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1 Varying Coefficient Models

The general form of a varying coefficient model allowed for in MulTi is

yt = xtγt + ztβ + ut, (9.1)

where yt is a scalar dependent variable, xt = (x1t, . . . , xKt) is a (1×K) vector of exogenous

variables, γt = (γ1t, . . . , γKt)
′ is a (K × 1) vector of possibly time varying coefficients,

zt = (z1t, . . . , zMt) is a (1×M) regressor vector with constant coefficients β = (β1, . . . , βM)′

and ut is a scalar error term with mean zero and variance σ2
u. Thus, the analysis of

varying coefficient models is confined to single equation models. MulTi offers two types

of methods for estimating the time paths γ1, . . . , γT of the coefficients, namely the flexible

least squares (FLS) method and maximum likelihood (ML) methods based on different

types of state space models. When you choose the

Model type: Varying coeff.

and the entry

C Model Specification

in the main menu (see Fig. 2.3) you obtain the menu shown in Fig. 9.1. It allows you to

choose between FLS and ML analysis. The two methods and their implementation will

be considered in turn in the following. Since forecasting and structural analysis are not

available for varying coefficient models, choosing the options

D Forecasting

or

E Structural Analysis

in the main menu in Fig. 2.3, an error message appears.

1.1 Flexible Least Squares Analysis

Flexible least squares (FLS) analysis was proposed by R. Kalaba & L. Tesfatsion (1989),

“Time-Varying Linear Regression via Flexible Least Squares,” Computers and Mathemat-

ics with Applications, 17, 1215-1245 (see also R. Kalaba, & L. Tesfatsion (1990), “Flexible

Least Squares for Approximately Linear Systems,” IEEE Transactions on Systems, Man,

and Cybernetics, SMC-20, 978-989). In the FLS analysis the constant coefficient regressors

zt are not present in the model (9.1), that is, the model

yt = xtγt + ut

is analyzed. FLS is a method for recursively computing the time paths γ1, . . . , γT which

minimize the objective function

T
∑

t=1

(yt − xtγt)
2 + λ

T−1
∑

t=1

(γt+1 − γt)
′D(γt+1 − γt) (9.2)
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Figure 9.1: Menu for choosing the method for analyzing a varying coefficient model.

where λ is a prespecified positive constant and D is a fixed positive definite (K × K)

matrix which is also specified by the user of the method. The first sum in the objective

function penalizes equation errors ut while the second sum in (9.2) penalizes coefficient

variation. The relative weight assigned to these two terms is controlled by λ. A small

value of λ reduces the importance of coefficient variation in the objective function and

hence leads to more volatile coefficient time paths. On the other hand, a large value of

λ penalizes coefficient variation heavily and, hence, results in smooth or almost constant

time paths. MulTi automatically computes time paths of the coefficients for a range of λ

values. The weighting matrix D in (9.2) may be chosen so as to compensate for different

scalings of the regressors. MulTi offers the choice of three types of D matrices.

The main menu for a flexible least squares analysis is shown in Fig. 9.2. The cursor

appears on the right-hand side when you enter the FLS menu. On that side you may

choose the sample stretch which you would like to analyze by selecting

A Beginning of sample

and

B End of sample

and specifying the desired numbers. In contrast to some other menus you don’t have to

allow for presample values even if you include lags of some of your variables as regressors
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Figure 9.2: Menu for FLS analysis.

in the model. The program takes care of the presample values automatically by reducing

the sample period appropriately. You cannot use 1 as Beginning of sample , however,

if you have differenced one or more variables in the preliminary analysis.

You may include all variables from your data set and lags of these variables as

independent regressor variables in the model. If you want to include an intercept term in

addition, set

C Constant term

to yes .

Upon choosing

D Choice of dependent variable

a pop-up menu appears listing all the variables of your system. You may choose the

dependent variable from this list. Then the regressor variables must be specified by

selecting

E Choice of independent variables

Once you have chosen this entry MulTi wants you to specify the lags of each variable that

you would like to be used as regressors. Specify −1 if you want to exclude a particular

variable and its lags from the set of regressors. At this stage you must not choose lag 0
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of the dependent variable because that variable cannot be an independent variable at the

same time. You may, however, include other lags of your dependent variable, such as 1

or 2, in the list of regressors.

The following three options are available for the weighting matrix D:

(X ′X)/T, diag(X ′X)/T and αIK. (9.3)

Here T denotes the sample size,

X =











x1

...

xT











in the (T×K) regression matrix, diag(X ′X)/T denotes the diagonal matrix with the same

diagonal elements as (X ′X)/T and zero off-diagonal elements. The first two weighting

matrices given in (9.3) compensate for different scalings of the regressors. Thus, they are

useful if different regressors have quite different magnitudes. The third weighting matrix,

αIK, assigns equal weight to each coefficient. If you choose this weighting matrix you are

asked to specify α. This allows you to override to some extent the range of λ values which

is automatically used by MulTi. Once you have selected

F Choice of weighting matrix

you may choose one of the three weighting matrices given in (9.3) by highlighting it with

the cursor keys and pressing the ←↩ key.

The time paths for values

λ = .001, .01, .1, 1, 10, 100, 1000, 10000

are computed when you select

Q Return to results page

Plots of the time paths for each of the coefficients for all the different λ values are displayed

upon choosing

A Time paths of coefficients

on the left-hand page of the FLS menu. Press the ←↩ key to display the graphs for the

next coefficient. An example is given in Fig. 9.3.

Under

B Summary statistics

on the left-hand side of the FLS menu the means, standard deviations and coefficients

of variation of the FLS time paths are available for each of the coefficients and for each

value of λ. An example is shown in Fig. 9.4.

A pop-up menu for a residual analysis appears when

C Residual analysis
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Figure 9.3: FLS time paths of a coefficient.

is selected. The full range of diagnostics is available including autocorrelations and plots

of residuals and squared residuals. Rough 1/
√

T standard errors are provided for the

autocorrelations. The degrees of freedom for the approximate χ2-distribution of the port-

manteau test are determined as the maximum lag of the involved autocorrelations minus

the number of regressors K. It is unclear whether this is a reasonable approximation to

the actual distribution of the portmanteau statistic. Therefore the given values of the

distribution function should be interpreted cautiously.

If at some stage you are not sure which model you are currently analyzing select

E Model

to display the names and lags of the dependent and independent variables. To modify

your model you may choose

P Change model −→

which takes you back to the right-hand side of the menu.
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Figure 9.4: Summary statistics for FLS time paths.

1.2 Maximum Likelihood Analysis

In the maximum likelihood (ML) analysis a state space model of the following general

form is estimated:

yt = xtγt + ztβ + ut (measurement equation) (9.4)

γt = Bγt−1 + wt−1 (transition equation) (9.5)

where yt, xt, zt, γt and β are defined as in (9.1), ut is normally distributed white noise

with variance σ2
u, that is ut ∼ N(0, σ2

u), wt = (w1t, . . . , wKt)
′, t = 0, 1, . . . , is a Gaussian,

K-dimensional, zero mean white noise process with diagonal covariance matrix

Σw =











σ2
w1

0
. . .

0 σ2
wK











,

that is, wt ∼ N(0, Σw). The process wt is assumed to be independent of the process ut.

Furthermore, B is the (K ×K) transition matrix. MulTi allows two possible B matrices.

In the random walk model, B = IK and in the return-to-normality model,

B =











b1 0
. . .

0 bK










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is a diagonal matrix with unknown diagonal elements. Finally, we assume that the initial

state γ0 is also normally distributed,

γ0 ∼ N(γ̄0, Σ0),

and is independent of the ut and wt processes. For t = 1, . . . , T the likelihood func-

tion of this model is optimized with respect to the parameters σ2
u, σ

2
w1

, . . . , σ2
wK

, β and, if

applicable, b1, . . . , bK . State space models are discussed in Chapter 13 of IMTSA.

Figure 9.5: Menu for maximum likelihood analysis of a state space model.

On the right-hand side of the ML analysis menu shown in Fig. 9.5 the beginning

and the end of the sample to be used in the estimation must be specified. Since MulTi

internally adjusts the sample beginning if presample values are required in the following

analysis you don’t have to worry about allowance for such values at this stage.

If you choose

C Model for coefficients

a pop-up menu appears which gives you the choice between

A Random walk

and

B Return-to-normality
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If you decide to go with the random walk model the transition matrix B = IK and you

may specify the dependent variable yt of the measurement equation by choosing

D Choice of dependent variable

Furthermore under

E Choice of constant coeff.

and

F Choice of varying coeff.

the regressors zt and xt with constant and varying coefficients, respectively, must be

chosen. MulTi asks you to specify the desired lags of all variables in your data set. No

regressor may be chosen for zt and xt at the same time. Also, you may not choose lag

zero of the dependent variable as a regressor. Choose −1 if you want to exclude a variable

and its lags.

In the return-to-normality model the measurement equation has the form

yt = xtγt + xtβ + ut (9.6a)

and the transition equation is

γt = Bγt−1 + wt−1 (9.6b)

Defining ηt = γt + β this state space model is equivalent to:

yt = xtηt + ut

(ηt − β) = B(ηt−1 − β) + wt−1

Thus, the regressors with varying coefficients in (9.6) are the same as those with constant

coefficients and, hence, zt = xt. Therefore, you just have the choice of regressors with

varying coefficients under

F Choice of varying coeff.

They will automatically be incorporated as zt regressors as well.

Once you have fully specified the model you may proceed to the left-hand side of

the menu by choosing

Q Return to results page

Two different iterative algorithms are available in MulTi for optimizing the log-

likelihood function, the full EM algorithm and the scoring algorithm. Both algorithms are

described by W. Schneider (1988), “Analytical uses of Kalman filtering in econometrics –

a survey”, Statistical Papers, 29, 3-33. The scoring algorithm is also discussed in Sec. 13.4

of IMTSA. Both algorithms make extensive use of the Kalman filter. The EM algorithm

performs the individual iterations much faster than the scoring algorithm. It usually needs

many more iterations to reach the optimum, though. A good strategy in practice is to
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perform some EM iterations first and then switch to the scoring algorithm. t-ratios and

standard errors are available only if at least one scoring iteration has been performed.

If you choose

A Full EM-algorithm

a pop-up menu appears which allows you to modify the default termination criteria for

the algorithm. Possible termination criteria are the maximum number of iterations, an

insufficient increase of the log-likelihood function and if the relative change of the param-

eters falls short of a prespecified bound. The relative change of the parameter values in

the i-th iteration is defined as
√

√

√

√

√

1

N

N
∑

n=1





δ
(i)
n − δ

(i−1)
n

δ
(i−1)
n





2

where N is the number of free parameters in the model and δ(i)
n is the n-th element of the

parameter vector obtained in the i-th iteration. The quantity

(

δ(i)
n − δ(i−1)

n

δ
(i−1)
n

)2

is replaced by zero if δ(i−1)
n = 0.

If you choose

Q Quit

in the pop-up menu containing the termination criteria, an initial estimator is computed

automatically and some intermediate estimation results appear on the screen. They enable

you to monitor the performance of the algorithm. An example screen is depicted in

Fig. 9.6. The algorithm stops if either the prespecified maximum number of iterations

has been performed or if the two other termination criteria are jointly satisfied.

Once the iterations have terminated you may return to the ML analysis menu shown

in Fig. 9.5 and select

B Scoring algorithm

Again a pop-up menu appears that allows you to modify the termination criteria. It is

useful to choose a small maximum number of iterations at this stage because scoring iter-

ations may be very time consuming and you may want to check how long they take. The

derivatives required in this algorithm are computed numerically with the Kalman filter.

When you leave the pop-up menu the iterations start from the last available parameter

vector, for instance, the one reached by the EM algorithm. If no previous parameter

values are available MulTi computes its own initial estimates. Like for the EM algorithm

summary results of the scoring iterations are displayed on the screen while the algorithm

is in progress. Once the iterations have terminated and you have returned to the ML

menu you may again choose
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Figure 9.6: Iterations of the EM algorithm.

B Scoring algorithm

The following iterations will then start from the parameter values obtained in the final

iteration of the previous call of the scoring algorithm. Thus, you don’t lose much by

choosing a small number of iterations in each call of the algorithm. Note, however, that

the algorithm starts from fresh initial values if you modify the model.

If at least one iteration of the scoring or EM algorithm has been made, estimation

results are available under

C Parameter estimates

Estimates of the mean of the initial state γ0 and the covariance matrix Σ0 are given

in addition to estimates of the other parameters. In other words, in the random walk

model estimates of β, σ2
u and σ2

w1
, . . . , σ2

wK
are provided and for the return-to-normality

model estimates of σ2
u, b1, . . . , bK and σ2

w1
, . . . , σ2

wK
are given. If at least one iteration of

the scoring algorithm has been performed estimated standard errors and t-ratios are also

provided. Since the actual asymptotic distributions of the t-ratios are unknown in general

they should be interpreted cautiously. Plots of the implied time paths of the coefficients

with estimated two-standard error bounds are available under

D Time paths of coefficients

Press ←↩ to display the next time path. An example is shown in Fig. 9.7. The time
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paths are the estimated conditional expectations γt|T based on the full sample y1, . . . , yT .

Thus, they are computed with the Kalman smoother on the basis of the estimated state

space model. The two-standard error bounds shown in Fig. 9.7 are obtained from the

associated covariance matrices Σγ(t|T ) of the conditional distributions.

Figure 9.7: Plot of a time path of a coefficient from a return-to-normality model.

A pop-up menu with some diagnostics for the innovations from the state space model

appears upon selecting

E Innovation analysis

The innovations are defined as ut|t−1 = yt − yt|t−1, where yt|t−1 denotes the conditional

expectation of yt given y1, . . . , yt−1. The standard errors of the autocorrelations of the

innovations and squared innovations are estimated as 1/
√

T . The distribution of the

portmanteau statistic is approximated by a χ2-distribution with degrees of freedom equal

to the maximum lag of the involved autocorrelations minus the number of regressors in

the measurement equation (9.4).

If at some stage of your analysis you are not sure about the model you are working

on (for instance, if you are not sure which variables and lags you have specified as regressor

variables) you may select

F Model

to get the information. If you want to change the model choose
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P Change model −→

to return to the right-hand page of the ML analysis menu.

In MulTi forecasting and structural analysis are not possible with varying coefficient

models. Therefore, if you quit from the ML menu all results and models will be erased.

æ


