
Provable Security for Outsourcing Database Operations

Sergei Evdokimov, Matthias Fischmann, Oliver Günther

Humboldt-Universität zu Berlin

{evdokim,fis,guenther}@wiwi.hu-berlin.de

Database outsourcing, whilst becoming more popu-
lar in recent years, is creating substantial security and
privacy risks. In this paper, we assess cryptographic
solutions to the problem that some client party (Alex)
wants to outsource database operations on sensitive
data sets to a service provider (Eve) without having to
trust her. Contracts are an option, but for various rea-
sons their effectiveness is limited [2]. Alex would rather
like to use privacy homomorphisms [6], i.e., encryption
schemes that transform relational data sets and queries
into ciphertext such that (i) the data is securely hid-
den from Eve; and (ii) Eve computes hidden results
from hidden queries that Alex can efficiently decrypt.
Unfortunately, all privacy homomorphisms we know of
lack a rigorous security analysis. Before they can be
used in practice, we need formal definitions that are
both sound and practical to assess their effectiveness.

The strongest notion of confidentiality requires ev-
ery single bit of information on queries as well as data
itself to be kept secret from Eve, no matter how many
queries she can observe, or how rudely she breaks the
contract. This notion would allow for doing business
with arbitrarily malicious service providers – but is im-
possible to achieve. We present and analyse a solution
for the case that (i) Alex trusts Eve to behave accoring
to protocol and not secretly analyse the data she can
gather, but (ii) is worried about Eve’s data being sold
to an adversary of Alex.

Related Work: In 2002, Hacıgümüş et al. pro-
pose a database encryption scheme for full SQL [4].
The idea is that every tuple is encrypted with a secure
cipher first, then weakly encrypted attributes are at-
tached to the ciphertext. These weak encryptions are
obtained by taking a plaintext attribute value, map-
ping it to a containing interval, and encrypting that
interval using a secret permutation. Two plaintexts
may therefore map to the same ciphertext, even if they
are not equal. Some of the information contained in
the plaintext is destroyed but not as much as in an
ordinary encryption scheme. While the remaining in-
formation (like the number of tuples of the table, or

which tuples have similar values in which secret at-
tributes) is enough to query the encrypted database
with little post-processing, one hopes that Eve still
does not obtain too much information on the data if
the partitionings into intervals and the other security
parameters have been chosen properly. However, the
security is based on intuition alone; a rigorous analysis
is missing.

1 Relevant Notions of Security

An encryption scheme is a tuple (K, E,D), where
E : K × X 7→ Y, D : K × Y 7→ X are encryp-
tion and decryption functions that convert a key and
plaintext x ∈ X into the corresponding ciphertext
y ∈ Y . It must hold that Dk(Ek(x)) = x, or for short:
D(E(x)) = x. Keys are chosen uniformly at random
from the key space K. The bit length n = log(|K|) of
all keys is called the security parameter of the scheme.
We not introduce a class of encryption schemes called
database privacy homomorphisms that has additional
properties:

Definition 1.1 (Database PH) Let (K, E,D),
(K, Eq , Dq) be encryption schemes, R be a set of
relations, C be a set of ciphertexts. A database
privacy homomorphism (or database PH, for short) is
a tuple (K, E,Eq , D) such that

1. E : K × R → C encrypts tables,
D : K × C → R decrypts tables, and
Eq : K × {σi} → {ψi} encrypts queries.

2. For any relation R and any relational operation
σi, Ek(σi(R)) = ψi(Ek(R)).

Intuitively, that means that the plaintext operations
can be carried out on the ciphertext, producing cipher-
texts containing the result. Note that our definition
contains an extra query encryption function Eq. This
turns out to be useful for reasoning about data confi-
dentiality: In some attacks, if Eve knows a few plain-

1

text queries and some matching encrypted data, she
can infer significant information on the plaintext data.

Also, we only consider schemes that perform tuple-
by-tuple encryption,1 i.e., for table R ∈ R, R =
{v1, . . . , vn}, the ciphertext C ∈ C is the set C =
{c1, . . . , cn}, where ci is the encryption of vi.

The most common notions of security are based on
games between an honest user (such as Alex) and an
adversary (such as Eve) modeled by a probabilistic al-
gorithm. A scheme is secure if Eve cannot win the
game with probability 1

2 + 1/p(n) for every polyno-
mial p in running time and memory usage p′(n) for any
polynomial p′ for sufficiently large n. (One could say
that Eve chooses p′ conveniently large, Alex chooses p
conveniently small, and Eve must then cope with the
situation.) If this is true, the winning probability is
called negligible. The following (or similar) definition
can be found in any textbook on cryptography.:

Definition 1.2 An encryption scheme (K, E,D) is in-
distinguishably secure if Eve cannot win the following
game:

1. Eve chooses two plaintexts m1,m2 of the same
length and presents them to Alex.

2. Alex chooses i ∈ {1, 2} uniformly at random and
presents Ek(mi) to Eve.

3. Eve must guess i.

E.g., Eve can win this game if by having plaintext
encrypted she can learn enough about it to decrypt one
bit of a chosen ciphertext. She merely needs to choose
the plaintexts such that this bit suffices to distinguish
the two.

This definition considers the passive adversary that
only intercepts and processes the ciphertexts. There
are exist more powerful adversaries additionally capa-
ble of producing the plaintexts and ciphertexts of her
choice.2 But it is already easy to find adversaries that
win the game in this weak sense for most schemes. Con-
sider the scheme proposed by Hacıgümüş et al. in [4].
Let Eve produce two tables:

1For the sake of contradiction, assume that there exists a

more advanced scheme that doesn’t fit this restriction. Then

either Eve or Alex need to reverse any non-tuple-by-tuple trans-

formation that is performed. If Eve can do it, it does not add

to the security of the scheme. If only Alex can to do it, any

additional security stems from the fact that the data is hidden

in some fair amount of noise. By a standard cryptographic argu-

ment, the computation overhead for Alex does not increase the

cost of a successful attack more than linearly, where an exponen-

tial increase is necessary for any real security.
2Eve is said to be an active adversary if she can produce sam-

ples of her choice. This is modelled with a fictitious oracle. In

practice, Eve usually obtains her answers from Alex by sending

him confusing messages. If Alex is not a human but a machine

running a complex application, this is a very real risk.

table 1:
ID salary
171 4900
481 1200

table 2:
ID salary
171 4900
481 4900

Next, Eve obtains a ciphertext, which is the encryp-
tion of one of the tables, from Alex. According to the
scheme, the salaries in the first table will be mapped to
different intervals with high probability. The salaries in
the second table will be mapped to the same interval.
Since the intervals are encrypted deterministically, the
encryption of the first table will consist of two differ-
ent ciphertexts, and the encryption of the second table
will consist of two identical ciphertexts. Hence, Eve can
determine with high probability to which table the re-
ceived ciphertext corresponds: If there are two different
ciphertexts for the intervals of the “salary” attribute,
Eve outputs 1; otherwise, she outputs 2. Similar at-
tacks work on the scheme of Damiani et al. [3].

2 Database Privacy Homomorphisms

and Security Limitations

Although privacy homomorphisms are just a sub-
set of the set of all encryption schemes, the ability to
transform plaintext operations into corresponding ci-
phertext operations yields new possibilities for an ad-
versary to get insights into encrypted data. Consider
an indistinguishably secure database PH. If an adver-
sary runs the query σai=d on the encrypted table, she
receives a set of encrypted tuples. Though she cannot
decrypt them, she knows that the value of the attribute
ai of these tuples is d.

Why does a scheme that is secure against the
strongest adversary still leak so much information?
The problem is that the classical model considers only
parties operating with plain- and ciphertexts. But
in this scenario parties also exchange queries and the
results of these queries which can reveal information
about plaintext. Kantarcıoǧlu and Clifton [5] propose
a definition that addresses this problem in which they
state that a database PH is secure if any two tables
with the same number of tuples as well as any two
queries returning the same number of tuples are indis-
tinguishable. They suspect that it may already be too
strong to have a solution. Although we show that this
is not true, there is another problem: A scheme secure
in this sense does allow the adversary to get informa-
tion about the plaintext with high probability.

Consider an example where Alex owns a database
with statistics for three competing hospitals, keeping
track of the state in which patients are leaving each
hospital. Each patient is described by the attributes
id, name, hospital, and outcome (outcome is a binary

2

attribute either set to ‘fatal’ or ‘healthy’). Now suppose
that Eve knows the database schema, the number of
hospitals, and has good estimates of the distribution of
patient flows (0.2, 0.3, 0.5 resp.) and the ratio of fatal
vs. successful outcomes (0.08, 0.92).

Alex issues the following queries:

SELECT * FROM table WHERE hospital = 1;

SELECT * FROM table WHERE hospital = 2;

SELECT * FROM table WHERE hospital = 3;

SELECT * FROM table WHERE outcome = ’fatal’;

From the size of the results and the fact that we only
have exact selects, Eve can guess the exact queries with
high confidence (conditions on id and name yield far
fewer hits). Then, by intersecting the answers to the
first and the fourth query, Eve can infer the ratio of
lethal to successful outcomes in hospital 1!

In another example we consider an active adver-
sary with the ability to get encrypted queries of her
choice and show that no matter how secure the ta-
ble is encrypted, such an adversary is able to de-
duce a significant amount of information about the
encrypted data. Suppose there was a patient “John”
and Eve wants to find out in which hospital he was
treated and what happened to him. She issues the en-
cryption of query σname:John using the query encryp-
tion oracle. Then Eve issues encryptions of queries
σhospital:X , X ∈ {1, 2, 3}. By intersecting the results
of the four queries issued, Eve can determine the hos-
pital where John was treated. Analogously, she can
find his status.

The definition of a secure database PH addressing
these issues can be formulated as follows:

Definition 2.1 A database PH provides indistin-
guishability if Eve cannot win the following game:

1. Eve chooses two tables T1(R), T2(R) containing
the same numbers of tuples and presents them to
Alex.

2. Alex chooses i ∈ {1, 2} uniformly at random and
presents Ek(Ti(R)) to Eve.

3. Eve receives at most q encrypted queries issued to
Ek(Ti(R)) and computes the results (in case of ac-
tive adversary Eve has access to the queries en-
cryption oracle and issues q encryptions of plain-
text queries of her choice).

4. Eve must guess i.

The above examples demonstrate that this level of
security cannot be achieved by any database PH, no
matter how advanced. This can be established for-
mally:

Theorem 2.1 Any database PH (K, E,Eq , D) is in-
secure in the sense of Definition 2.1 if q > 0.

Although if the adversary is passive, the case is less
obvious, in both cases the security of the encrypted
data cannot be guaranteed.

Intuition indicates that Definition 2.1 is too strong.
Several relaxations can be considered: (i) Allow passive
adversaries only, (ii) allow for some limited information
leakage, or (iii) grant less plaintext knowledge to Eve.
Unfortunately, none of these ideas is very promising.

(i) Passive adversaries are indeed an option in gen-
eral. However in our setting, Eve has unlimited write
access to all ciphertext and can produce any message
sequence necessary for her attack. To demonstrate the
plausibility of active adversaries that have consider-
ably fewer options than Eve, Bleichenbacher has im-
plemented a practical attack against SSL in which the
role of the oracle is played by a confused web server
[1]. (ii) Often only one bit of information is of in-
terest to Eve (e.g., in the acknowledgement resp. can-
celling of a stock order sent to a broker). Even if this
is not the case, it is usually infeasible for the applica-
tion designer to specify which bits are confidential and
which are not. Hence, a secure scheme must not leak
a single bit. (iii) Changing the amount of Eve’s plain-
text knowledge is the most problematic approach. If
an encryption scheme is used as a building block for
building complex applications, Eve must be assumed
to have full access to the source code. In combina-
tion with timing attacks and other traffic analysis tech-
niques, this gives her extensive knowledge on the struc-
ture and purpose of the encrypted data. Assuming a
less well-informed Eve is a textbook case of security by
obscurity and usually leads to desaster. The Risk Di-
gest provides a rich collection of anecdotical evidence:
http://catless.ncl.ac.uk/Risks. For a more de-
tailed discussion, see the full version of this paper.

So what can be done? Assume that Alex trusts Eve
not to attack him directly but still worries about her
becoming adversarial in the future (e.g., by a change
of company ownership). If Alex’s trust in Eve dete-
riorates, he can cancel the contract in time and stop
sending queries. Consequently, q = 0 and Theorem
2.1 does not apply. In the next section we present a
solution for this case.

3 A Privacy Homomorphism Preserv-

ing Exact Selects

To conclude this poster, we give a general construc-
tion of a database PH based on searchable encryption
schemes. One such scheme has been proposed by Song

3

et al. [7] and includes a proof of security, but others
can be used instead. In the full version of this paper,
we describe a few straight-forward optimizations such
as attributes of variable length, and present a formal
security proof of our construction under the assump-
tion that the underlying searchable encryption scheme
is secure.

We write a|b for concatenation of strings a
and b. ’#’ is the padding symbol. Consider
the relation Emp(name:string[9], dept:string[5],

salary:int). We can construct a database privacy
homomorphism for the schema as follows.

First, create words hich are strings of the same
length (the shorter the better) and which identify
the attributes of the relation. Then bijectively map
the tuples of the given relation to the documents ,
or sets of words.3 The number of words in each
document is equal to the number of the attributes
in the relation. The globally fixed word length is
the length of the longest attribute value plus the
length of an attribute identifier (required for decryp-
tion, see below). For example, the relation Emp

will be mapped to the following set of documents:
{string[9]|”N”, string[9]|”D”, string[9]|”S”}.

Now, map all tuples of the original relation Emp to
documents. For example:

〈name:"Montgomery", dept:"HR", sal:7500〉 7→

{"MontgomeryN", "HR########D", "7500######S"}

These documents are encrypted using a searchable
encryption scheme and stored on a remote server.

In order to perform exact selects on the encrypted
relation, queries of

σattribute name:value

will be mapped to the search operation

ϕtoString(attribute value)|”attribute id”

and processed as a search operation, returning a set
of encrypted strings. The strings then are decrypted
and mapped to the corresponding tuples, producing
the result of the issued query. E.g.:

σname:”Montgomery” 7→ ϕ”MontgomeryN”

Note that some searchable encryption schemes, and
in particular the scheme presented in [7], sometimes
return false positives. Alex needs to run a filter on the
output. As the error rate is negligible for all practi-
cal purposes, this does not affect the efficiency of our
construction.

3One could model documents as sequences and not sets, but

sets are strictly more general, and for our purposes the word

order is irrelevant.

4 Conclusions and Future Work

If a database production system is deployed, nobody
questions the virtue of a sound theory of databases
that this system is based on. If an insecure network
connection is used between client and server for sen-
sitive applications, reliable encryption and authentica-
tion mechanisms are used to protect the user against
attacks. However, for the case that the database server
itself goes adversarial, recent work has been based on
much lower standards: Rather tha focussing on ac-
ceptable worst-case bounds of security mechanisms, re-
searchers have been overly concerned with minimizing
their performance overhead.

In this paper, we have proposed a new security def-
inition for database PHs. Any scheme that satisfies
this definition allows for secure processing of encrypted
data in the presence of an untrusted database service
provider. Further, we have reasoned that this defini-
tion cannot be satisfied, suggesting that we should not
expect too much from any previous or future work in
this field.

On the bright side, we have given a general construc-
tion for a database PH that can be proven to be secure
in a relaxed, but still rigorous and plausible sense under
widely accepted cryptographic assumptions.

References

[1] D. Bleichenbacher. Chosen Ciphertext Attacks Against
Protocols Based on the RSA Encryption Standard
PKCS#1. In Advances in Cryptology, 1998.

[2] C. Boyens and O. Günther. Trust is not Enough: Pri-
vacy and Security in ASP and Web Service Environ-
ments. In ADBIS’02, volume 2435 of LNCS.

[3] E. Damiani, S. De Capitani Vimercati, S. Jajodia,
S. Paraboschi, and P. Samarati. Balancing Confiden-
tiality and Efficiency in Untrusted Relational DBMSs.
In CCS’03. ACM Press.

[4] H. Hacıgümüş, B. Iyer, C. Li, and S. Mehrotra. Execut-
ing SQL over Encrypted Data in the Database-Service-
Provider Model. In SIGMOD’02. ACM Press.

[5] M. Kantarcıoǧlu and C. Clifton. Security Issues in
Querying Encrypted Data. Purdue Computer Science
Technical Report 04-013, 2004.

[6] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On
Data Banks and Privacy Homomorphisms. In Founda-

tions of Secure Computation. Academic Press, 1978.

[7] D. X. Song, D. Wagner, and A. Perrig. Practical Tech-
niques for Searches on Encrypted Data. In IEEE Sym-

posium on Security and Privacy, 2000.

4

