Sequential Parameter Estimators with Guaranteed Accuracy for Delay Differential Equations

Uwe Küchler

Institute of Mathematics, Humboldt University of Berlin

Assume the process $(X(t), t \ge 0)$, defined by the delay differential equation

$$dX(t) = (aX(t) + bX(t-1))dt + \sigma dW(t)$$

and the initial condition

$$X(s) = x_0(s), s \in [-1, 0],$$

can be observed, where the parameters $\vartheta^* = (a, b)$ are unknown. Let ϵ be an arbitrary positive number and $q \geq 2$ fixed. A sequential estimation plan $(T_{\epsilon}, \hat{\vartheta}_{\epsilon})$ will be presented, such that $||\hat{\vartheta}_{\epsilon} - \vartheta||_q \leq \epsilon$, where $||.||_q = (E_{\vartheta}||.||^q)^{\frac{1}{q}}$ and $||a||^2 = a_1^2 + a_2^2$ for $a = (a_1, a_2)^*$. Asymptotic properties of $(T_{\epsilon}, \vartheta_{\epsilon})$ for $\epsilon \to 0$ are studied.

The construction can be generalized to linear regression processes described by

$$dX(t) = \vartheta a(t)dt + \sigma dW(t)$$

based on observation of $(X(t), a(t), t \ge 0)$.

The talk is based on joint work with V.Vasiliev (Tomsk).

References:

Küchler, U. and Vasiliev, V. On guaranteed parameter estimation of a multiparameter linear regression process.

Preprint 7 of the Math. Inst. of Humboldt University, Berlin, pages 1–60, 2009.

Automatica, Journal of IFAC, Elsevier, 2009, Vol. 46, Issue 4 (April), 10 pages.