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Abstract

The following retrial system is considered: at a group of C
servers batches of requests arrive from outside according to a Pois-

son process. The batches are of size di with probability pi; i = 1; 2.
If an arriving request �nds a server free it immediately receives

service, otherwise it enters orbit, and after a constant time � the

request retrials from orbit to the servers for getting service now.

If a server is free then it gets service, otherwise it returns to or-

bit again and retrials later in the same way (potentially in�nitly
often) until it gets service, provided the system is stable. The

service times are of the form s + Y , where s 2 R+ and Y is an

exponentially distributed r.v. The described retrial system mod-

els the PPP connection for a pool of modems. Of interest are the

fraction of all requests from outside and going to orbit and the

mean and variance of the sojourn time of a batch of size di in

the system, de�ned as the time from the arrival of a batch un-

til all requests of this batch have received their service. Besides

the stability condition we consider two limiting cases of the model

for which analytical results are given and a third limiting case for

which an approximation is proposed. Since even an approximate
numerical computation of the performance measures would lead to

too complex algorithms (in time and space) a simulation program

for the system has been written. The presented simulation results

illustrate the impact of the system parameters.

Mathematics Subject Classi�cation (MSC 2000): 60K25,

68M20, 65C05.

Keywords: many-server retrial system; batch arrivals; constant

retrial times; PPP connection; simulation results.
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1 Introduction and model description

In this paper we consider a multi-server batch arrival retrial system, mod-
elling the PPP connection for a pool of modems. The model is as follows,
cf. Figure 1.1. At a group of C servers, from outside there arrives a Pois-
son stream � = fT`g

1

`=1; 0 < T1 < T2 < : : :, of intensity � of batches
of requests. Let G`; ` = 1; 2; : : : denote the size of the batch arriving at
T`. We assume that � and fG`g

1

`=1 are stochastically independent and
that fG`g

1

`=1 is a sequence of i.i.d. r.v.'s. Let G be a generic r.v. and
gn := P (G = n); n 2 Z+ n f0g the batch size distribution with mean
mG := EG.

	 :MGI
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Figure 1.1: Multi-server batch arrival retrial system

The stream 	 = f[T`; G`]g
1

`=1 of requests from outside (external input) is
denoted by the symbol MGI , where in case of single arrivals, i.e. if G` =
1; ` = 1; 2; : : :, the stream of requests is already given by �. In this case we
identify � with the stream of requests from outside and use the symbol M
for the arrival process. If an arriving request from outside (external arrival)
�nds some server free it immediately occupies the server and leaves the system
after service. Otherwise, if all servers are busy, the request enters orbit and
produces a source of repeated calls.� More precisely, after a random time,
whose generic random variable is denoted by R with distribution R(t) :=
P (R � t) and mean mR := ER, the request retrials, i.e., it returns to the C
servers. If a server is free then it gets service, otherwise it returns to orbit
again and retrials later in the same way. The retrial times are assumed to be
independent, i.e., the requests in orbit behave independent, and there is no

�The dynamics imply that the over
ow process of the batch arrivals from outside is a

batch process, too.
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limit for repeated attempts. Further, the capacity of orbit is unlimited. The
service times of the requests are i.i.d. r.v.'s, where S denotes a generic r.v.
Denote by B(t) := P (S � t) its distribution function, by mB := ES its mean
and by �2B := D2S and c2B := �2B=(mB)

2 its variance and squared coeÆcient
of variation, respectively. We abbreviate the system as MGI=GI=C=0 with
R(t) distributed retrial times. The o�ered load % to the system is given by

% = �mGmB: (1.1)

By means of the model assumptions and work conservation arguments it can
be shown that

% < C (1.2)

is the stability condition of the system, which is assumed to be ful�lled
in the following. Further, the work conservation principle implies that the
utilization of the servers u, i.e., the fraction of time during which the servers
are busy, is given by

u = %=C: (1.3)

Motivated by the application mentioned above, we assume in the following:

(A1) R(t) = 1Ift � �g; where � is a positive parameter, i.e., the retrial times
are constant � .

(A2) S(t) = 1Ift � sg(1 � e��(t�s)); where s 2 R+ and � 2 R+ n f0g; i.e.,
the service time S is of the form S = s + Y and Y is an exponentially
distributed r.v. with parameter �.

(A3) gn = p11Ifn = d1g+p21Ifn = d2g; n 2 Z+nf0g; where d1; d2 2 Z+nf0g;
d1 6= d2; p1 2 [0; 1] and p2 = 1� p1; i.e., the batch sizes take the values
di with probability pi, i = 1; 2 or equivalently p1 = P (G = d1) =
1� P (G = d2):

Remark 1.1 Assumption (A1) implies that the stream of retrial requests is
a batch arrival process, too. In view of (A3), we call the batches of size di
also type i-batches, i = 1; 2.

The assumptions (A2) and (A3) imply

mB = s+
1

�
; �2B =

1

�2
; c2B = (

1

1 + s�
)2; (1.4)

mG = d1p1 + d2p2; (1.5)

and the stability condition (1.2) reads

�(d1p1 + d2p2)(s+ 1=�) < C: (1.6)
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Let Vi; i = 1; 2 be the stationary sojourn time of an arriving batch of size
di from outside at the retrial systems, i.e., the time from the arrival of the
type i-batch until all requests of the batch have received their service. More
precisely, if V 1

i ; : : : ; V
di
i denote the individual sojourn times of the requests

of the batch, then Vi = max(V 1
i ; : : : ; V

di
i ). We are interested in the means

mV;i := EVi and variances �2V;i := D2Vi or equivalently in the squared coeÆ-
cients of variation c2V;i := �2V;i=(mV;i)

2; i = 1; 2: For the corresponding overall
stationary sojourn time V of a typical arriving batch we �nd for the mean
mV := EV and second moment m

(2)
V := EV 2

mV = p1mV;1 + p2mV;2; m
(2)
V = p1m

(2)
V;1 + p2m

(2)
V;2 (1.7)

in view of (A3), where m
(2)
V;i := EV 2

i ; i = 1; 2 are the second moments of the

Vi. For the squared coeÆcient of variation c2V = m
(2)
V =(mV )

2 � 1 and for the

variance �2V := D2V from (1.7) and m
(2)
V;i = (mV;i)

2(c2V;i + 1) we �nd that

c2V =
1

(mV )2

2X
i=1

pi(mV;i)
2(c2V;i + 1)� 1; �2V = (mV )

2c2V : (1.8)

Besides the sojourn time characteristics we are interested in the fraction pB
of all requests from outside and which go to orbit, i.e., which have to retrial
for getting service.

There is a huge literature on retrial systems, where most of the papers deal
with single server retrial systems. Surveys on retrial systems can be found
e.g. in [AR1], [AR2], [F], [FT], [KL], [YT1], [YT2]. Di�erent mathematical
methods and numerical algorithms where applied, cf. the mentioned survey
papers and also e.g. [FG], [G], [NR], [S1], [S2], [W]. Some more recently
papers are e.g. [BDK], [CCD], [CR], [HLZ], [WCL]. However, the most rel-
evant paper to ours seems to be [HLZ], dealing with the BMAP=PH=C=K
system with PH retrial times, where BMAP stands for a Batch Markovian
Arrival Process, PH for phase-type distributed service and retrial times, re-
spectively, and K for the number of waiting places in front of the C servers.
Since a MGI process is a special BMAP and GI service times as well as
GI retrial times can be approximated by a PH distribution, our particu-
lar MGI=GI=C=0 system with GI retrial times � can be approximated by a
BMAP=PH=C=K system with K = 0 and PH retrial times. But [HLZ]
deals only with the stability condition for the BMAP=PH=C=K system with
PH retrial times and not with the problem of calculating the stationary state
distribution or stationary batch sojourn times. For our best knowledge a nu-
merical or analytical treatment of our model seems not to be available from
the literature. Also, developing algorithms for computing the performance
measures of our model using phase-type approximations would result in very
complex algorithms which seem not to be the appropriate approach. Thus
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we decided to simulate the model. Special cases which can be treated ana-
lytically o�er the possiblity for checking our simulation program. The paper
is organized as follows. In Section 2 we present three special cases which
are useful for checking the accuracy of our simulation program. In Section 3
we describe the implementation of the simulation program and give several
numerical and simulation results. The parameters are chosen according to
the modelling of a real life modem pool model, cf. Section 1. The results
demonstrate the strong impact of the various parameters.

2 Analytically tractable special cases

For checking the accuracy of our simulation program as well as getting in-
formations concerning the number of events which have to be simulated in
order to obtain suÆciently correct statistics, we are interested in analytical
results. In the following we consider three limiting cases, where for the �rst
two analytical results are available and for the third one an approximation
is given.

2.1 Limiting case C !1

For C ! 1 the dynamics of the retrial system converge to those of a
MGI=GI=1 system, where the batch sizes and service times are distributed
according to the assumptions (A3) and (A2), respectively. Since in a
MGI=GI=1 system all requests will be accepted at their arrival, there are
no retrials, and the system is always stable. Consider a type i-batch of
size di 2 Z+ n f0g; i = 1; 2 arriving at the in�nite server system and
let Sj = s + Yj; j = 1; : : : ; di be its individual service times, where the
Yj; j = 1; : : : ; di are i.i.d. exponentially distributed r.v.' with parameter �.
Since in an in�nite server system the service of all requests starts immedi-
ately at their arrival, the individual sojourn times of requests are just their
service times. Thus the sojourn time Vi of the arriving type i-batch is given
by

Vi = max(S1; : : : ; Sdi) = s+max(Y1; : : : ; Ydi); (2.1)

cf. also Section 1. From (2.1) for i = 1; 2 it follows

mV;i = s+
1

�

diX
j=1

1

j
; �2V;i =

1

�2

diX
j=1

1

j2
; (2.2)

c2V;i =
�2V;i

(mV;i)2
: (2.3)

The overall sojourn time characteristics are then given by (1.7), (1.8). Fur-
ther, it holds

pB = 0: (2.4)

4



2.2 Limiting case d1 = 1; p1 = 1; s = 0; � ! 0

If d1 = 1; p1 = 1 and s = 0 then p2 = 0 and the arrival stream � of
requests from outside is a Poisson stream (of intensity �) of single arrivals
and the service times are exponentially distributed with mean 1=�. Since
for � ! 0 the requests in orbit check immediately whether a server is free,
the dynamics of the retrial system converge to those of aM=M=C=1 system
(with parameters �; �). The stability condition (1.2) reads % < C, where
% = �=�. Denote by X the stationary number of requests in the M=M=C=1
system, which corresponds to the cumulative number of requests in the C
servers and in orbit. The stationary distribution pn := P (X = n); n 2 Z+ is
given by, cf. e.g. [GH],

pn =

8>><
>>:

%n

n!
p0; n = 0; : : : ; C � 1

%n

C!Cn�C
p0; n = C;C + 1; : : :

(2.5)

and

p0 =

 
C�1X
i=0

%i

i!
+

%C

C!(1� %=C)

!
�1

: (2.6)

The blocking probability in this limiting case is given by

pB =
1X

n=C

pn = 1� p0

C�1X
n=0

%n

n!
: (2.7)

For the mean sojourn time mV from Little�s formula it follows

mV =
1

�
EX; (2.8)

where for the mean number EX of requests it holds, cf. e.g. [GH],

EX =
%C%

C!C(1� %=C)2
p0 + %: (2.9)

Remark 2.1 By means of continuous time Markov chains, the limiting case
s = 0; � ! 0 could be treated for the general batch arrival stream given by
assumption (A3). However, the theoretical outline and numerical algorithms
are more complex and will not be given here.
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2.3 Approximation for the limiting case d1 = 1; p1 =

1; � !1

As in the previous limiting case let the arrival stream of requests from out-
side be a Poisson stream � (of intensity �) of single arrivals, i.e. d1 =
1; p1 = 1. The stability condition reads as % = �mB < C, and the stream
of retrial requests from orbit consists of single arrivals, too. Denoting by

�(r) =
n
T
(r)
`

o
1

l=1
; 0 < T

(r)
1 < T

(r)
2 < : : :, this stream of requests from orbit,

for � !1 the processes � and �(r) tend to become stochastically indepen-
dent. Although �(r) does not converge to a Poisson process as � ! 1, we
approximate �(r) by a Poisson process of intensity �(r) in the following. Un-
der this assumption the cumulative arrival process arriving at the C servers
is a Poisson process ~� of intensity ~� := � + �(r), and the dynamics of the
C servers correspond to those of a M=GI=C=0 system. The steady state
distribution pn; n = 0; : : : ; C; of the number of busy servers is given by

pn = p0
~%n

n!
; n = 0; : : : ; C; (2.10)

p0 =

 
CX

n=0

~%n

n!

!
�1

; (2.11)

where

~% = ~�mB = % + %(r); %(r) = �(r)mB: (2.12)

The intensity of the process of rejected requests from the C servers (over
ow
process) is given by

�(r) = ~�pC ;

or, equivalently, in terms of the retrial load %(r) = ~%pC . The PASTA-property
implies that the blocking probability pB of an arriving request from outside
is given by

pB = pC : (2.13)

For computing pC we have to determine ~� or equivalently %(r), cf. (2.12).
From (2.10)-(2.13) it follows that %(r) is given by the solution of the �xed
point equation

%(r) = f(%(r)); (2.14)

where

f(%(r)) := (%+ %(r))

 
CX

n=0

(% + %(r))n

n!

!
�1

(% + %(r))C

C!
(2.15)

is a non-linear function. Eq. (2.14) can be solved by using the iteration

%
(r)
`+1 = f(%

(r)
` ); ` = 0; 1; : : : with starting value %

(r)
0 := 0.
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Remark 2.2 Since over
ow processes usually have a peakedness Z > 1,
cf. e.g. [W], and peaked streams of requests usually lead to larger blocking
probabilities than a Poisson process with the same mean, our proposed ap-
proximation should underestimate the exact blocking probability, cf. also the
simulation results in Section 3.

3 Implementation and simulation results

The simulation of the described model, cf. Section 1, and the computation
of the three special cases, cf. Sections 2.1 { 2.3, are implemented in the
program simula.exe. The source code is written in C++ for Windows 9x,
Windows NT or Windows XP and has been compiled by Visual C++ 6.0.
The program provides a graphical user interface. After starting the program
the user will be requested for the input of the following parameters, described
in Section 1 with the exception of N , where the standard con�guration, given
in (3.1) and (3.2), is suggested:

Number of served batches of requests { N ,

Intensity of batch arrivals { �,

Batch size { d1; d2,

Probability of the batch size d1; d2 { p1; p2,

Number of servers { C,

Constant part of the service time { s,

Mean of the exponential part of the service
time

{ 1
�
,

Mean retrial time { � .

The user can choose between a constant retrial time, i.e. R � � � mR, or a
random retrial time R with a uniform distribution on [�=2; 3�=2], where � =
mR. The number N denotes the number of served batches of requests that
will be simulated, provided the program run is stable. For the parameters it
is assumed

N 2 N ; � > 0; d1; d2 2 N ; p1 = 1� p2 2 [0; 1];

C 2 f1; 2; : : : ; 1000g; s; 1=� � 0; � > 0:

After input of the parameters and starting the program (please press the
start bottom) �rst the stability condition (1.2), (1.6) will be checked before
the simulation is running. After �nishing the simulation of N batches of
requests and computation of the three limiting cases the following output is
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written to the screen:

Mean sojourn time { mV ,

Mean sojourn time for type i-batches { mV;i,

Variance of the sojourn time { �2V ,

Variance of the sojourn time for type i-
batches

{ �2V;i,

Squared coeÆcient of variation { c2V ,

Squared coeÆcient of variation for type i-
batches

{ c2V;i,

Blocking probability { pB.

Before starting the simulation the user is requested for a �le name, where
the data have to be stored. After �nishing the simulation the statistical data
as well as the input data are stored in a LATEX table. Note that in case of

u = %=C
>
� 0; 95 and/or � = mR large, the simulation may become very

slowly and/or instable in view of fast increasing memory and/or computing
time requirements. Tables 3.1 - 3.7 have been drawn up by using the program
simula.exe. If not stated otherwise, we used the following parameters, which
are realistic choices for modeling the PPP connection for a pool of modems
[S]:

d1=1; d2 = 20; p1 = p2 = 0:5; (3.1)

C =120; s = 60 [sec]; � = mR = 60 [sec]: (3.2)

The range for 1=� (mean of the exponential part of the service time) and
the server utilization u = %=C, cf. (1.1), (1.3) - (1.5), which is of practical
relevance, is

1 � 1=� � 10; 0:5 � u � 0:9: (3.3)

(Note, concerning C also C 2 f16; 32g is of interest).
Tables 3.1 and 3.2 illustrate the convergence of the overall performance mea-
sures pB; mV and c2V to the steady state limits as the number N of simulated
served batches increases and suggest/give hints for realistic values of N to be
chosen for obtaining statistically reliable simulation results. Thus we used
N = 107 for lower utilizations and N = 2:5 � 108 for higher utilizations in
our simulation runs. In Tables 3.3 - 3.5 there are presented results for the
limiting cases given in Sections 2.1 - 2.3. More precisely, in Table 3.3 there
are presented the analytical results for the limiting case C ! 1 (cf. Sec-
tion 2.1) and the corresponding simulated values for C = 120, which can be

8



considered as a good approximation for the in�nite server system in view of
% = 1:2. The simulation results con�rm this consideration. In Table 3.4 there
are presented results for the limiting case given in Section 2.2. The values
in the row for � = 0 are computed numerically. The simulated values show
its convergence for � ! 0, as expected. The proposed approximation given
in Section 2.3 for the limiting case d1 = 1; p1 = 1 and � ! 1 is illustrated
in Table 3.5. In the row � = 1 there is given the { numerically computed
{ proposed approximation for pB. As seen from the simulation results this
approximation is indeed a lower bound for pB, as heuristically expected from
general experiences with over
ow processes, cf. Remark 2.1. In Table 3.6
there are given the blocking probabilities of the requests and sojourn time
characteristics for batches for a model of a pool of modems whith its PPP
connections [S]. The simulation results illustrate that the mean sojourn time
mV;i of a type i-batch strongly depends on its batchsize di; i = 1; 2, cf. (3.1).
Also if u increases the mV;i increase considerably, compared to the mean ser-
vice time mB = s+1=� of a request, cf. (1.4). The retrial times are realized
in a modem pool architecture by a timer of constant time R � mR = � . It is
an interesting question whether an random retrial time with the same mean
would provide better performance measures. In Table 3.7 there are given
pB, mV and c2V for constant and uniformly distributed { over the interval
[30; 90] { retrial times of mean mR = 60. The presented results give a mixed
picture. Under some parameter constellations there is an improvement of
the performance measures, whereas in other cases they become worse. Thus
there is no clear answer whether a random timer should be chosen.
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N pB mV c2V

100000 0.06234 67.25560 0.0716

200000 0.06381 67.38008 0.0740

300000 0.06402 67.40065 0.0745

400000 0.06428 67.42748 0.0746

500000 0.06454 67.43740 0.0745
600000 0.06481 67.45248 0.0747

700000 0.06479 67.46547 0.0752

800000 0.06490 67.46263 0.0751

900000 0.06551 67.50247 0.0757

1000000 0.06555 67.50460 0.0758
...

...
...

...

4400000 0.06546 67.50654 0.0762

4500000 0.06550 67.50872 0.0763
4600000 0.06549 67.50818 0.0762

4700000 0.06548 67.50569 0.0762

4800000 0.06547 67.50304 0.0761

4900000 0.06551 67.50756 0.0762

5000000 0.06548 67.50604 0.0762

5100000 0.06547 67.50494 0.0762

5200000 0.06539 67.50151 0.0761

5300000 0.06543 67.50560 0.0762

5400000 0.06546 67.50672 0.0762

5500000 0.06548 67.50758 0.0762

5600000 0.06547 67.50773 0.0762
5700000 0.06546 67.50526 0.0762

5800000 0.06548 67.50491 0.0762

5900000 0.06550 67.50638 0.0762

6000000 0.06552 67.50912 0.0763

Table 3.1: Convergence of the simulation for u = 0:5, � = 1.
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N pB mV c2V

100000 0.71242 225.28211 0.7073

200000 0.70856 221.70491 0.6903

300000 0.70233 219.41955 0.6978

400000 0.70205 219.53186 0.6979

500000 0.69966 217.98554 0.6955

600000 0.70234 220.52814 0.6958

700000 0.69953 218.29005 0.6974

800000 0.69836 217.09122 0.6946
...

...
...

...

5000000 0.70495 223.43205 0.7030

5100000 0.70468 223.22147 0.7028

5200000 0.70482 223.21027 0.7022
...

...
...

...

13000000 0.70641 224.86143 0.7044

13100000 0.70645 224.86849 0.7042

13200000 0.70642 224.83071 0.7041
...

...
...

...

19200000 0.70626 224.85030 0.7049

19300000 0.70628 224.85352 0.7047

19400000 0.70632 224.89686 0.7049

19500000 0.70631 224.86900 0.7046

19600000 0.70632 224.86556 0.7045

19700000 0.70637 224.89746 0.7044

19800000 0.70647 224.95485 0.7042

19900000 0.70644 224.93058 0.7041
20000000 0.70653 224.98399 0.7040

Table 3.2: Convergence of the simulation for u = 0:9, � = 1.

s 1=� mV mV;1 mV;2 c2V c2V;1 c2V;2

computed 30 1 32.2989 31.0000 33.5977 0.0029 0.0010 0.0014

simulated 32.2973 30.9989 33.5954 0.0028 0.0010 0.0013

computed 60 5 71.4944 65.0000 77.9887 0.0146 0.0059 0.0065

simulated 71.4870 65.0003 77.9717 0.0145 0.0059 0.0065

Table 3.3: The limiting case C !1, cf. Section 2.1, for % = 1:2. In the row
"simulated" the value C = 120 is used.
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� C pB mV

5 8 0.32672 72.186081

2 8 0.34351 71.192965

0.5 8 0.35333 70.890139

0 8 0.35698 70.709433

5 7 0.57458 101.073861

2 7 0.59826 98.478681

0.5 7 0.60859 96.974442

0 7 0.61383 96.829807

Table 3.4: The limiting case d1 = 1; p1 = 1; s = 0 and � ! 0, cf. Section 2.2,
for � = 0:1; � = 1.

� pB

simulated 60 0.3426

600 0.2915

6000 0.2503

12000 0.2480

computed 1 0.1625

Table 3.5: Approximation of pB for d1 = 1; p1 = 1 and � ! 1, cf. Section
2.3, for � = 1; � = 1; s = 65.
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u 1=� pB mV mV;1 mV;2 c2V c2V;1 c2V;2

0.5 1 0.0648 67.4648 63.1220 71.8108 0.075 0.034 0.100

0.8 1 0.4242 110.6606 86.9641 134.3467 0.510 0.418 0.455

0.9 1 0.7065 224.9839 177.8439 272.1381 0.704 0.854 0.537

0.95 1 0.8620 474.0609 412.9691 535.0990 0.679 0.732 0.604

0.5 5 0.0599 75.8436 66.1944 85.4864 0.067 0.023 0.066

0.8 5 0.3688 107.5544 73.3796 141.7196 0.461 0.150 0.375

0.9 5 0.5856 167.8430 83.0473 252.6731 1.143 0.460 0.734

0.95 5 0.7332 291.9919 100.9141 483.1387 2.074 1.496 1.137

Table 3.6: Performance measures for di�erent utilizations u and mean service
times mB = 60 + 1=� 2 f61; 65g:

constant retrial time uniform distribution of R

over
�
�
2 ;

3�
2

�

u 1=� mV c2V pB mV c2V pB

0.69 1 82.31376 0.2676 0.23589 87.12426 0.4068 0.21389

0.85 1 148.26541 0.6510 0.56189 135.99581 0.6986 0.48602

0.90 1 224.98394 0.7041 0.70652 174.76181 0.8640 0.60848

0.80 5 107.55444 0.4613 0.36884 114.70215 0.4913 0.36723

0.91 5 181.65002 1.2964 0.61211 188.78796 1.1523 0.63217

Table 3.7: Comparison between constant retrial times R = � and uniformly
distributed retrial times R over the interval

�
�
2
; 3�
2

�
for � = mR = 60.
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