
Advanced Econometrics

Exam Summer Term 2008, October 2nd 2008

Prof. Dr. Nikolaus Hautsch
Chair of Econometrics
Humboldt-Universität zu Berlin

You have to answer 2 out of 3 problems within 90 minutes (plus 10 minutes
”reading time”). If you answer all questions, only the first 2 problems will
be taken into account.

You may answer in English or in German. But please stick to one language.

You find necessary underlying results and formulas in the appendix.

Do your best to write legibly. Exams or parts of exams which cannot be
read with reasonable effort will not be graded.

Good luck!
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Problem 1: (Pseudo) Maximum Likelihood

Define y as a random variable and f(y; θ) as a parametric density
depending on a parameter vector θ ∈ Θ. Assume that ∂f(y; θ)/∂θ
and ∂2f(y; θ)/∂θ∂θ′ exist for all y and θ ∈ Θ. Moreover, assume that
for all θ ∈ Θ and all realizations of y, one can twice differentiate∫

f(y; θ)dy under the integral with respect to the components of θ.

a) Show that

E

[
∂ ln f(y; θ)

∂θ

]
= 0.

Hint: Differentiate
∫

f(y; θ)dy = 1 under the integral.

b) Building on the results from a) show that

I(θ) = E

[
−∂2 ln f(y; θ)

∂θ∂θ′

]
, (1)

where I(θ) := E [(∂ ln f(y; θ)/∂θ)(∂ ln f(y; θ)/∂θ′)] . How do we call
I(θ) and how do we call the equality in (1)?

c) Assume two distributions f(y) and f ∗(y) and define the Kullback dis-

crepancy as I(f |f ∗) := E∗
[
ln f∗(y)

f(y)

]
. Show that

(i) I(f |f ∗) ≥ 0,

(ii) I(f |f ∗) = 0 if and only if f = f ∗.

Explain intuitively the idea of the Kullback discrepancy.

d) Assume that y follows a distribution belonging to the linear exponen-
tial family with f(y; µ(x, θ)) = f(y; µ) = exp(A(µ) + B(µ) + C(µ)y),
where x is a set of (predetermined) regressors, and Ex[y] = E[y|x] =
µ(x, θ).

(i) Show that the expected score regarding f(y; µ) is zero only if

dA(µ)

dµ
+

dC(µ)

dµ
µ = 0.

(ii) Show that the information equality only holds if the variance of
y is of the form V[y] = (dC(µ)/dµ)−1.

Hint: Use the fact that the negative Hessian can be computed as

ExE0

[
−∂2 ln f(y; µ(x, θ0))

∂θ∂θ′

]
= Ex

[
∂µ′

∂θ

dC(µ)

dµ

∂µ

∂θ′

]
,

where Ex denotes the expectation with respect to x and E0 denotes
the expectation with respect to y given x.
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Problem 2: Multiple-Equation GMM

Assume an M -equation model of the form

yim = x′
imθm + εim, m = 1, 2, . . . ,M, i = 1, 2, . . . , n,

where (yim, xim) follows a stationary ergodic process and xim and θm

are (km×1)-vectors. The error terms εim follow white noise processes.
Assume a set of stationary ergodic instruments with E[wimεim] =
0, m = 1, 2, . . . ,M. Moreover, assume the existence of fourth
(cross-)moments of wi and xj, i, j = 1, . . . , n.

a) Give the necessary and sufficient condition for the identification of
θ := (θ1, . . . , θM).

b) Compute the sampling error of the multiple-equation GMM estimator
based on the weighting matrix W .

c) Show that the sampling error derived in b) converges in probability to
zero and state the necessary underlying assumptions.

d) Show that the single-equation GMM estimator of θ can be written as
a multiple-equation GMM estimator. What does this result mean for
the consistency of the single-equation GMM estimator?

e) Can the single-equation GMM estimator be as efficient as the multiple-
equation GMM estimator? Justify your answer analytically.

f) Assume the parameter restriction θ1 = θ2 = . . . = θM := θ̄.

(i) Derive the pooled OLS estimator of θ̄.

(ii) Which orthogonality condition is exploited by the pooled OLS
estimator?

(iii) Under which condition is the pooled OLS estimator as efficient
as the corresponding multiple-equation GMM estimator?
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Problem 3: Essays

Write short essays on two of the following topics:

(i) HAC estimators

(ii) The Gibbs algorithm

(iii) Bayesian model comparison

(iv) Consistent pseudo-maximum likelihood estimation

(v) The accept-rejection algorithm
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