
Advanced Econometrics

Exam Summer Term 2008, July 24th 2008

Prof. Dr. Nikolaus Hautsch
Chair of Econometrics
Humboldt-Universität zu Berlin

You have to answer 2 out of 3 problems within 90 minutes (plus 10 minutes
”reading time”). If you answer all questions, only the first 2 problems will
be taken into account.

You may answer in English or in German. But please stick to one language.

You find necessary underlying results and formulas in the appendix.

Do your best to write legibly. Exams or parts of exams which cannot be
read with reasonable effort will not be graded.

Good luck!
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Problem 1: GMM Estimation

Let zi ≡ (yi, wi) be a vector of endogenous variables and instruments
for observations i = 1, . . . , n. Define θ0 as the true (k × 1) parameter
vector.

a) Give the definition of a conditional moment function. Show how it
can be used to construct appropriate unconditional moment func-
tions. How many moment functions and instruments do we need for an
(over-)identified model?

b) Give the objective function of GMM estimation and explain the un-
derlying principle. In which sense is it a generalization of the method
of moment objective function?

c) Assume a linear model with conditionally heteroscedastic errors

yi = x′iθ0 + εi, εi ∼ IID(0,Ω(wi)), i = 1, . . . , n,

where xi is a (k × 1) vector of regressors with E[εixi] 6= 0, and wi is a
(q × 1) vector of instruments with E[εiwi] = 0 and q > k.

Derive the GMM estimator and its asymptotic covariance matrix based
on the moment function ψ(zi, θ) = wiεi and an identity weighting
matrix.

d) Which (asymptotic) properties of sample moments of the data do you
need for the estimator derived in (c) to be consistent? Prove the
consistency.

e) Assume that Ω(wi) = σ2Ik, where Ik denotes an (k×k) identity matrix.
Show that the GMM estimator for θ0 using an optimal instrument
matrix is given by

θ̂n = (X ′W (W ′W )−1W ′X)−1X ′W (W ′W )−1W ′Y,

where X and W denote the corresponding (n×k) and (n×q) matrices
of the regressors and instruments, respectively. How do we call this
estimator? Why does it essentially correspond to a method of moments
estimator?

Hint: Substitute E[xi|wi] by the corresponding linear projection

E[xi|wi] = X ′W (W ′W )−1wi.

f) Consider the (G)MM estimator for θ0 derived in (e) for X = W . By
assuming an appropriate distribution for εi, suggest an ML estimator
which is identical with that (G)MM estimator. What does this result
mean for the robustness of your ML estimator? How do we call such
an ML estimator?
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Problem 2: Nonlinear Regression

Assume a latent regression model of the form

Y ∗
i = x′iβ0 + εi, i = 1, . . . , n,

with the following observation rule for the observable dependent vari-
able:

Yi =

{
1, if Y ∗

i > 0,

0, otherwise.

It is assumed that the error term εi follows a logistic distribution with
E[εi|xi] = 0 and V[εi|xi] = 1.

a) Derive the log likelihood function of the model.

b) Derive the score function.

c) Show that the Hessian has the form

H ≡ ∂2 lnL(β)

∂β∂β′
= −

n∑
i=1

F (x′iβ) (1− F (x′iβ))xix
′
i,

where F (·) denotes the distribution function of the logistic distribu-
tion.

d) Formulate the model as a nonlinear regression model

yi = Ψ(xi, β0) + ξi,

where Ψ(·) is some function of β0 and xi, and ξi is an error term with
E[ξi|xi] = 0. Give the form of Ψ(·).

e) Show that the error terms ξi are conditionally heteroscedastic given
the regressors.

f) You want to estimate β0 by GMM. Formulate possible moment func-
tions using exclusively the results in (e).

g) Show that the ML estimator considered above can be represented as

(i) a GMM estimator based on appropriate moment functions,

(ii) a pseudo ML estimator based on appropriate distributional as-
sumptions for ξi.

What do these results mean for the optimality of the GMM estimator
in (f)?

h) Derive the asymptotic covariance matrix of the GMM/PML estimator
considered in (g). Which condition must be fulfilled such that the
GMM/PML covariance matrix coincides with that of the ML estimator
considered above? In which situations does this condition not hold?
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Problem 3: Essays

Write short essays on two of the following topics:

(i) Asymptotic efficiency of GMM estimators based on over-identifying
restrictions.

(ii) Fundamental principles of Bayesian vs. frequentist inference.

(iii) Single-equation GMM vs. multiple-equation GMM.

(iv) Bayesian inference for the parameter of a Bernoulli distribution.

(v) Reduced form and structural form estimation of simultaneous equa-
tions models.
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Appendix

(i) The asymptotic distribution of the GMM estimator θ̂n(Wn) of
parameter θ0 with unconditional moment function ψ(zi, θ) and
weighting matrix Wn is given by

√
n(θ̂n(Wn)− θ0)

d→ N(0,∆0V0∆
′
0),

where

∆0 ≡ (A′
0W0A0)

−1A′
0W0,

A0 ≡ E

[
∂ψ(zi, θ0)

∂θ′

]
,

V0 ≡ V[ψ(zi, θ0)] = E[ψ(zi, θ0)ψ(zi, θ0)
′],

θ0 ≡ plim θ̂n(Wn),

W0 ≡ plim Wn.

(ii) The asymptotic distribution of the ML estimator of parameter
θ0 is given by

√
n(θ̂n − θ0)

d→ N(0, I1(θ0)
−1),

where

I1(θ) ≡ −E

[
∂2 ln f(y1; θ)

∂θ∂θ′

]
,

and f(·) denotes the p.d.f. of the (ergodic stationary) variables
yi, i = 1, . . . , n.

(iii) Optimal conditional moment estimation: The GMM estimator
of θ0 based on the conditional moment function ρ(zi, θ) and the
instrument matrix

A∗(wi) = Ω(wi)
−1D(wi),

where

Ω(wi) ≡ E[ρ(zi, θ0)ρ(zi, θ0)
′|wi],

D(wi) ≡ E

[
∂ρ(zi, θ0)

∂θ′

∣∣∣∣wi

]
is efficient relative to all GMM estimators using the same condi-
tional moment function.

(iv) The distribution function F (z) and the density function f(z) of
the logistic distribution are given by

F (y) =
1

1 + exp(−y)
, f(y) = F (y)(1− F (y)).
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(v) The density function of a Beta distribution is given by

f(y;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
yα−1(1− y)β−1, α, β > 0,

with

E[y] =
α

α+ β
,

V[y] =
αβ

(α+ β)2(α+ β + 1)
.
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