowed,
a problem also considered by Øksendal and Sulem (see Chapter 7 of [22]) and Bayraktar
and Egami [4]. The view taken in these analyses is that the finite-cycle problem is an
approximation to the infinite-cycle problem. These approaches rely on dynamic programming
and determine an iterative scheme for computing the N -cycle value function. (This latter
result is similar to our iterative approach in Section 4 though our iteration scheme arises
directly from optimizing a nonlinear function.) Furthermore, the paper [4] constructs the
value function for an infinite number of cycles for a class of diffusion processes on (0,∞)
using a generalized convexity approach to characterize the excessive functions.

This paper approaches the problem quite differently. Under the assumptions detailed
in the Section 1.1, the explicit form of the value function is given as a (to-be-determined)
constant factor of the increasing solution ψ0 of Condition 1.2. Moreover, two methods are
derived to identify this constant. The first is by maximizing a nonlinear function of 2N
variables, while the second iteratively solves 2N one-dimensional maximization problems.
A maximizer’s coordinates are then used to specify a set of optimal switching times as the
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hitting times of these levels. Of particular significance is the fact that, though the original
stochastic problem allows very general switching times, an optimal set of times occur as the
hitting times of the process at various levels (Theorem 3.2). This optimality result arises
from the imbedding of the stochastic problem in an infinite-dimensional linear program on
a collection of measures for which an optimizing measure is determined from the maximizer
of a finite-dimensional nonlinear function (Theorem A.1).

When one considers either single-cycle or infinite-cycle versions of this problem, the so-
lutions have the same structure, namely there exist two values a∗ and b∗ with a∗ < b∗ such
that the optimal time(s) to initiate production is(are) when the process X hits or exceeds
level b∗ with production mothballed and the optimal time(s) to mothball occurs(occur) when
X hits or lies below a∗ while production is in process [13, 14, 27]. The optimal levels dif-
fer between the single-cycle and infinite-cycle problems with a corresponding increase in
the optimal value for the infinite-cycle problem indicating the benefit of additional produc-
tion/mothballing opportunities.

As indicated above, the structure of the solution to the finite multiple-intervention prob-
lem is more complex. Again, there are levels so that the production starts when X reaches or
exceeds these specified upper values while production is mothballed and mothballing occurs
when X is at or below lower values during production. However, these optimal production-
initiating levels differ and depend on the number of remaining cycles and similarly for the
mothballing levels. The paper [13] uses the same type of linear programming imbedding,
but both single-cycle and infinite-cycle problems are simpler in that they reduce to the opti-
mization of a nonlinear function of two variables. The current paper reduces the problem to
one of maximizing a nonlinear function of 2N variables and establishes a tractable iterative
scheme to obtain the optimal solution; iteration is not needed for the single-cycle problem
and is not available for the infinite-cycle problem, except through a limiting argument.

The paper is organized as follows. Section 1.1 gives a careful formulation of the prob-
lem. We then derive in Section 2 an infinite-dimensional linear programming problem in
which the original stochastic problem is imbedded. Utilizing the structure of the dynamics,
in Section 3 we relax the constraints to form an auxiliary linear program (also infinite-
dimensional) for which the optimal value can be characterized in terms of the maximization
of a 2N -dimensional nonlinear optimization problem. An optimal production/mothballing
policy is determined from the solution to the nonlinear problem. We then investigate an
iterative formulation of the problem which leads to a more efficient optimization procedure.

1.1 General Formulation

It is helpful to set a general framework for the processes and rewards. As indicated above,
let Y be the indicator process that takes value 0 when production is mothballed and value 1
when running. Let (xl, xr) ⊆ R. For y ∈ {0, 1} and an initial probability distribution π on
(xl, xr), the process Xy is a diffusion process satisfying the stochastic differential equation

dXy(t) = µ(Xy(t), y) dt+ σ(Xy(t), y) dW (t), Xy(0) ∼ π, (1.2)

in which W is a standard Brownian motion that provides the fluctuations to the process. For
each y ∈ {0, 1}, the drift coefficient µ(·, y) and diffusion coefficient σ(·, y) are assumed to be
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continuous and such that Xy takes values in the interval (xl, xr); the process Xy has generator
Ay given by Ayf(x) = (1/2)σ2(x, y)f ′′(x) + µ(x, y)f ′(x)) operating on f ∈ C2((xl, xr)) (see
[5, 9, p. 17] for sufficient conditions). Further assume Xy is a weak solution of (1.2) while
Xy(t) ∈ (xl, xr) (see Ethier and Kurtz [10, Section 5.3, p. 291] or Rogers and Williams [24,
V.16.1, p. 149] for details) and that the solution to (1.2) is unique in distribution. This
uniqueness implies that the martingale problem for Ay, y ∈ {0, 1}, is well-posed and hence
that Xy is a strong Markov process (see [10, Theorem 4.4.2, p. 184] or [24, V.21.2, p. 162]).
We denote the filtration for the weak solutions by {Ft}.

The paired process (X, Y ) is constructed for each collection of {Ft}-stopping times using
the strong Markov property of each Xy to switch between these processes and change the
value of Y at the switching times. For example, the process Y starts in state 0 and evolves
according to X0; then at time τ

(in)
1 , the X process has value of X0(τ

(in)
1 ) so the process

switches to the X1 process with initial distribution being that of X0(τ
(in)
1 ). Throughout

the paper we denote the initial position of the X process (of the pair) by x0 and assume
x0 6= xl, xr. With regard to the initial value of Y , it seems natural for the first decision to be
a time to begin production, possibly with a high initial cost, so we have assumed Y (0) = 0.
The solution when Y (0) = 1 can be easily determined using the same methodology; we leave
the details to the reader.

Before proceeding further, we briefly digress to consider the boundary points. We restrict
the models to those for which xl is either a natural boundary point or an entrance but not
an exit boundary point (see [5, II.10, p. 14-19] or [16, p. 128-131]). When xl is either an
entrance-not-exit or natural boundary, X will almost surely never reach xl in finite time so
the process is defined for all time. The distinction between entrance and natural boundaries
is that the process will immediately enter the interval (xl, xr) when x0 = xl is an entrance
point (we assume x0 6= xl) after which it will never return to the boundary and thus xl is
in the state space of the process. This behavior does not happen with a natural boundary
point so such an xl will not be in the state space of X. We place the same restrictions on
the model for xr.

The production/mothballing decisions are made based on some reward earned while
producing and costs charged to start-up production or to mothball it. The switching times
are {Ft}-stopping times {τ (in)

k : k = 1, . . . , N} and {τ (out)
k : k = 1, . . . , N} with τ

(in)
1 ≤

τ
(out)
1 ≤ τ

(in)
2 ≤ τ

(out)
2 ≤ . . . ≤ τ

(in)
N ≤ τ

(out)
N ; each of these inequalities is strict on the set

where the left-hand random variable is finite. The requirement of strict inequality when the
switching times are finite places no restriction on the problem. Since the number of switches
is limited to at most 2N but is not required to be exactly 2N , any switching times for
which two consecutive times are finite and coincide induce an instantaneous strictly positive
charge and leaves the process in exactly the same state as before these switches. A better
value is obtained by omitting these switches. Let A denote this collection of stopping times
and denote by τ̃ an element of A. The type of reward function can be quite general; let
r : (xl, xr)× {0, 1} → R denote the net income rate. For the problem to be meaningful, we
impose the following integrability condition throughout the paper.

Condition 1.1 The coefficients µ and σ of the diffusion X and the income rate function r
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are such that

E
[∫ ∞

0

e−αs[|r(X(s), 0)|+ |r(X(s), 1)|] ds
]
<∞.

Condition 1.1 implies the total discounted reward available to the investor is finite.
A key additional assumption on the coefficients is required, which we separate out for

later reference.

Condition 1.2 For y = 0, 1, the eigenvalue problem Af(·, y) = αf(·, y) has both a positive,
strictly decreasing solution φy and a non-negative, strictly increasing solution ψy.

The conditions assumed in this paper are sufficient to imply Condition 1.2 (see Itô and
McKean [16, pp. 128-131] or Borodin and Salminen [5, II.10, p. 18,19]). The functions φy
and ψy, y = 0, 1, depend on the discount factor α; since we assume the discount factor is
fixed, we omit this dependence from the notation. The properties of significance for this
paper are that ψy(xl) ≥ 0 and φy(xl+) =∞ (see [5, pp. 14-19]). Symmetric properties hold
for xr with the roles of φy and ψy reversed.

We also highlight an important identity involving φy and ψy. Suppose Xy(0) = x ∈
(xl, xr). Let c ∈ (xl, xr) and define τc = inf{t ≥ 0 : Xy(t) = c}. Then (see [5, p. 18])

E[e−ατc ] =

{
φy(x)/φy(c) for c ≤ x,

ψy(x)/ψy(c) for c ≥ x.
(1.3)

The diffusion processes under consideration in this paper exclude reflection at a boundary
and killing in the interior of (xl, xr). The inclusion of reflected processes would require either
restricting the domain of the test functions to capture the reflection or adding a second
operator B that adjusts the evolution of the process X when reflection occurs. The latter
approach adapts well to the linear programming methodology and is an example of one
type of singular behavior. A future paper will examine entry-and-exit problems for singular
stochastic processes. The exclusion of killing is merely for convenience so as to clearly
observe the effect discounting has on the problem. The generator A for a killed diffusion
is Af(x, y) = (1/2)σ2(x, y)∂

2f
∂x2 (x, y) + µ(x, y)∂f

∂x
(x, y)− c(x, y)f(x, y), where c ≥ 0 gives the

state-dependent killing rate; when discounting is also included, the operator of interest is
Af(x, y) − αf(x, y) = (1/2)σ2(x, y)∂

2f
∂x2 (x, y) + µ(x, y)∂f

∂x
(x, y) − (c(x, y) + α)f(x). The key

requirement for this paper is that Condition 1.2 be satisfied. Thus the results of this paper
easily extend to diffusions having state-dependent killing rates.

We wish to reformulate the criterion (1.1) as a multiple optimal stopping problem without

the running reward term by adjusting the “costs” accrued at times τ
(in)
k and τ

(out)
k , k =

1, . . . , N . To simplify the notation for the argument of the following proposition, let x and
y denote the initial values of X and Y , respectively. Also let τ̃ := (τ1, τ2, τ3, . . . , τ2N) :=

(τ
(in)
1 , τ

(out)
1 , τ

(in)
2 , . . . , τ

(out)
N ) be an admissible set of switching times, denoted by τ̃ ∈ A.

Proposition 1.3 Assume the reward function r satisfies Condition 1.1. Then there exists
a function fr with the property that for all τ̃ ∈ A, initial values x ∈ (x`, xr), y = 0 and the
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corresponding paired process (X(s), Y (s)),

Exy

[∫ ∞
0

e−αsr(X(s), Y (s)) ds

]
(1.4)

= −
2N∑
j=1

Exy

[
I{τj<∞}e

−ατj
(
fr(X(τj), 1− Y (τj−))− fr(X(τj), Y (τj−))

)]
− fr(x, y).

Proof. We begin by concentrating on the process Xy where the value of y is fixed. Recall the

generator of Xy is Ayf(x) = σ2(x,y)
2

f ′′(x) + µ(x, y)f ′(x). Noticing in particular the negative
sign in the expression on the right-hand side below, define

fy(x) := −Ex

[∫ ∞
0

e−αsr(X(s), y) ds

]
.

Condition 1.1 implies that
∫∞

0
e−αsr(Xy(s), y) ds is integrable and hence that fy is well-

defined. Now for the next argument only, let τ be any {Ft}-stopping time (rather than a
sequence). By the strong Markov property we get

Ex

[
I{τ<∞}

∫ ∞
τ

e−αsr(X(s), y) ds

]
= Ex

[
I{τ<∞} Ex

[∫ ∞
τ

e−αsr(X(s), y) ds

∣∣∣∣Fτ]]
= Ex

[
I{τ<∞}e

−ατ Ex

[∫ ∞
0

e−αur(X(τ + u), y) du

∣∣∣∣X(τ)

]]
= Ex

[
I{τ<∞}e

−ατEX(τ)

[∫ ∞
0

e−αur(X(u), y) du

]]
= −Ex

[
I{τ<∞}e

−ατfy(X(τ))
]
. (1.5)

Suppose τ and τ̂ are two stopping times with τ < τ̂ . It then follows immediately that

Ex

[
I{τ<∞}

∫ τ̂

τ

e−αsr(X(s), y) ds

]
= Ex

[
I{τ̂<∞}e

−ατ̂fy(X(τ̂))
]
− Ex

[
I{τ<∞}e

−ατfy(X(τ))
]
.

Now recall τ̃ = (τ1, τ2, τ3, . . . , τ2N) ∈ A and set τ0 = 0 and τ2N+1 = ∞. Let x ∈ (x`, xr)
be chosen arbitrarily and consider the paired process (X, Y ). We denote the dependence of
the expectations on the initial positions x and y = 0 of the paired process (X, Y ) by Ex,0[·]
and on the initial position of the Xy process by Ex[·]; recall X is defined in terms of the
processes X0 and X1. Define the function fr(x, u) = f0(x)(1 − u) + f1(x)u with u = 0, 1.
Observe

Ex,0

[∫ ∞
0

e−αsr(X(s), Y (s)) ds

]
=

N∑
j=0

Ex,0

[
I{τ2j<∞}

∫ τ2j+1

τ2j

e−αsr(X(s), Y (s)) ds

]

+
N−1∑
j=0

Ex,0

[
I{τ2j+1<∞}

∫ τ2j+2

τ2j+1

e−αsr(X(s), Y (s)) ds

]

=
N∑
j=0

Ex

[
I{τ2j<∞}

∫ τ2j+1

τ2j

e−αsr(X0(s), 0) ds

]
+

N−1∑
j=0

Ex

[
I{τ2j+1<∞}

∫ τ2j+2

τ2j+1

e−αsr(X1(s), 1) ds

]
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=
N∑
j=0

(
Ex

[
I{τ2j+1<∞}e

−ατ2j+1f0(X0(τ2j+1))
]
− Ex

[
I{τ2j<∞}e

−ατ2jf0(X0(τ2j))
])

+
N−1∑
j=0

(
Ex

[
I{τ2j+2<∞}e

−ατ2j+2f1(X1(τ2j+2))
]
− Ex

[
I{τ2j+1<∞}e

−ατ2j+1f1(X1(τ2j+1))
])

=
N−1∑
j=0

Ex

[
I{τ2j+1<∞}e

−ατ2j+1 (f0(X0(τ2j+1))− f1(X1(τ2j+1)))
]

+
N−1∑
j=0

Ex

[
I{τ2j+2<∞}e

−ατ2j+2 (f1(X(τ2j+2))− f0(X0(τ2j+2)))
]
− fr(x, 0)

=
N−1∑
j=0

Ex

[
I{τ2j+1<∞}e

−ατ2j+1

(
fr(X(τ2j+1), 0)− fr(X(τ2j+1), 1)

)]
+

N−1∑
j=0

Ex

[
I{τ2j+2<∞}e

−ατ2j+2

(
fr(X(τ2j+2), 1)− fr(X(τ2j+2), 0)

)]
− fr(x, 0)

=
2N∑
j=1

Ex,0

[
I{τj<∞}e

−ατj
(
fr(X(τj), 1− Y (τj))− fr(X(τj), Y (τj))

)]
− fr(x, 0)

= −
2N∑
j=1

Ex,0

[
I{τj<∞}e

−ατj
(
fr(X(τj), 1− Y (τj−))− fr(X(τj), Y (τj−))

)]
− fr(x, 0),

where the last equality (notice the negative sign before the summation sign) follows from
the fact that Y (τj) = 1− Y (τj−). �

Remark 1.4 The proof of Proposition 1.3 only requires the reward rate r to satisfy Condi-
tion 1.1, not that it be continuous. However, when the reward rate function r(·, y) is bounded
and continuous, fy has an integral representation in terms of r(·, y), the Green kernel and
the speed measure of the process (see [5, II.1.4,II.1.9,II.1.11]). Using the continuity of r(·, y),
this representation shows that fr(·, y) is twice-differentiable and is a particular solution of
Ayf − αf = r(·, y).

It immediately follows from Proposition 1.3 that the maximization of (1.3) can be refor-
mulated as maximizing

J(τ̃ ;x0, y0) = −
N∑
k=1

E
[
I{τ (in)

k <∞}e
−ατ (in)

k [fr(X(τ
(in)
k ), 1)− fr(X(τ

(in)
k ), 0) + c

(in)
k ]
]

−
N∑
k=1

E
[
I{τ (out)

k <∞}e
−ατ (out)

k [fr(X(τ
(out)
k ), 0)− fr(X(τ

(out)
k ), 1) + c

(out)
k ]

]
−fr(x0, y0).

The constant −fr(x0, y0) does not affect the solution to the optimization but is required to
determine the correct value. We therefore eliminate this term in our further analysis but
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include it when stating the value of the original production/mothballing problem. Now for

k = 1, . . . , N , define g
(in)
k (x, 0) = −(fr(x, 1)− fr(x, 0) + c

(in)
k ) = fr(x, 0)− fr(x, 1)− c(in)

k and

g
(out)
k (x, 1) = −(fr(x, 0)− fr(x, 1) + c

(out)
k ) = fr(x, 1)− fr(x, 0)− c(out)

k . Thus we analyze the
optimization problem of maximizing

J(τ̃ ;x0, 0) :=
N∑
k=1

E[I{τ (in)
k <∞}e

−ατ (in)
k g

(in)
k (X(τ

(in)
k ), Y (τ

(in)
k −))] (1.6)

+
N∑
k=1

E[I{τ (out)
k <∞}e

−ατ (out)
k g

(out)
k (X(τ

(out)
k ), Y (τ

(out)
k −))]

over admissible decision times τ̃ ∈ A. As is traditional, we denote the value by V (x0, 0) =
supτ̃∈A J(τ̃ ;x0, 0).

A final observation is important. For each x ∈ (xl, xr), the sum

g
(in)
k (x, 0) + g

(out)
k (x, 1) = fr(x, 0)− fr(x, 1)− c(in)

k + fr(x, 1)− fr(x, 0)− c(out)
k

= −(c
(in)
k + c

(out)
k ) < 0.

This indicates that a decision to instantaneously switch on production and to mothball it
incurs a non-zero charge.

We impose a slightly stronger condition on the admissible switching times. We assume
that there is a value w ∈ (xl, xr) such that X(τ

(in)
k ) ≥ w on the set {τ (in)

k < ∞} and

X(τ
(out)
k ) ≤ w on the set {τ (out)

k < ∞}, for each k. The collection of admissible switching
times are therefore such that the decisions to start-up production are always made when the
inventory is small and mothballing production occurs when the inventory is relatively large.
Denote this restricted class of stopping times by A0. We therefore analyze the problem of
maximizing (1.6) over τ̃ ∈ A0. We also restrict attention to initial values X(0) = x0 ≤ w.

The following set of conditions on the payoff functions g
(in)
k and g

(out)
k will imply the

existence of a finite optimal value and the corresponding existence of optimal stopping times
{τ (in)
k } and {τ (out)

k }. Recall from Condition 1.2 that ψ0 and φ1 satisfy Af(x, y)−αf(x, y) = 0
with y = 0 and y = 1, respectively.

Condition 1.5 (a) For k = 1, . . . , N , there exists some values x
(in)
k > w and x

(out)
k < w in

(xl, xr) such that g
(in)
k (x

(in)
k , 0) > 0 and g

(out)
k (x

(out)
k , 1) > 0.

(b) For k = 1, . . . , N , lim
x↗xr

g
(in)
k (x, 0)

ψ0(x)
= 0.

(c) For k = 1, . . . , N , lim
x↘xl

g
(out)
k (x, 1)

φ1(x)
= 0.

In light of Condition 1.5(a), the objective is maximized when all switches are utilized, at
least on a set of paths having positive probability though possibly not on almost all paths.
Notice also that Condition 1.5(b,c) imposes a restriction on which solution fr of the differ-
ential equation in Remark 1.4 is allowed. A solution fr is composed of a particular solution
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and a linear combination a0φ0(x)I{0}(y) + b0ψ0(x)I{0}(y) + a1φ1(x)I{1}(y) + b1ψ1(x)I{1}(y)
of the solutions from Condition 1.2. In particular, a1 needs to be 0 in order to satisfy
Condition 1.5(c) and b0 = 0 is required by Condition 1.5(b). Solving the differential equa-
tion provides an alternate way to determine the function fr than using the definition in
Proposition 1.3, as will be seen in the examples.

2 Linear Programming Imbedding

In this section, we reformulate the problem by replacing the stochastic processes with mea-
sures induced on the state space as the fundamental quantities. These measures become the
variables in an infinite-dimensional linear program and are seen to be feasible points. The
key to the linear program is the constraint (2.3) which is imposed for a large collection of test
functions. Though the measures are defined by expectations related to the pair of processes
(X, Y ) and τ̃ ∈ A0, this collection is sufficiently large so that (2.3) captures the stochasticity
of the processes [18, 19]. However, we only need the result that the processes (X, Y ) along
with an admissible strategy τ̃ induce measures satisfying (2.3) and thus the optimal value is
bounded above by the resulting linear program so we do not claim equivalence between the
stochastic problem and the linear program. This paper does, however, demonstrate that the
values of the two problems are equal and moreover identifies an optimal solution for each
problem.

Choose τ̃ ∈ A0 arbitrarily. To simplify the following expressions, we use a different
notation for the stopping times. For k = 1, . . . , N , define τ2k = τ

(in)
N−k+1 and τ2k−1 = τ

(out)
N−k+1;

also let τ2N+1 = 0. In this way, the stopping times are indexed by the set {1, . . . , 2N, 2N+1}
with 0 = τ2N+1 ≤ τ2N ≤ τ2N−1 ≤ · · · ≤ τ1 ≤ ∞ having strict inequality whenever the smaller
stopping time is finite; the stopping time τk represents the time at which the kth-from-
the-end change in production level is made. Our analysis will show that these optimal
switching times will be characterized as hitting times of the process in the set Ξw defined by
Ξw = {(x1, y1, x2, y2 . . . , x2N , y2N) : x2j−1 ≤ w, y2j−1 = 1, x2j ≥ w, y2j = 0, j = 1, 2, . . . , N}.
Moreover, the process Y takes value 0 from an odd-indexed stopping time to an even-indexed
stopping time and has value 1 from the even-indexed to the odd-indexed stopping times. This
choice of indices will prove beneficial since an optimal set of decision times τ̃ ∗ ∈ A0 will be
seen to depend on the number of remaining decisions.

Now define the process λτ̃ , which counts the number of changes in production, by

λτ̃ (t) =
2N∑
k=1

I[0,t](τk) =
2N∑
k=1

I[τk,∞)(t). (2.1)

Define a new process Z to have Z(0) = 2N =: z0 and to decrease by 1 at each finite
intervention time τk, k = 1, . . . , 2N . The purpose of the process Z is to record the number
of remaining interventions. Observe that when Z(t) is even, Y (t) = 0 and when Z(t) is odd,
Y (t) = 1. Let f ∈ C2

c ((xl, xr) × {0, 1} × {0, . . . , 2N}); that is, f is a twice-continuously
differentiable function having compact support. Let Ã denote the operator Ãf(x, y, z) =

(σ2(x, y)/2)∂
2f
∂x2 (x, y, z) + µ(x, y)∂f

∂x
(x, y, z). Recall, τ2N+1 = 0. Then applying Itô’s formula
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yields

e−αtf(X(t), Y (t), Z(t))

= f(x0, y0, z0) +

∫ t

0

e−αs[Ãf(X(s), Y (s), Z(s))− αf(X(s), Y (s), Z(s))] ds

+

∫ t

0

e−αsσ(X(s), Y (s))∂f
∂x

(X(s), Y (s), Z(s)) dW (s)

+

∫
[0,t]

e−αs[f(X(s), 1− Y (s−), Z(s−)− 1)− f(X(s), Y (s−), Z(s−))] dλτ̃ (s).

Taking expectations and then letting t→∞ results in

0 = f(x0, y0, z0) + E
[∫ ∞

0

e−αs[Ãf(X(s), Y (s), Z(s))− αf(X(s), Y (s), Z(s))] ds

]
+E

[∫
[0,∞]

e−αs[f(X(s), 1− Y (s−), Z(s−)− 1)− f(X(s), Y (s−), Z(s−))] dλτ̃ (s)

]
= f(x0, y0, z0) + E

[∫ ∞
0

e−αs[Ãf(X(s), Y (s), Z(s))− αf(X(s), Y (s), Z(s))] ds

]
(2.2)

+
2N∑
k=1

E

[∫
(τk+1,τk]

e−αs[f(X(s), 1− Y (s−), Z(s−)− 1)− f(X(s), Y (s−), Z(s−))] dλτ̃ (s)

]
,

where by a slight abuse of notation, the interval (τ2N+1, τ2N ] is defined to be [0, τ2N ] and on
the set {τk =∞}, (τk+1, τk] = (τk+1,∞).

Define the finite measures µτ̃ and ν τ̃k , k = 1, . . . , 2N , on (xl, xr) × {0, 1} × {1, . . . , 2N}
such that for G ∈ B((xl, xr)× {0, 1} × {1, . . . , 2N}),

µτ̃ (G) = E
[∫ ∞

0

e−αsIG(X(s), Y (s), Z(s))) ds

]
, and

ν τ̃k (G) = E
[∫

[0,∞]

e−αsIG(X(s)), Y (s−), Z(s−))I{k}(Z(s−)) dλτ̃ (s)

]
.

Observe that the total mass of µτ̃ equals 1/α and the masses of each ν τ̃k are bounded by 1.
Also notice that the measure ν τ̃k has no mass accrued for τk =∞ so it incorporates I{τk<∞}
implicitly. In addition, for each k, the measure ν τ̃k can be identified with a measure on
(xl, xr)×{0, 1} since Z(s−) = k in the definition of ν τ̃k . We also observe that when k is even,
Y (s−) = 0 and Y (s−) = 1 when k is odd so ν τ̃k can be further identified with a measure solely
on (xl, xr). In fact, the restriction on the finite admissible switching times that X(τ2k) > w
and X(τ2k−1) < w implies that the support of ν τ̃2k is in [w, xr) × {0} while the support of
ν τ̃2k−1 is in (xl, w]×{1}; these restrictions imply that the measure ν τ̃1 × ν τ̃2 × · · ·× ν τ̃2N has its
support in Ξw. We initially take advantage of the reduction to a measure on (xl, xr)×{0, 1}
and later will consider each ν τ̃k as a measure on (xl, xr).
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The identity (2.2) is expressed in terms of these measures as

0 = f(x0, y0, z0) +

∫
[Ãf(x, y, z)− αf(x, y, z)]µτ̃ (dx× dy × dz)

+
2N∑
k=1

∫
[f(x, 1− y, k − 1)− f(x, y, k)]ν τ̃k (dx× dy). (2.3)

We turn now to an examination of the objective function (1.6). First, we continue to
utilize the single set of indices in order to simplify the presentation. For k = 1, . . . , N , let
g2k = g

(in)
N−k+1 and g2k−1 = g

(out)
N−k+1; again, this choice of subscript indicates the number of

remaining decisions so, for example, g2N = g
(in)
1 , g2N−1 = g

(out)
1 , g2 = g

(in)
N and g1 = g

(out)
N .

Recall, the measure ν τ̃k incorporates I{τk<∞} implicitly so as a result (1.6) can be restated as

J(τ̃ ;x0, y0) =
N∑
k=1

E

[∫
(τ2k+1,τ2k]

e−αsg2k(X(s), Y (s−)) dλτ̃ (s)

]

+
N∑
k=1

E

[∫
(τ2k,τ2k−1]

e−αsg2k−1(X(s), Y (s−)) dλτ̃ (s)

]

=
2N∑
k=1

∫
gk(x, y) ν τ̃k (dx× dy). (2.4)

Summarizing the analysis so far, we note that the original multiple-decision stochastic
problem consists of determining a finite collection τ̃ = {τk : k = 1, . . . , 2N} ∈ A0 of stopping
times so as to maximize (1.6) for a process X satisfying (1.2) and Y being the indicator
process corresponding to τ̃ . Each choice τ̃ of such stopping times defines the random process
λτ̃ which in turn is used to define the measures ν τ̃k , k = 0, . . . , 2N , and the measure µτ̃ .
The choice of these measures are therefore at the discretion of the manager. The objective
(1.6) to be maximized is expressed in terms of the measures by (2.4), with the collection
of measures satisfying (2.3) for all f ∈ C2

c ((xl, xr) × {0, 1} × {0, . . . , 2N}), the bounds on
their total masses and the restrictions on their support. The original problem is therefore
imbedded in the linear program

Maximize
2N∑
k=1

∫
gk(x, y) νk(dx× dy)

Subject to f(x0, y0, z0) = −
∫

[Ãf(x, y, z)− αf(x, y, z)]µ(dx× dy × dz)

−
2N∑
k=1

∫
[f(x, 1− y, k − 1)− f(x, y, k)]νk(dx× dy),

∀f ∈ C2
c ,∫

1 νk(dx) ≤ 1, k = 0, . . . , 2N,∫
1µ(dx) = 1/α,

µ, νk measures with supp(ν1 × · · · × ν2N) ⊂ Ξw.

(2.5)
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Let Vlp(x0, y0, z0) denote the optimal value of (2.5). We therefore have the following theorem
comparing the two value functions.

Theorem 2.1 For each x0 with xl < x0 ≤ w, V (x0, y0) ≤ Vlp(x0, y0, z0).

Proof. The discussion of the section shows that the measures µτ̃ and ν τ̃k , k = 0, . . . , 2N ,
induced by each τ̃ ∈ A are feasible for (2.5) and moreover that the value of J(τ̃ ;x0, y0) is
given by the objective function of (2.5). �

3 Auxiliary Program and Nonlinear Optimization

We now simplify the linear programming problem by limiting the number of constraints and
as a consequence eliminating one of the measures. The resulting auxiliary linear program is
then shown to have an optimal solution that arises as the solution to a nonlinear optimization
problem.

Recall, φ0, φ1, ψ0 and ψ1 are functions satisfying Condition 1.2. Only ψ0 and φ1 play a
role in the sequel so to simplify notation, we set ψ := ψ0 and φ := φ1. The increasing function
ψ will only be used to determine a time to restart production during “good times” when it is
mothballed (Y (t) = 0) and the decreasing function φ is only involved in identifying times to
mothball the process when times are sufficiently “bad” and production is running (Y (t) = 1).
We remind the reader that when xl is either a natural or an entry-not-exit boundary point
φ(xl+) =∞ and ψ(xl) ≥ 0 with a similar statement applying for the boundary point xr in
which the roles of φ and ψ reversed.

The simple idea underlying the derivation of the nonlinear function to be optimized is to
use the functions fk(x, y, z) = φ(x)I{1}(y)I{k}(z) +ψ(x)I{0}(y)I{k}(z) as the functions in the
constraints of (2.5). The derivation of this linear program, however, requires the function
f to be bounded, a condition that φ does not satisfy near xl and which ψ fails at xr. We
therefore temporarily introduce a further restriction on the admissible stopping times.

Restriction 3.1 Let A1 ⊂ A0 be the subcollection of stopping times τ̃ for which there exists
some a > xl and b < xr such that X(τ2k) ∈ [w, b]and X(τ2k−1) ∈ [a, w], for k = 1, 2, . . . , N .

This condition is important in two ways. First, for any switching policy τ̃ ∈ A1, Y (t) = 1
whenever X(t) < a and Y (t) = 0 when X(t) > b. As a result, the measure µτ̃ will have no
mass on (xl, a) × {0} × {1, . . . , N} and similarly µτ̃ ((b, xr) × {1} × {1, . . . , N}) = 0. The
second advantage to switching rules τ̃ ∈ A1 is that for k = 1, . . . , N , the measures ν2k have
their support in [w, b]×{0} while the measures ν2k−1 have their support in [a, w]×{1}. Define
the set ΞR = {(x1, y1, x2, y2, . . . , x2n, y2N) : x2k−1 ∈ [a, w], y2k−1 = 1, x2k ∈ [w, b], y2k = 0, k =
1, 2, . . . , N}. The second observation implies that ν τ̃1 × ν τ̃2 × · · · × ν τ̃2n has its support in ΞR.

Let φ̃ ∈ C2(xl, xr) be a bounded function with bounded derivatives, such that φ̃(x) = φ(x)
for x ∈ [a, xr). Similarly let ψ̃ ∈ C2(xl, xr) be a mollification of ψ which is bounded with
bounded derivatives such that ψ̃(x) = ψ(x) for (xl, b].

Define f(x, y) = ψ̃(x)I{0}(y) + φ̃(x)I{1}(y) and, for k = 1, . . . , 2N , define fk(x, y, z) =
f(x, y)I{k}(z). Using a localization argument, if necessary, the identity (2.3) holds for this
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collection of functions. The significance of this choice of functions is twofold. First, for each
k, Ãfk−αfk ≡ 0 where µτ̃ has its support and hence the identity does not involve the measure
µτ̃ . Second for k = 1, . . . , N , f2k(x, 0, z) = ψ(x)I{2k}(z) and f2k−1(x, 1, z) = φ(x)I{2k−1}(z)
on the supports of the measures ν τ̃2k and ν τ̃2k−1, respectively. Define the auxiliary linear
program to be

Maximize
2N∑
j=1

∫
gj(x, y) νj(dx× dy)

Subject to −
2N∑
j=1

∫
[fk(x, 1− y, j − 1)− fk(x, y, j)]νj(dx× dy)

= fk(x0, y0, z0), k = 1, . . . , 2N,
νj are finite measures with supp(ν1 × · · · × ν2N) ⊂ ΞR.

(3.1)

Notice that the auxiliary linear program only requires the main constraint of (2.5) to be
satisfied by the collection {fk : k = 1, . . . , 2N}, removes any dependence on the measure µ
and relaxes the mass conditions. It immediately follows that each set of feasible measures
for (2.5) is also feasible for (3.1).

It will be helpful to examine the auxiliary linear program (3.1) more carefully before
proceeding to develop the nonlinear optimization problem whose solution will determine
optimal times for the original stochastic problem. It is at this point that we seek to reduce
the problem to one involving measures on (xl, xr). First observe that the summation in
the constraint of (3.1) simplifies since fk(x, y, z) = 0 when z 6= k so the only indices of j
for which the integral is non-zero are j = k and j = k + 1. Furthermore, φ̃(x) = φ(x) on
[a, w] and ψ̃(x) = ψ(x) on [w, b] so the expressions can all be written in terms of φ or ψ.
Also, the right-hand-side fk(x0, y0, z0) is only non-zero for k = 2N and since y0 = 0 we have
f(x0, y0, z0) = ψ(x0). The set of constraints is therefore∫

φ(x1) ν1(dx1) −
∫
φ(x2) ν2(dx2) = 0∫

ψ(x2) ν2(dx2) −
∫
ψ(x3) ν3(dx3) = 0∫

φ(x3) ν3(dx3) −
∫
φ(x4) ν4(dx4) = 0

...∫
φ(x2N−1) ν2N−1(dx2N−1) −

∫
φ(x2N) ν2N(dx2N) = 0∫

ψ(x2N) ν2N(dx2N) = ψ(x0).

(3.2)

Define the 2N × 2N -dimensional matrix of integrands Â = ((aij)) by

aij(xj) =


φ(xj), i = 2k − 1, j = i, k = 1, . . . , N,
−φ(xj), i = 2k − 1, j = i+ 1, k = 1, . . . , N,
ψ(xj), i = 2k, j = i, k = 1, . . . , N,
−ψ(xj), i = 2k, j = i+ 1, k = 1, . . . , N,

0, otherwise,

and define the 2N × 1-dimensional column vector b = (0, . . . , 0, ψ(x0))′. Then this system of
constraints takes the form

2N∑
j=1

∫
aij(xj) νj(dxj) = bj, i = 1, . . . , 2N. (3.3)
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Turning to the objective function, we have observed that Y (t) = 0 when Z(t) is even
and Y (t) = 1 when Z(t) is odd. Since νk has mass only when Z(t−) = k, it follows that the
support of νk is in [w, b]× {0} when k is even and in [a, w]× {1} when k is odd. The even-

indexed functions g2k(x, y) = fr(x, y)−fr(x, 1−y)−c(in)
N−k+1, k = 1, . . . , N , are therefore only

evaluated when y = 0; similarly for k = 1, . . . , N , g2k−1(x, y) = fr(x, y)−fr(x, 1−y)−c(out)
N−k+1

are only evaluated when y = 1. Slightly abusing notation, we let g2k(x) := g2k(x, 0) and
g2k−1(x) := g2k−1(x, 1). The objective function of (3.1) then becomes

2N∑
j=1

∫
gj(xk) νj(dxj). (3.4)

The linear program (3.1) now takes the form of maximizing (3.4) over a collection of measures
{νj : j = 1, . . . , 2N} on (xl, xr) satisfying the constraints (3.3) with each measure having
total mass bounded by 1 and the product measure having its support in ΞR. For j = 1, . . . , N ,
letting S2j−1 = [a, w] and S2j = [w, b] for j = 1, . . . , 2N , the problem has the form of the
linear program (A.1) of the Appendix.

Let x = (x1, . . . , x2N) denote a generic point in S =
∏2N

j=1 Sj. Let x̄j denote a generic

point in S̄j :=
∏

i 6=j Si, the 2N − 1 product which omits the jth component. Theorem A.1
implies the following result.

Theorem 3.2 Under Conditions 1.1, 1.2 and 1.5, the stochastic multiple-intervention prob-
lem of maximizing (1.1) over admissible sets of stopping times τ̃ ∈ A1 is equivalent to the
nonlinear optimization problem of maximizing

Jnl(x) = (detÂ(x))−1

2N∑
j=1

gj(xj)detÂj(x̄j) (3.5)

over x ∈ S. Using an optimizer x∗ = (x∗1, . . . , x
∗
2N) of Jnl, the intervention times

τ ∗k = inf{t : (X(t−), Z(t−)) = (x∗k, k)}, k = 1, . . . , 2N, (3.6)

are optimal for the stochastic problem.

Proof. Let Vnl(x0, y0) = supx∈S Jnl(x). Theorem A.1 of the Appendix establishes the
fact that Vnl(x0, y0) is an upper bound on Vaux(x0, y0, z0). A maximizer x∗ exists since the
optimization is over a compact set. Now for j = 1, . . . , N , define θ2j−1 = φ and θ2j =
ψ. Also define x2N+1 = x0. Then for j = 1, 2, . . . , 2N , for x∗ = (x∗1, . . . , x

∗
2N), the ratio

det Âj(x
∗
j)/ det Â(x∗) =

∏2N
k=j θk(x

∗
k+1)/θk(x

∗
k). Recall from (1.3) that the individual ratios

give the expected discount factor for hitting times of the X process. Using the strong Markov
property, the value Jnl(x

∗) is therefore seen to be the value corresponding to the switching
times {τ ∗k} in (3.6), and hence these switching times are optimal. �

We observe that P (τ ∗k = τ ∗k+1) = 0 for k = 1, . . . , 2N − 1.
The next theorem removes the restriction that τ̃ ∈ A1; its proof involves analysis of the

stochastic problem having objective function (2.4).
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Theorem 3.3 Under Conditions 1.1, 1.2 and 1.5, the stochastic multiple-intervention prob-
lem of maximizing (1.1) over admissible sets of stopping times τ̃ ∈ A0 is equivalent to the
nonlinear optimization problem of maximizing (3.5), the intervention times (3.6) are optimal
for the stochastic problem, and the optimal value for the stochastic problem of maximizing
(1.6) is

V (x0, 0) = Jnl(x
∗)

where x∗ ∈ S is a maximizer of Jnl. The optimal value for the original stochastic problem is
V (x0, 0)− fr(x0, 0).

Proof. Select τ̃ ∈ A arbitrarily. Let {an} be a sequence such that an ↘ xl as n → ∞
and similarly let {bn} be a sequence converging upward to xr; we assume a1 < w < b1.
Define the switching times τ2N,bn = inf{t > 0 : X(t) = bn}, τ2N−1,an = inf{t > τ2N ∧ τ2N,bn :
X(t) = an} and for j = 1, . . . , N − 1, τ2j,bn = inf{t > τ2j+1 ∧ τ2j+1,an : X(t) = bn} and
finally τ2j−1,an = inf{t > τ2j ∧ τ2j,bn : X(t) = an}. Observe that the collection τ̃n =
{τ2N ∧ τ2N,bn , τ2N−1 ∧ τ2N−1,an , . . . , τ1 ∧ τ1,an} is an element of A1. Also since xl and xr are
either natural or entrance-not-exit boundary points, τ2j−1,an , τ2j,bn → ∞ a.s. as n → ∞ and
thus τ̃n → τ̃ almost surely.

Since τ̃n ∈ A1, Theorem 3.2 implies the first inequality in

Vnl(x0, 0) ≥ J(τ̃n;x0, 0)

=
N∑
j=1

E[I{τ2j∧τ2j,bn<∞}e
−ατ2j∧τ2j,bng2j(X(τ2j ∧ τ2j,bn), 0)I{τ2j<∞}]

+
N∑
j=1

E[I{τ2j∧τ2j,bn<∞}e
−ατ2j∧τ2j,bng2j(X(τ2j ∧ τ2j,bn , 0)I{τ2j=∞}]

+
N∑
j=1

E[I{τ2j−1∧τ2j−1,an<∞}e
−ατ2j−1∧τ2j−1,ang2j−1(X(τ2j−1 ∧ τ2j−1,an), 1)I{τ2j−1<∞}]

+
N∑
j=1

E[I{τ2j−1∧τ2j−1,an<∞}e
−ατ2j−1∧τ2j−1,ang2j−1(X(τ2j−1 ∧ τ2j−1,an , 1)I{τ2j−1=∞}]

=
N∑
j=1

E[I{τ2j∧τ2j,bn<∞}e
−ατ2j∧τ2j,bng2j(X(τ2j ∧ τ2j,bn), 0)I{τ2j<∞}]

+
N∑
j=1

E[I{τ2j,bn<∞}e
−ατ2j,bng2j(X(τ2j,bn), 0)I{τ2j=∞}]

+
N∑
j=1

E[I{τ2j−1∧τ2j−1,an<∞}e
−ατ2j−1∧τ2j−1,ang2j−1(X(τ2j−1 ∧ τ2j−1,an), 1)I{τ2j−1<∞}]

+
N∑
j=1

E[I{τ2j−1,an<∞}e
−ατ2j−1,ang2j−1(X(τ2j−1,an), 1)I{τ2j−1=∞}].
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Consider now the first summation. On the set {τ2j <∞}, the stopping time τ2j∧τ2j,bn ↗ τ2j

so the integrand in the expectations converge pointwise to I{τ2j<∞}e
−ατ2jgk(X(τ2j), 0). Simi-

larly the integrands in the third summation converge pointwise to I{τ2j−1<∞}e
−ατ2j−1gk(X(τ2j−1), 1).

Looking at the terms in the second summation,

E[I{τ2j,bn<∞}e
−ατ2j,bng2j(X(τ2j,bn), 0)I{τ2j=∞}] ≤ E[I{τ2j,bn<∞}e

−ατ2j,bng2j(X(τ2j,bn), 0)]

≤ g2j(bn, 0)ψ(x0)

ψ(bn)
,

with a similar bound of
g2j−1(an,1)φ(x0)

φ(an)
applying to the terms in the fourth summations. Using

Conditions 1.5(b,c) along with Fatou’s Lemma, we obtain

Vnl(x0, 0) ≥
2N∑
k=1

E[I{τk<∞}e
−ατkgk(X(τk), Y (τk−))]

and taking the supremum over all τ̃ ∈ A0 implies that Vnl(x0, 0) ≥ V (x0, 0). Since A1 ⊂ A0,
the opposite inequality is immediate. �

This optimality result can be best understood by considering the simple examples of a
stochastic problem in which one is limited to a single increase and decrease in production
and two increases and two decreases of production levels; we consider both single-cycle and
double-cycle problems. Notice that the single-cycle problem can be viewed as an entry-and-
exit problem in which one wishes to invest in a market and then disinvest. The double-cycle
problem allows one to reenter and exit for a second (and last) time.

Example: One Cycle
The problem of interest consists of a single decision to open up production and one to close
out production. To be consistent with the indexing of the stopping times, let τ2 denote the
time and x2 denote the level at which production is started (hence there are two decisions
to be made) and similarly τ1 is the time and x1 the level for closing down production (the
last decision). The auxiliary linear program (3.1) for this single cycle problem is therefore

Maximize

∫
g1(x1) ν1(dx1) +

∫
g2(x2) ν2(dx2)

Subject to

∫
φ(x1) ν1(dx1) −

∫
φ(x2) ν2(dx2) = 0,∫
ψ(x2) ν2(dx2) = ψ(x0).

From this we see that detÂ(x1, x2) = φ(x1)ψ(x2), detÂ1(x2) = ψ(x0)φ(x2) and detÂ2(x1) =
φ(x1)ψ(x0). The nonlinear function to be optimized is therefore

Jnl(x1, x2) :=
g1(x1)φ(x2) + φ(x1)g2(x2)

φ(x1)ψ(x2)
· ψ(x0). (3.7)

For ease of understanding, we illustrate the problem using the following toy problem. Let
X be a (non-standard) Brownian motion with initial position x0 = 0 and having diffusion
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coefficient σ > 0 so X(t) = σW (t). In this case, the dynamics do not actually depend on

the process Y . The generator of the pair (X, Y ) is Af(x, y) = σ2

2
∂2f
∂x2 (x, y) and thus the

solutions to Af − αf = 0 are ψ(x, y) = eρxI{0}(y) and φ(x) = e−ρxI{1}(y), where ρ =
√

2α
σ2

and α > 0. We take c1 = c2 =: c so the cost to start production is the same as the cost to
shut down production. The function r does depend on Y ; let r(x, y) = xI{1}(y) so a reward
is received only while production is present. A function fr satisfying the differential equation
in Remark 1.4 is fr(x, y) = − x

α
I{1}(y) and hence g1(x1) = fr(x1, 1)−fr(x1, 0)−c1 = −(x1

α
+c)

and g2(x2) = fr(x2, 0)− fr(x2, 1)− c2 = x2

α
− c. The nonlinear function to be optimized is

Jnl(x1, x2) =
−(x1

α
+ c)e−ρx2 + (x2

α
− c)e−ρx1

eρ(x2−x1)
· eρx0

with (x1, x2) ∈ (−∞, 0] × [0,∞). Setting the partial derivatives equal to 0 results in the
system {

0 = − 1
α
eρ(x1−2x2) − ρ(x1

α
+ c)eρ(x1−2x2)

0 = 2ρ(x1

α
+ c)eρ(x1−2x2) + 1

α
e−ρx2 − ρ(x2

α
− c)e−ρx2

from which we see that x∗1 = −(αc + 1
ρ
) and x∗2 is the unique positive solution to the

transcendental equation

e−(1+αρc)e−ρx2 =
(1 + αρc)

2
− ρ

2
x2.

The optimal value for the original stochastic problem is

V (x0, y0) = Jnl(x
∗
1, x
∗
2)− fr(x0, y0) =

−(
x∗1
α

+ c)e−ρx
∗
2 + (

x∗2
α
− c)e−ρx∗1

eρ(x∗2−x∗1)
· eρx0

=
(ρx∗2 − αρc) + 1

2αρ
e−ρx

∗
2 · ψ(x0)

and the optimal times to change production levels are

τ ∗2 = inf{t > 0 : (X(t−), Y (t−)) = (x∗2, 0)} and τ ∗1 = inf{t > 0 : (X(t−), Y (t−)) = (x∗1, 1)}.

�

Example: Two Cycles
Now consider the case where production is started up, then mothballed, then restarted and
finally closed down resulting in two cycles. Let τ4 and x4 denote the time and level of initial
start-up, τ3 and x3 the time and level at which mothballing occurs and similarly for τ2, x2,
τ1 and x1 for the second cycle. The auxiliary linear program for this two-cycle problem is

Max.
∫
g1(x1) ν1(dx1) +

∫
g2(x2) ν2(dx2) +

∫
g3(x3) ν3(dx3) +

∫
g4(x4) ν4(ds4)

S.t.
∫
φ(x1) ν1(dx1) −

∫
φ(x2) ν2(dx2) = 0,∫
ψ(x2) ν2(dx2) −

∫
ψ(x3) ν3(dx3) = 0,∫
φ(x3) ν3(dx3) −

∫
φ(x4) ν4(dx4) = 0,∫
ψ(x4) ν4(dx4) = ψ(x0).
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From this it is easily determined that detÂ(x1, x2, x3, x4) = φ(x1)ψ(x2)φ(x3)ψ(x4). Replacing
the first column of Â by the right-hand side yields detÂ1(x2, x3, x4) = ψ(x0)φ(x2)ψ(x3)φ(x4).
The other determinants are obtained from detÂ in a similar fashion. Let x = (x1, x2, x3, x4).
The nonlinear function to be optimized is

Jnl(x) = [g1(x1)φ(x2)ψ(x3)φ(x4) + φ(x1)g2(x2)ψ(x3)φ(x4) + φ(x1)ψ(x2)g3(x3)φ(x4)

+φ(x1)ψ(x2)φ(x3)g4(x4)] · ψ(x0)

φ(x1)ψ(x2)φ(x3)ψ(x4)
. (3.8)

We revisit the toy problem from the single-cycle problem in which the process is a non-
standard Brownian motion with initial value x0 = 0 and diffusion coefficient σ > 0, 0 < α <√

2, r(x, y) = xI{1}(y) and the costs to change production levels are all the same constant
c > 0. For this problem, g1(x) = g3(x) = −( x

α
+ c), g2(x) = g4(x) = x

α
− c and hence Jnl of

(3.8) is

Jnl(x) =
[
−
(
x1

α
+ c
)
e−ρ(x2−x3+x4) +

(
x2

α
− c
)
e−ρ(x1−x3+x4) −

(
x3

α
+ c
)
e−ρ(x1−x2+x4)

+
(
x4

α
− c
)
e−ρ(x1−x2+x3)

]
· eρx0

e−ρ(x1−x2+x3−x4)
.

As one can immediately see, determining the solution by optimizing the function Jnl
of four variables is nontrivial even for the two cycle problem. Rather than proceed with
a discussion of this optimization, we investigate the structure of the optimization problem
more generally and see that an iterative scheme is possible that involves the same type of
optimization for each iteration but relative to different payoff functions. �

4 Iterative Solution Approach

The structure of the nonlinear function enables an efficient iterative approach to be employed
in computing an optimal solution x∗ = (x∗1, . . . , x

∗
2N). To easily describe this method, we

reconsider the single-cycle and double-cycle examples of the previous section.

Example: One Cycle Revisited
Observe the function Jnl of (3.7) can be rewritten as

Jnl(x1, x2) =
ψ(x0)

ψ(x2)
· g2(x2) +

ψ(x0)

ψ(x2)
· φ(x2)

φ(x1)
· g1(x1). (4.1)

Recall from (1.3) that the ratio ψ(x0)
ψ(x2)

is the Laplace transform of the time τ2 for the process
X to reach level x2 starting from x0; this represents the expected discount factor until the
time production is started. Similarly the factor φ(x2)

φ(x1)
= E[e−α(τ1−τ2)] gives the expected

discounting for the time τ1 − τ2 it takes for X to hit level x1 starting at x2. Thus the form
(4.1) indicates that the problem involves optimizing the expected discounted reward over
hitting levels x1 and x2.

Now consider the task of maximizing Jnl over (x1, x2) ∈ (xl, w] × [w, xr). The function
Jnl depends on x1, the level at which production is shut down, only in the last term and only
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through the ratio g1(x1)
φ(x1)

. Since g1 is differentiable, an optimizer x∗1 will satisfy the first-order
condition

φ(x1)g′1(x1)− φ′(x1)g1(x1) = 0 (4.2)

when x∗1 ∈ (xl, w). The possibility x∗1 = w exists but only means one needs to consider
various cases so is omitted from this discussion. Similarly, we omit discussion below of the
case where x∗2 = w and note that the it will never be the case that x∗1 = w = x∗2 due to the
presence of the strictly positive cost for immediately switching twice.

The next task would be to optimize Jnl(x
∗
1, x2) over values of x2 ∈ [w, xr). Since x∗1 is

now fixed, the optimization problem requires maximizing

Jnl(x
∗
1, x2) =

g2(x2)

ψ(x2)
+
φ(x2)

ψ(x2)
· g1(x∗1)

φ(x∗1)
=
g2(x2) +

g1(x∗1)

φ(x∗1)
· φ(x2)

ψ(x2)
. (4.3)

Again, the first-order conditions for optimality imply

ψ(x2)
[
g′2(x2) +

g1(x∗1)

φ(x∗1)
· φ′(x2)

]
− [g2(x2) +

g1(x∗1)

φ(x∗1)
· φ(x2)]ψ′(x2) = 0.

From these observations, we see that the two-dimensional optimization problem is actually
two one-dimensional optimization problems that, in fact, have the same structure. Notice
that the payoff function when optimizing over x2 consists of the sum of the payoff g2(x2)

received at the time production is started and the discounted payoff φ(x2)
φ(x∗1)

· g1(x∗1) received

at the time production is stopped. The difference between optimizing over x1 and x2 lies in
the additional payoff arising from having the extra decision opportunity. �

Remark 4.1 The first-order condition (4.2) can be rewritten as

x1g
′
1(x1)

g1(x1)
=
x1φ

′(x1)

φ(x1)

which indicates that an optimizer (x∗1, x
∗
2) ∈ (xl, w) × (w, xr) is at a location where the

elasticity of g1 equals the elasticity of φ. Due to the properties of elasticity, the partial
elasticity of the discount factor E[e−α(τ1−τ2)] = φ(x2)

φ(x1)
with respect to x1 is the negative of the

corresponding elasticity of φ. Hence an optimal level x∗1 ∈ (xl, xr) at which to shut down,
the elasticity of g1 is the negative of the partial elasticity of the discount factor. A similar

statement holds for the elasticity of the adjusted payoff function g2(x2) +
g1(x∗1)

φ(x∗1)
· φ(x2) and

the discount factor corresponding to the level at which to start production.

Example: Two Cycles Revisited
Consider the function Jnl of (3.8). Rewriting the ratios as in (4.1) shows that

Jnl(x) =
ψ(x0)

ψ(x4)
· g4(x4) +

ψ(x0)

ψ(x4)
· φ(x4)

φ(x3)
· g3(x3) +

ψ(x0)

ψ(x4)
· φ(x4)

φ(x3)
· ψ(x3)

ψ(x2)
· g2(x2)

+
ψ(x0)

ψ(x4)
· φ(x4)

φ(x3)
· ψ(x3)

ψ(x2)
· φ(x2)

φ(x1)
· g1(x1). (4.4)
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As in the previous example, the factors multiplying g1(x1) give the Laplace transforms of the
hitting times of the levels x4 from x0, x3 from x4, x2 from x3 and x1 from x2; these Laplace
transforms represent the expected discount factor corresponding to the hitting times. Thus,
the nonlinear problem involves optimizing over levels at which production is started up or
mothballed.

The variable x1 only appears in the last term of (4.4). Optimizing Jnl(x) with respect to x1

requires maximizing the ratio g1(x1)
φ(x1)

so is, in fact, the same optimization as for the single cycle
problem, though the optimal values differ. Thus an optimal level x∗1 at which to close down

production satisfies the first-order conditions (4.2). Let x∗1 denote an optimizer of g1(x1)
φ(x1)

.

Turning to the optimization with respect to x2. The x2-dependence of Jnl(x
∗
1, x2, x3, x4)

requires optimizing (4.3); that is, the same optimization problem must be solved as for the
single cycle problem. We therefore observe that the optimization for the last cycle is the
same regardless of the number of cycles allowed. The only difference is that having additional
cycles means the value associated with the optimal decision levels are more discounted. Let
x∗2 be an optimizer of Jnl with x∗1 fixed.

Now looking at the optimization of Jnl(x
∗
1, x
∗
2, x3, x4) with respect to x3, we see that the

function to be maximized is

Jnl(x
∗
1, x
∗
2, x3, x4) =

g3(x3) +
(
g2(x∗2)

ψ(x∗2)
+

g1(x∗1)φ(x∗2)

φ(x∗1)ψ(x∗2)

)
ψ(x3)

φ(x3)
· φ(x4)

ψ(x4)
· ψ(x0). (4.5)

Again by separation of variables, the optimization over x3 is independent of x4. Moreover, an
inspection the numerator of the first factor indicates that the optimization problem involves
solving for an optimal level x∗3 which maximizes the ratio of the sum of three payoff functions
and the function φ. This sum of payoff functions gives the return g3(x3) received arising from
the third-from-the-end decision plus the payment g2(x∗2) at the time of the second-from-the-

end intervention discounted by ψ(x3)
ψ(x∗2)

, the expected discounted factor corresponding to the

time the process X takes to move from x3 to x∗2, and a similar payoff g1(x∗1) from the last

intervention that is discounted by the factors
φ(x∗2)

φ(x∗1)
and ψ(x3)

ψ(x∗2)
. Finally, after finding an opti-

mizer x∗3, the last maximization problem only depends on x4; the optimization problem has
the same form with the more complex numerator formed from the sum of four appropriately
discounted payoffs.

For certain relations between the mothballing and start-up fixed costs, one additional
observation can be made about the relation of x∗1 and x∗3, and x∗2 and x∗4 for an optimal x∗ ∈ S.

Suppose c1 ≥ c3, where c3 := c
(out)
1 and c1 := c

(out)
2 . Recall g2j−1 = fr(x, 1)−fr(x, 0)−c(out)

N−j+1

so g3(x) = g1(x) + c1− c3. Consider the optimization of the first factor of (4.5) with respect
to x3. The derivative is

φ(x3)g′3(x3)− φ′(x3)g3(x3)

φ(x3)2

+
φ(x3)

(
g2(x∗2)

ψ(x∗2)
+

g1(x∗1)ψ(x∗2)

φ(x∗1)ψ(x∗2)

)
ψ′(x3)− φ′(x3)

(
g2(x∗2)

ψ(x∗2)
+

g1(x∗1)φ(x∗2)

φ(x∗1)ψ(x∗2)

)
ψ(x3)

φ(x3)2

20



=
φ(x3)g′1(x3)− φ′(x3)g1(x3)

φ(x3)2
− φ′(x3)(c1 − c3)

φ(x3)2

+
φ(x3)

(
g2(x∗2)

ψ(x∗2)
+

g1(x∗1)ψ(x∗2)

φ(x∗1)ψ(x∗2)

)
ψ′(x3)− φ′(x3)

(
g2(x∗2)

ψ(x∗2)
+

g1(x∗1)φ(x∗2)

φ(x∗1)ψ(x∗2)

)
ψ(x3)

φ(x3)2
.

Notice when x3 = x∗1 the first term on the right-hand side is 0 due to the optimality of x∗1,
the second term is nonnegative since φ is strictly decreasing and c1 ≥ c3 and the third term
is strictly positive. Hence at x3 = x∗1, the function is increasing and therefore a maximizer x∗3
must be greater than x∗1. A similar analysis for the optimization with respect to x4 indicates
x∗4 < x∗2 provided c2 ≥ c4. �

These examples illustrate the structure of the auxiliary linear program for the N -cycle
production level problem. The nonlinear function to be optimized consists of a sum of
2N terms with the x1 variable entering only one term, the x2-variable being in only two
terms with one of those being the one depending on x1 and so forth. As a result, the
2N -dimensional optimization problem can be solved by an interated sequence of 2N one-
dimensional nonlinear problems. We state this observation in the following theorem.

Theorem 4.2 A maximizer x∗ = (x∗1, . . . , x
∗
2N) of

Jnl(x) = (detÂ(x))−1

2N∑
j=1

gj(xj)detÂj(x̄j)

is obtained by sequentially solving 2N one-dimensional nonlinear optimization problems of

the form
hj(x∗1,...,x

∗
j−1,xj)

θj(xj)
for j = 1, . . . , 2N , in which θ2k(x2k) = ψ(x2k) and θ2k−1(x2k−1) =

φ(x2k−1) for j = 1, . . . , N and for j = 1, . . . , 2N,

hj(x1, . . . , xj) = gj(xj) +
θj−1(xj)

θj−1(xj−1)
gj−1(xj−1) + · · ·+

j−1∏
i=1

θi(xi+1)
θi(xi)

· g1(x1).

Proof. For k = 1, . . . , 2N , define the submatrices Bj of Â by

Bj(xj, . . . , x2N) =


ajj(xj) aj(j+1)(xj+1) · · · aj(2N)(x2N)

a(j+1)j(xj) a(j+1)(j+1)(xj+1) · · · a(j+1)(2N)(x2N)
...

...
. . .

...
a(2N)j(xj) a(2N)(j+1)(xj+1) · · · a(2N)(2N)(x2N)


and observe that only the diagonal and one-above-the-diagonal entries are non-zero. For
j = 1, . . . , 2N , define Bj by

Bj(xj, . . . , x2N) =


0 aj(j+1)(xj+1) · · · aj(2N)(x2N)
0 a(j+1)(j+1)(xj+1) · · · a(j+1)(2N)(x2N)
...

...
. . .

...
ψ(x0) a(2N)(j+1)(xj+1) · · · a(2N)(2N)(x2N)


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which is obtained fromBj by replacing the first column by the (2N−j+1)-vector (0, . . . , 0, ψ(x0))′.

Note that Bj+1 is a submatrix of Âj. Observe

detÂ(x) =
2N∏
k=1

θk(xk) =

j−1∏
k=1

θk(xk) · detBj(xj, . . . , x2n)

and similarly,

detÂj(x̄) =

j−1∏
k=1

θk(xk) · detBj+1(xj+1, . . . , x2n).

As a result the function Jnl(x) can be rewritten as

Jnl(x) =
2N∑
k=1

gk(xk) · detBk+1(xk+1, . . . , x2N)

detBk(xk, . . . , x2N)
=

2N∑
k=1

gk(xk)

θk(xk)
· detBk+1(xk+1, . . . , x2N)

detBk+1(xk+1, . . . , x2N)

from which the structure of the summands is evident and the optimality of the iteration
procedure of one-dimensional nonlinear problems is established. �

The next example illustrates how well the solution method described in this paper works
for non-trivial problems. The mean-reverting dynamics of the process X are such that the
functions φ and ψ are expressed in terms of the Kummer functions [1] which can be expressed
either as series or an integral for which there is no closed-form expression. It is therefore
necessary to employ numerical techniques.

Example: N-cycle Problem for Mean-Reverting Processes
We now examine a different dynamics for the process X. For y ∈ {0, 1}, let the constants
γ(y), µ(y) and σ(y) be positive. X is a solution of the stochastic differential equation

dX(t) = µ(Y (t))(1− γ(Y (t))X(t)) dt+ σ(Y (t))
√
X(t) dW (t), X(0) = x0 > 0 (4.6)

so has generator Af(x, y) = σ2(y)
2
x∂

2f
∂x2 (x, y) + µ(y)(1 − γ(y)x)∂f

∂x
(x, y) for all f ∈ C2(R+ ×

{0, 1}). In particular, observe that whenever X(t) < 1
γ(Y (t))

, the drift rate is positive so

the diffusion tends to rise toward 1
γ(Y (t))

but when X(t) > 1
γ(Y (t))

, the drift is negative so

the diffusion tends to fall toward 1
γ(Y (t))

. The diffusion coefficient σ(y)
√
x implies that the

process X will never reach 0 and the positive drift at 0 means that 0 is an entrance-not-exit
boundary point.

The increasing solution of the eigenfunction equationAf(x, 0) = αf(x, 0) in Condition 1.2
is given by

ψ(x) = KM

(
α

γ(0)µ(0)
,
2µ(0)

σ(0)2
,
2γ(0)µ(0)

σ(0)2
x

)
, (4.7)

in which KM(a, b, z) denotes the Kummer M -function

KM(a, b, z) = 1 +
az

b
+

(a)2

(b)2

z2

2!
+ · · ·+ (a)n

(b)n

zn

n!
+ · · · ,
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where (c)n := c(c + 1)(c + 2) · . . . · (c + n− 1), (c)0 := 1 denotes the rising factorial (see [1]
for details). For instance, KM(a, b, z) is a solution of the ordinary differential equation

zf ′′(z) + (b− z)f ′(z)− af(z) = 0;

an alternative notation for the Kummer M -function is KM(a, b, z) = 1F1(a, b; z) in [1]. The
decreasing solution of Af(x, 1)− αf(x, 1) = 0 is

φ(x) = KU

(
α

µ(1)γ(1)
,
2µ(1)

σ(1)2
,
2µ(1)

σ(1)2
γ(1)x

)
,

where the Kummer U -function can be expressed in terms of the Kummer M -function as

KU(a, b, z) =
π

sin(πb)

(
KM(a, b, z)

Γ(1 + a− b)Γ(b)
− z1−b · KM(1 + a− b, 2− b, z)

Γ(a)Γ(2− b)

)
.

Let ri(x) = r(x, i) = kix − cfixedi, i = 0, 1, ki and cfixedi given constants. One can easily

check that the solution fri of Af − αf = ri is fri(x) = − ki

α+γµ
x− 1

α

(
kiµ
α+γµ

− cfixedi
)

. Note,

the parameters γ and µ may also depend on i.

To illustrate the iteration procedure we look at two examples which are adaptations of
an application considered by Dixit and Pindyck (see [8, p. 223]), namely when to invest and
disinvest in a copper production. The adaptations use one or two mean-reverting processes
instead of a single geometric Brownian motion process, along with appropriate parameter
choices for the different dynamics. For the first example, consider the case in which the
dynamics of the price process X of copper is not affected by the processes Y . The process
Y does, however, specify different reward functions and different switching costs. Table 1
indicates the convergence of the trigger prices {a∗N} and {b∗N} to limiting values. Recall, for

N a∗N b∗N value

1 0.125109 1.58976 3.98052
2 0.321411 1.47036 4.49382
3 0.354076 1.44612 4.59896
...

...
...

...
8 0.363173 1.43929 4.62853
9 0.363177 1.43929 4.62854
10 0.363178 1.43929 4.62855

Table 1: Trigger prices for exit a∗N and entry b∗N and Values as functions of remaining cycles
N for a mean reverting process (γ0 = γ1 = 1, µ0 = µ1 = 0.1, σ0 = σ1 = 0.3) when α = 0.04,
c(in) = 2, c(out) = 0.2, k0 = 0, k1 = 1, cfixed0 = 0, cfixed1 = 0.8, and x0 = 0.8.

instance, if N = 8 so there are 8 cycles and the system is initially mothballed, the value b∗8
refers to the first hitting level that has to be reached by X before production is started; a∗8
then specifies the level that has to be reached afterwards to turn off production. Thus a∗1
determines the time when the production actually stops. Note, the numerical results confirm
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that {a∗N} is a monotone increasing sequence while {b∗N} should be a monotone decreasing
sequence.

The numbers in the column “value” are the optimal expected profit values when X starts
at x0 and evolves according to the specified dynamics using the finite switching sequence
τ̃ ∗ = (τ ∗1 , . . . , τ

∗
2N) given in (3.6). It is worthwhile to point out that lim

N→∞
a∗N and lim

N→∞
b∗N

coincide with the optimal trigger values of the infinite cycle problem and that the limit of the
monotone increasing values equals the optimal value of that problem; moreover, all limits
agree (up to 5 decimal places) with the numbers in row 10 (see [14]).

Our second example illustrates the case when the dynamics of X change following entry
and exit decisions. We consider mean-reverting processes with two different long term average
values 1/γ0 = 10/7 versus 1/γ1 = 1. The higher value of 1/γ0 reflects the situation that the
long term average price is higher if a major producer is out of the market.

Comparing Table 2 with Table 1 reveals an import result. A producer whose presence in
the market depresses the overall price level can take advantage of his market power. For each
N he is able to increase his expected profit by employing a proper entry-and-exit strategy.

N a∗N b∗N value

1 0.125109 1.88987 4.77835
2 0.3775 1.72465 5.37991
3 0.421476 1.68965 5.50733
...

...
...

...
8 0.434551 1.6792 5.54526
9 0.434558 1.67919 5.54528
10 0.43456 1.67919 5.54528

Table 2: Trigger prices for exit a∗N and entry b∗N and Values for two mean-reverting processes
(γ0 = 0.7 and γ1 = 1, µ0 = µ1 = 0.1, σ0 = σ1 = 0.3) as functions of the remaining cycles N ,
when α = 0.04, c(in) = 2, c(out) = 0.2, k0 = 0, k1 = 1, cfixed0 = 0, cfixed1 = 0.8, and x0 = 0.8.

�

A Appendix

We prove the general optimization result in this appendix. To begin, let n ∈ N and for
j = 1, . . . , N , let (Sj,Xj) be a measurable space. For j = 1, . . . , n, let gj : Sj → R and for
i, j = 1, . . . , n, let aij : Sj → R. Define the general linear program to be

Maximize
n∑
j=1

∫
gj(sj) νj(dsj)

Subject to
n∑
j=1

∫
aij(sj) νj(dsj) = bj, i = 1, . . . , n

νj a finite measure on (Sj,Xj), j = 1, . . . , n.

(A.1)
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Define the matrix Â(s1, . . . , sn) = (aij(sj)) and for j = 1, . . . , N , let Âj be the matrix Â

with its jth column replaced by (b1, . . . , bn)t. Note that Âj is a function of the n−1 variables
(s1, . . . , sj−1, sj+1, . . . , sn); denote these variables by s̄j. Finally define the product measure

ν = ν1 × · · · × νn on S := S1 × · · · × Sn. Let â =
∫

detÂ(s) dν(s).
The following result provides an upper bound on the value of (A.1) and derives a nonlinear

optimization problem whose solution determines a collection of optimal measures for (A.1).

Theorem A.1 Suppose detÂ > 0 and â <∞. Then

n∑
j=1

∫
gj(sj) νj(dsj) ≤ sup

s∈S

{
(detÂ(s))−1

n∑
j=1

gj(sj)detÂj(s̄j)

}
. (A.2)

If the supremum is achieved at a point s∗ = (s∗1, . . . , s
∗
n), then for j = 1, . . . , n, the measures

ν∗j which are concentrated on {s∗j} are optimal for the linear program (A.1).

Proof. Define S̄j = S1 × · · · × Sj−1 × Sj+1 × · · · × Sn so that S̄j omits the jth coordinate
space from S. Also define ν̄j to be the product measure on S̄j of the measures {νl : l 6= j}
which excludes the jth measure νj from the product. Observe that using the constraints of
(A.1) along with Cramer’s rule yields

â =

∫
S

detÂ(s) ν(ds) = det

(∫
aij(sj) νj(ds)

)
=

∫
S̄j

detÂj(s̄) ν̄j(ds̄).

Therefore,∫
S

n∑
j=1

gj(sj) detÂj(s̄) ν(ds) =
n∑
j=1

∫
Sj

gj(sj) νj(dsj) ·
∫
S̄j

detÂj(s̄) ν̄j(ds̄)

= â
n∑
j=1

∫
Sj

gj(sj) νj(dsj).

Define the probability measure µ on S having density â−1detÂ with respect to the product
measure ν on S. Then

n∑
j=1

∫
Sj

gj(sj) νj(dsj) =

∫
S

â−1

n∑
j=1

gj(sj)detÂj(s̄) ν(ds)

=

∫
S

(detÂ(s))−1

n∑
j=1

gj(sj)detÂj(s̄)µ(ds).

Since µ is a probability measure on S, both the upper bound (A.2) and the optimality of
the measures ν∗j , j = 1, . . . , n, immediately follow. �
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